pdbdecode

Extract Palm Electronic Book Contents

revision: 1.25 of 2009/09/03 21:16:31
printed: 18.x.2011 15:08

printed from version being edited!!!

Section Page

Introduction i e e 1
Implementation language and environment 2
PDB Structuresttt e e e e e 13
PDB file headercouiiniiii ittt 14
PDB record headerst 26
PDB record bodies i e e 33
Determine file type 37
TEXt: Palm DOC decoder i e e 41
TEXt: Decoding uncompressed textt 47
TEXt: Decoding compressed text 48
zTXT: Weasel Reader decoder, 54
MOBI: MobiPocket decoderc.o.iuiiiininiiin i 69
MOBI: Decoding Huffman compressed data 78
PNRdA: Peanut Reader Decoderoo i, 79
Utility routinesoo it i e e e e 93

Index ..o e e 105

81 18.x.2011 15:08 INTRODUCTION 1

What | cannot create, | do not understand.
— notation left at the top of

Richard Feynman's

blackboard when he died.

1. Introduction.

[[[See TpXbook pl06, for a different way to do webref. |]]

There are a number of different electronic book formats for the Palm handheld device, each
with a different software application for the Palm. The electronic book files are all wrapped
as standard Palm database (PDB) files. The PDB format provides the overall structure
of the data (for example, the record sizes and headers); the e-book formats each provide
a different encoding of the book data within that structure (for example, how the text is
compressed). There are at least six different e-book formats in general use, distinguishable
by the type and creator tags in their file headers:

Traditional Palm DOC format (type TEXt, creator REAd),

Weasel Reader compression (type zTXT, creator GP1lm),

Palm Reader/Peanut Press (type PNRd, creator PPrd),

Mobipocket (type BOOK, creator MOBI),

iSilo (type ToGo, creator ToGo),

Plucker (type Data, creator P1kr).

[[[Plucker format is described in the Plucker documentation downloadable bundle. In the 1.8

version, it’s file plucker-1.8/manual/DBFormat.html. []]

This program decodes the first four of these formats and recovers the source text (and
sometimes images) for the e-books. Providing a way of decoding the content is a vital step
in converting from one e-book format to another. The actual conversion to a new format is
beyond the scope of this program — indeed, the reader software packages generally provide
adjunct software for the desktop computer to convert text into the appropriate PDB files.

Additional issues out-of-scope for this program:

e (Converting the text markup: We don’t attempt to process or strip the markup data
interspersed with the text describing font style and size, paragraph breaks, and so forth.
Each of the e-book formats uses a different markup language: Palm Reader uses a very
light-weight markup, for example; Weasel expects text with no markup; Mobipocket relies
on the Open E-Book markup language, which is a very complete HTML-like language
and is the emerging standard used for electronic publishing. Similarly, we don’t do line
breaking on the text bodies, which often end up with each paragraph in a single long line,
nor do we attempt to fold imbedded line-ending characters to their Unix or Windows
standard forms.

e Digital rights management and encryption: This program as originally written doesn’t
handle any form of digital rights management (DRM), in which e-books are encrypted or
keyed to a particular user or device. E-books for both Mobipocket and Palm Reader can
be DRM-locked, either for the exclusive use of the purchaser, or to expire after a pre-set
time as with a lending library. At the risk of violating the Digital Millennium Copyright
Act, someone could use CWEB’s change file mechanism to add code to this program

2

INTRODUCTION 18.x.2011 15:08 §1

which breaks or circumvents DRM and encryption schemes. (Breaking the encryption
probably involves running reader software under a simulator and debugger.)
Comparison of source texts: If we have multiple versions of a source text — say, the
original version and one we just decoded from an e-book form — we may want to compare
them. To do this we would need to do a word-by-word comparison of the two versions,
probably ignoring possible markup. As useful as this functionality might be (and as much
as I expect to need it), it is the purview of a different piece of software.

82 18.x.2011 15:08 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 3

2. Implementation language and environment. There exist numerous Perl scripts
for Palm file manipulation, including at least two modules for TEXt/REAd format and two
for zTXT/GP1m. It would be logical to write modules for the other formats, but writing a C
program reduces the dependencies on Perl modules, and the Perl base environment. It also
makes a program that will be most-easily portable to other operating systems.

But why CWEB rather than straight C? Because the formats are complicated, and the
literate programming model gives us a better way to produce the notes on the formats.
Also, changes for particular operating systems can be easily handled by CWEB’s change file
mechanism, which allows modifications to be made to program source via an supplementary
source file leaving the original source unchanged. It means we need to ship the raw C and
a printable version of the source, since we can’t assume everyone has CWEB installed, but
I am willing to accept that inconvenience.

And, similarly, why write in C, rather than the trendier C++? While CWEB supports
C++, the advantages of C++ for this project are nil. It is unnecessary to build a class
for each e-book type, since the decoding for the individual types is already separated into
its own subroutine. Even if it made sense to build a class for each e-book type for data
privacy, we already have the necessary isolation by making the data for each type local to
its decoding routine. The notion of making each e-book type a derived class of a generic
PDB class is likewise silly, since we only decode one type of book at a time, and the data
isolation is not necessary in such a small project. The one syntactic advantage of C++ for
our purposes, the ability to include declarations anywhere in the code body, is obviated by
CWEB features which allow us to explain code in a different order than the computer will
see it. By making sections of code that are additions to previous-defined sections, we can
freely intermix declaration sections with code sections.

The ultimate CWEB reference is The CWEB System of Structured Documentation, by
Donald E Knuth and Silvio Levy (Addison-Wesley, 1993, ISBN 0-201-57569-8. The software
itself can be downloaded from

http://www-cs-faculty.stanford.edu/ knuth/cweb.html.
For further information on literate programming, see Daniel Mall’s literate programming
web site
http://www.literateprogramming.com/.
The list of additional references includes Knuth’s original literate programming paper,
http://www.literateprogramming.com/knuthweb.pdf.

This software was developed on Microsoft Services for Unix release 3.5, running on
Microsoft Windows XP Service Pack 2. [[[Before final release it should also be built and
tested on Linux and as a native Windows program. |]]

4 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 18.x.2011 15:08 83

3. The program outline is simple:

(include files 4)
(data types 13)

(prototypes 23)
(global data 7)

(global macros 95)
(functions 21)

main (int argc, char xargv[])
{

(local data in main 5)
(main program 6)

ezit (0);

}

4. We’ll need a number of include files, so let’s begin listing the obvious ones. We’ll add
to this list as we continue.

(include files 4) =

#include <stdio.h>
#include <string.h>
#include <stdarg.h>

See also sections 20, 22, 29, and 59.

This code is used in section 3.

5. We begin the body of the program by processing the flags. Let’s first stipulate the
“usage” message, and some local data.
(local data in main 5) =
int g;
const char xusage = "Usage: pdbdecode [-al [-i]l [[-h]l [-r]1 [\
-011,[-s1 [-v]L[-w]l[-o base] file";
See also sections 16 and 19.

This code is used in section 3.

86 18.x.2011 15:08 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 5

6. The usage message shows the synopsis of the command line. To enumerate the flags:

-h Display the contents of the global PDB header, which contains data about the file itself.

-r Display all the individual record headers, which contain data such as location of the
record within the file.

-0 Display the data in record 0 of the PDB file, which contains data about the contents of
the file.

-a Turn on all three of -h, -r, and -0.

-i Appends non-graphic supplemental data — bookmarks, annotations — to stdout. The
graphic data is ignored unless there is also a -o.

-oloc Specify the output location. If loc is an existing directory, or if the name ends with a
slash, we produce the output files in that directory. If loc is a simple name, we generate
file names of the form locnnnnn, where nnnnn is a sequential five-digit number. If there is
no -o flag, we only output the base text to stdout. See subroutine nezt_ofile () for details.

-s Only output the supplemental data, such as bookmarks and pictures, and don’t output
the body text. This is the opposite of running without -o to only output the body text.
Even if we don’t output it, we still extract the body text as a consistency check.

-v Display the version and copyright banners and exit.

-w Issue extra warnings

[[[We should use POSIX getopt () for parsing the command-line options, but | don’t think it’s
available as such on Windows, which would make the Windows port harder.]]]

(main program 6) =
1=1;
while (i < arge A (argu[i][0]) = *-?) {

switch (argv[i][1]) {
case ’h’: flags |= FLAG_HEADERS;

break;
case ’r’: flags |= FLAG_RECHDRS;
break;
case ’0’: flags |= FLAG_RECZERD;
break;
case ’a’: flags |= (FLAG_HEADERS | FLAG_RECHDRS | FLAG_RECZERD);
break;
case ’s’: flags |= FLAG_SUPONLY;
break;
case ’i’: flags |= FLAG_SUPTEXT;
break;
case ’o’: o_name = (argv[i][2]) ? (&argv[i][2]) : (argv[++i]);
break;
case ’v’: (print version and copyright 8)
ezit (0);
default: fatal("bad flag, ,<%c>\n%s", argv[i][1], usage);
}

14+;

6 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 18.x.2011 15:08 86

if (i > argc) fatal("no,filename?\n%s", usage);
See also sections 10, 12, 17, 18, 24, 28, 31, and 40.

This code is used in section 3.

7. Now that we’ve used the command-line flags, let’s define the bit flags for them, and
the global data we need to support them.

#define FLAG_HEADERS #01
#define FLAG_RECHDRS #02
#define FLAG_RECZERO #04
#define FLAG_SUPONLY #08
#define FLAG_SUPTEXT #10

(global data 7) =
int flags = 0;
char xo_name = NULL;
FILE xofp;
See also sections 11, 14, 26, 30, 37, and 38.

This code is used in section 3.

8. Of course, if we're printing the version number, we don’t need a flag bit: we just display
the version, build date, copyright information, and call it quits. We go to some effort to
strip just the raw revision number and date out of the strings our revision control system
provides, which makes this code a little more baroque than it might be otherwise. In case
stripping the data fails, we just print the whole strings.

(print version and copyright 8) =
{
char xrevisionld = "$Revision: ,1.25,$";
char xrevisionDate = "$Date: ,2009/09/03,21:16:31,,$";
char xidp = strchr(revisionld,’,’);
char xide = idp ? strchr(idp +1,°,’) : NULL;
char xdap = strchr(revisionDate, ’,?);
char xdae = dap ? strchr(dap +1,’,’) : NULL;
int leni = ide — idp — 1;
int lend = dae — dap — 1;
if (idp = NULLVide = NULLVdap = NULLVdae = NULL)
printf ("pdbdecode, %s %s\n", revisionld , revisionDate);
else
printf ("pdbdecode, version . *s,(%.*s)\n", leni, idp + 1, lend, dap + 1);
}

See also section 9.

This code is used in section 6.

89 18.x.2011 15:08 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 7

9. In the case where we displaying the version information, we also want to display the
copyright information. We put out the basic copyright here, and if we later have a section
discussing the licensing terms, we may make an addition to the section.

(print version and copyright 8) +=
printf ("Copyright, Jeffrey L Copeland\n");

10. The input file is also straight-forward. Because we intend to port this to Windows,
we add the "b" option to fopen, which is necessary for that platform.
(main program 6) +=
infilename = argv|i];
ifp = fopen (infilename, "rb");
if (ifp =NULL) {
perror (infilename);
exit (1);

}

11. Since we have only one input file, we make its FILE x global, so that we don’t have
to pass it in calls to our read utilities.

(global data 7) +=
char xinfilename;
FILE xifp;

12. Open the basic output file if necessary; see subroutine next_ofile() for the mechanics
of supplemental files.
(main program 6) +=

if (o_name = NULL) ofp = stdout;

else ofp = next_ofile("","");

8 PDB STRUCTURES

13. PDB structures.

18.x.2011 15:08

§13

We’ll use the names the Palm documentation uses for basic scalar types. They are stored
in the file in network order, most significant byte first. (Except for BYTE, which replaces
the Palm unsigned char type Byte to avoid a conflict with the types used by zlib.)

format Word int
format DWord int
format BYTE int

(data types 13) =

typedef unsigned short Word;
typedef unsigned long DWord;
typedef unsigned char BYTE;

This code is used in section 3.

14. PDB file header.

We begin by defining the PDB file header block. The format is defined in the Palm

developer documentation set at

http://www.palmos.com/dev/support/docs/fileformats/Intro.html.
http://www.palmos.com/dev/tech/overview.html
The individual fields in the file header are described as comments in the structure below.

Additional notes appear in the next section.

#define LEN_TTL 32

#tdefine LEN_HDR ((LEN_TTL + 4 + 4) + 3 % sizeof (Word) + 8 x sizeof (DWord))

(global data 7) +=
struct {

char title[LEN_TTL];
Word attributes;
Word version;
DWord creationDate;
DWord modificationDate;
DWord lastBackupDate;

DWord modificationNumber;

DWord applInfold;
DWord sortInfold;
char typel[5];
char creator[5];
DWord uniqueldSeed;
DWord recordOffset;
Word numRecords;

} hdr;

size_t PDBsize;

/* title, NUL-terminated

/* flags

/* application-specific version tag
/* file dates

/* how many times file was updated
/* offset within file to applInfo block
/* offset within file to sorfInfo block
/* type identification

/* creator identification

/* random seed for record identifiers
/* offset to record zero

/* total number of records in file

/* total size of PDB file

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

§15 18.x.2011 15:08 PDB FILE HEADER 9

15. Some notes on the data elements in hdr:

Numeric data in a PDB file is stored in big-endian format. The title is already expected
to be NUL terminated, but we include an extra byte in type and creator so we can add a
terminating NUL.

The names appInfold and sortInfold are misnomers.

There is a handwave about the number of padding bytes following the header if there is
not a record list, however, we ignore this since non-empty e-books always have a record list.

The total size for the PDB file is declared in the previous section, but to be pedantic, it’s
not part of the header block; we actually get the data from external sources.

The attributes field is bit-flags, and the possible flag values are defined here:

#define ATTR_RESOURCE #01
#define ATTR_READONLY #02
#define ATTR_DIRTY #04
#define ATTR_BACKUP #08
#define ATTR_OKNEWER #10
#define ATTR_RESET #20
#define ATTR_OPEN #40
#define ATTR_LAUNCHABLE #200

16. We need a buffer into which to read the file header.

(local data in main 5) +=
BYTE b[LEN_HDR], *p = b;

17. Once defined, we can read the file header as a lump and store it a field at a time.
(main program 6) +=
ck_read (b, LEN_HDR);
store_String (p, hdr.title, LEN_TTL);
store_Word (p, hdr .attributes);
store_Word (p, hdr .version);
store_DWord (p, hdr.creationDate);
store_DWord (p, hdr.modificationDate);
store_DWord (p, hdr.lastBackupDate);
store_DWord (p, hdr.modificationNumber);
store_DWord (p, hdr.appInfold);
store_DWord (p, hdr.sortInfold);
store_ZString (p, hdr .type, 4);
store_ZString (p, hdr.creator, 4);
store_DWord (p, hdr.uniqueldSeed);
store_DWord (p, hdr.recordOffset);
store_Word (p, hdr .numRecords);

10 PDB FILE HEADER 18.x.2011 15:08 §18

18. We also want to populate the file size, which we need to get from a call to the operating
system.
(main program 6) +=
if (stat(infilename,&sb) < 0)
fatal ("unable to stat input,file");
PDBsize = (size_t) sb.st_size;

19. We need a local structure for capturing the file statistics.

(local data in main 5) +=
struct stat sb;

20. Some additional include files declare the data types used by stat().

(include files 4) +=
#include <sys/types.h>
#include <sys/stat.h>

21. We have a routine to print out our Palm-format date values. The PDB file’s dates
have an epoch of 1 January 1904, rather than the POSIX standard 1 January 1970. Note
that many PDB-generating programs have bugs and use the Unix date, rather than the
Palm one. This accounts for early twenty-first-century PDB files apparently being dated in
the late 1930s. We try to display the intended date, rather than the actual one, by assuming
that the dates in our files should be after the POSIX epoch. If the time is earlier than the
POSIX epoch, we append a warning *?7’. (Just for reference: DATE_QFFSET as a POSIX
time_t is 1 January 2036 at 4pm.)

#tdefine DATE_OFFSET 2082844800
#define SCRATCH_BUF_SIZE 64
(functions 21) =

char xshow_time(DWord t_palm)

{

static char buf[SCRATCH_BUF_SIZE[;
int posiz_date = (t_palm < DATE_OFFSET) ? 1:0;
time_t {t = (time_t)(posiz_date ? t_palm
: (t_palm — DATE_OFFSET));
memset (buf ,0, SCRATCH_BUF _SIZE);
if (t_palm =01) return buf;
strftime (buf , SCRATCH_BUF _SIZE, "%Y/%m/%dQ%H: %M: %S", localtime (&tt));
if (posiz_date) strcat(buf,"??");
return buf;
}
See also sections 33, 34, 35, 41, 50, 54, 70, 79, 88, 94, 97, 98, 99, 100, and 102.

This code is used in section 3.

822 18.x.2011 15:08 PDB FILE HEADER 11

22. We need the include file declaring time data types:

(include files 4) +=
#include <time.h>

23. We need to collect the function prototypes for our utility functions. We’ll make a
habit of declaring them right after their definitions.

(prototypes 23) =
char #show_time(DWord);
See also sections 36, 39, 53, 89, and 103.

This code is used in section 3.

24, If we just wanted to dump the file header data, let’s do that.

#define EXIT_IF_LAST_FLAG(z) flags &= ~(z);
if (—flags) exit(0);
else printf ("\n");
(main program 6) +=
if (flags & FLAG_HEADERS) {
(dump file header 25)
EXIT_IF_LAST_FLAG(FLAG_HEADERS);

}

25. This section prints a reasonably formatted rendition of the file header. [[[We really
should decompose attributes and identify what bits are set in text form. [J]

(dump file header 25) =

printf ("title: <%s>\n", hdr.title);

printf ("attributes: ,0x%x, version 0x%x, mod number j%d\n", hdr.attributes,
hdr.version, hdr.modificationNumber);

printf ("Ctime 0x%x =%u\t%s\n", hdr.creationDate, hdr.creationDate,
show_time (hdr .creationDate));

printf ("Mtime ,0x%x = %u\t%s\n", hdr.modificationDate, hdr.modificationDate,
show_time (hdr.modificationDate));

printf ("Btime ,0x%x = %u\t%s\n", hdr.lastBackupDate, hdr.lastBackupDate,
show_time (hdr.lastBackupDate));

printf ("type/creator: %s/%s;u", hdr.type, hdr.creator);

printf ("app/sort: %hd/%d; ", hdr.appInfold , hdr.sortInfold);

printf ("seed: %d\n", hdr.uniqueldSeed);

printf ("record offset 0x%1lx, number of records %d, file size %d\n",
hdr.recordOffset, hdr.numRecords, PDBsize);

This code is used in section 24.

12 PDB RECORD HEADERS 18.x.2011 15:08 §26

26. PDB record headers.
Now we come to the individual record headers. There is one of these for each one of the
hdr.numRecords records in the PDB file.

(global data 7) +=
struct PDBrec_header {
DWord offset;
BYTE attributes;
BYTE uniquelD[3];

b

27. Again, the attributes byte is a set of bit fields.

#define REC_DELETE #80
#define REC_DIRTY #40
#define REC_BUSY #20
#define REC_SECRET #10
#define REC_CATEGORY #OF

28. Let’s allocate and read the record headers now.
(main program 6) +=
rec_hdrs = (struct PDBrec_header #x)
ck_malloc(sizeof (struct PDBrec_header x) x hdr.numRecords);
for (i =0; i < hdr.numRecords; i++) {
rec_hdrs[i] = (struct PDBrec_header x)
ck_malloc (sizeof (struct PDBrec_header));
rec_hdrs[i] —offset = read_DWord();
ck_read (&(rec_hdrs[i] »attributes), 1);

ck_read (rec_hdrs[i] »uniquelD, 3);

}

29. (include files 4) +=
#include <stdlib.h>

30. (global data 7) +=
struct PDBrec_header xxrec_hdrs;

31. We may also want to dump the record headers:
(main program 6) +=
if (flags & FLAG_RECHDRS) {
(dump record headers 32)
EXIT_IF_LAST_FLAG(FLAG_RECHDRS);

}

§32 18.x.2011 15:08 PDB RECORD HEADERS 13

32. [[[Here, also, we should decompose the attribute bits into text. []]

(dump record headers 32) =
for (i =0; ¢ < hdr.numRecords; i++) {
printf ("record, %d: joffset 0x%x, attr 0x%x, size,%d, ,1d,,0x%02x%02x%02x\n",
i, rec_hdrs[i] »offset, rec_hdrs[i] —attributes, size_pdb_record (i),
rec_hdrs[i] »uniquelD|[0], rec_hdrs[i]| »uniquelD[1], rec_hdrs[i] »uniquelD[2]);

}

This code is used in section 31.

33. PDB record bodies.

We need a utility routine for grabbing a record from the PDB file. We can assume we’re
reading the records sequentially, but it’s safer to plan that we’re going to read arbitrary
records. We return NULL if the record number requested is out of range, or we can’t seek
to the record position.

Normally, this routine allocates memory to hold the record, and it’s the caller’s responsi-
bility to free it. Just for insurance, we allocate one extra byte and load it with a NUL.

(functions 21) +=
BYTE xread_pdb_record (const Word recnum)
{
long recpos;
size_t recsize;
BYTE xbuf;

if (recnum > hdr.numRecords) return NULL;
recpos = rec_hdrs|recnum]—offset;

if (fseek (ifp, recpos, SEEK_SET) < 0) return NULL;
recsize = size_pdb_record (recnum);

buf = malloc(recsize + 1);

memset (buf , 0, recsize + 1);

ck_read (buf , recsize);

return buf;

14 PDB RECORD BODIES 18.x.2011 15:08 §34

34. We need the postulated routine to get the size of a given PDB record. This depends
on the table rec_hdrs being global data. And strictly speaking, this should probably return
a DWord not a size_t.
(functions 21) +=

size_t size_pdb_record (const Word recnum)

{

size_t recsize;

if (recnum = (hdr.numRecords — 1))

recsize = PDBsize — rec_hdrs[recnum]—offset;
else

recsize = rec_hdrs|[recnum + 1] —offset

— rec_hdrs[recnum]—offset;

}

35. We also provide a version of the read routine that operates into a pre-allocated buffer.
The caller is responsible for ensuring the buffer is big enough to contain the data. We return
a pointer to the buffer specified.

(functions 21) +=
BYTE xread_pdb_noalloc(const Word recnum, BYTE xobuf)

long recpos;

size_t recsize;

if (recnum > hdr.numRecords) return NULL;
recpos = rec_hdrs[recnum]—offset;

if (fseek (ifp, recpos, SEEK_SET) < 0) return NULL;
recsize = size_pdb_record (recnum);

ck_read (obuf , recsize);

return obuf;

}

36. (prototypes 23) +=
BYTE xread_pdb_record(const Word);
BYTE xread_pdb_noalloc(const Word, BYTE x);
size_t size_pdb_record (const Word);

837 18.x.2011 15:08 DETERMINE FILE TYPE 15

37. Determine file type.

At this point, we’d like to know what file type we have, and dispatch to the appropriate
converter.

Let’s set up a table of types and creators vs decoding routines.

(global data 7) +=

struct dispatch {
char type[5];
char creator[5];
void ((xdecode)(void));

}disp[] ={
{"TEXt", "REAd", TEXt_decode},
{"zTXT", "GP1m", 2T X T_decode },
{"BOOK", "MOBI", MOBI decode },
{"PNRA", "PPrs", PNRd._decode },

};

#define DISPATCH_SIZE ((sizeof (disp))/(sizeof (disp[0])))

38. Also, for convenience, let’s remember what kind of book we’re decoding.

(global data 7) +=
enum book_formats {

fmt_.ERROR = —1, fmt_TEXt = 0, fmt_:TXT, fmt_MOBI , fmt_PNRd
};

enum book_formats current_book_format = fmt_ ERROR;

39. (prototypes 23) +=
void TEXt decode(void);
void 2TXT_decode (void);
void MOBI_decode (void);
void PNRd_decode(void);

40. (main program 6) +=
for (i = 0; i < DISPATCH_SIZE; i++) {
if (memcemp (disp[i].type, hdr.type,4) =0
A mememp (disp[i].creator, hdr.creator,4) = 0) {
current_book_format = 1i;
disp[i].decode ();
break;

}

if (i > DISPATCH_SIZE)
fatal ("I don’t know how to decode file type hs/%s.",
hdr .type, hdr .creator);

16 TEXT: PALM DOC DECODER 18.x.2011 15:08 841

41. TEXt: Palm DOC decoder.

The Palm DOC format was first used in the TealDoc and Aportis Reader applications.
It was reverse-engineered and is now widely understood. For two articles on generating the
format, see:

http://alumnus.caltech.edu/ copeland/work/palm.html
and
http://alumnus.caltech.edu/"copeland/work/palmcomp.html.
Those sources provide further references.

In the uncompressed form, TEXt just provides the text broken up into 4096-byte records.
In its compressed form, TEXt uses a simple, quick-to-compute, run-length encoding to
compress the text.

Some versions of readers for this format provide rudimentary bookmark features, but we
will ignore those.

(functions 21) +=
void TEXt decode(void)

(TEXt: local data 42)
(TEXt: get record 0 43)
(TEXt: dump record 07 44)
(TEXt: process data 46)

42. The first thing we need to know about a file in format TEXt is the data in record 0.
Record 0 for TEXt contains a version tag (a flag to tell whether the data is compressed), the
total size of the document, the number of records, and the maximum uncompressed record
size.

##define TEXT_RECO_SIZE (2 x sizeof (DWord) + 4 * sizeof (Word))

(TEXt: local data 42) =

BYTE xr0, xp;

int i;

int n;

struct {
Word version;
Word reserved;
DWord doc_size;
Word num_recs;
Word rec_size;
DWord reserved?;

} rec0;

This code is used in section 41.

§43 18.x.2011 15:08 TEXT: PALM DOC DECODER 17

43. If our record zero is too short, something’s wrong. If it’s longer than expected, we’ve
got a MOBI file with a TEXt tag, so we just redirect our processing to MOBI decode.

[[[We should now know enough to identify a MOBI file explicitly, rather than by implication,
so we should fix the second if statement in this section.]

(TEXt: get record 0 43) =
n = size_pdb_record (0);
if (n < TEXT_RECO_SIZE) fatal("record O, is too_short!");
if (n > TEXT_RECO_SIZE) return MOBI decode();
p =10 = read_pdb_record (0);
store_Word (p, rec0 .version);
store_Word (p, rec0 .reserved);
store_DWord (p, rec0 .doc_size);
store_Word (p, rec0 .num_recs);
store_Word (p, rec0 .rec_size);
free(r0); r0 =NULL;

This code is used in section 41.

44. If we want to display record 0, we do so now, and exit.

(TEXt: dump record 07 44) =

if (flags & FLAG_RECZERO) {

(TEXt: show record 0 45)
EXIT_IF_LAST_FLAG(FLAG_RECZERD);

}

This code is used in section 41.

45. (TEXt: show record 0 45) =

printf ("Record, ,0:\n");

printf ("Luversion 0x%x, (%s)\n",
rec0 .version, ((recO .version = 1) 7 "uncompressed"
: ((rec0.version = 2) 7 "compressed" : "UNKNOWN")));

printf ("L full uncompressed text,size %d bytes\n", rec0.doc_size);

printf ("L contains %d body records, with maximum uncompressed size /d\n",
recO .num_recs, rec0 .rec_size);

This code is used in section 44.

18 TEXT: PALM DOC DECODER 18.x.2011 15:08 846

46. If we're decoding the contents of the file, there is a basic bifurcation in the processing.
If rec0 .version is 1, we have an uncompressed file; if rec0 .version is 2, it’s compressed; other
values cause an error.

(TEXt: process data 46) =
if (recO.version = 1) {
(TEXt: process uncompressed 47)
}
else if (recO.version = 2) {
(TEXt: process compressed 48)
}
else
fatal ("undefined, version, in TEXt file ,0x%x", recl .version);

This code is used in section 41.

47. TEXt: Decoding uncompressed text.

Uncompressed processing is painfully simple. Remembering that we append a NUL to
each record as it is read, we just print the records. We also check if we’re only interested in
outputing the supplemental data: if that’s the case for a TEXt format file, we really output
no data.

(TEXt: process uncompressed 47) =
for (i =1; i < recO.num_recs; i++) {
BYTE xbuf;
buf = read_pdb_record (i);
if (—(flags & FLAG_SUPONLY)) fprintf (ofp,"hs", buf);
free (buf);
}

This code is used in sections 46 and 75.

§48 18.x.2011 15:08 TEXT: DECODING COMPRESSED TEXT 19

48. TEXt: Decoding compressed text.

Processing compressed data is a little more complicated. We know the uncompressed
size of the maximum record from rec0.rec_size, so we pre-allocate the decompression buffer.
Again, we check if asked to only output supplemental data.

(TEXt: process compressed 48) =
BYTE xubuf = malloc(rec0.rec_size + 1);
for (i =1; i < recO.num_recs; i++) {
BYTE xbuf;
int e;
size_t n = size_pdb_record (i);
buf = read_pdb_record (i);
(TEXt: decompress 49)
free (buf)
if (—(flags & FLAG_SUPONLY)) fprintf (ofp,"%s", ubuf);
£if 0
printf ("\n\n==========\n\n");
#endif

}
free (ubuf);

This code is used in sections 46 and 75.

49. Because TEXt-style decompression is also used by MOBI format files, we’ll wrap the
decompression as a utility function.

The odd second clause in the if statement is a workaround for a bug in the Mobipocket
Creator program: The uncompressed buffer ends with junk characters. As a result, we often
try to put decompressed characters past the end of the output buffer. However, it appears
that these can be safely ignored, so if we’ve returned from TEXt_decompress of a MOBI book
with an out-of-bounds error, we can ignore it.

(TEXt: decompress 49) =
e = TEXt_decompress (buf ,n, ubuf , rec0.rec_size + 1);
if (e A current_book_format # fmt_MOBI)
fatal ("overflowed, TEXt uncompression, buffer: record, d, error %d",i,e);
if (e A current_book_format = fmt_MOBI) error("record, %d, error, %d",i,e);
EXAEY)

This code is used in section 48.

20 TEXT: DECODING COMPRESSED TEXT 18.x.2011 15:08 850

50. This is the wrapped decompressor. We provide input and output buffers and their

sizes. The output buffer size needs to be one larger than expected for a terminating NUL.
TEXt format compression is based on a simple run-length encoding. There are four classes

of characters in the compressed data block:

e Characters between 0x01 and 0x08 are a byte count introducing a literal block. For
example, the Latin 1 sequence “(36(;” (characters 0xD6, 0xF4 0xE7) would be encoded as
0x03, 0xD6, 0xF4, 0xE7.

e Characters from ASCII tab (0x09) through DEL (0x7F) and NUL (0x00) represent them-
selves.

e A byte between 0x80 and 0xBF begins a two-byte pair representing a sequence of between
three and ten bytes repeated within the previous 2047 bytes of uncompressed text. This
is stored by subtracting three from the length, and packing it and the distance into a
Word as #8000 + (distance < 3) + (length — 3).

e Finally, characters between 0xC0 and OxFF represent a space followed by an AScCII
character between space (0x40) and DEL (0x7F), combined by setting the high bit of
the second character. Thus, “,J” (0x40, 0x4A) becomes 0xCA.

We provide differing error returns for each place we can go out of bounds on the de-
compression buffer, but in the existing callers only check for a non-zero return to indicate
errors.

(functions 21) +=
int TEXt_decompress(BYTE xinbuf,const size_t insize, BYTE xoutbuf, const
size_t outsize)
{

BYTE xo0 = outbuf;

BYTE x*p = inbuf;

BYTE xoutend = outbuf + outsize; /* terminating NUL =/
BYTE xinend = inbuf + insize — 1;

memset (outbuf , 0, outsize);
(TEXt: decode special case for trailing NUL 52)
while (p < inend) {
if (0 > outend)
{ EXEAEY
(leftovers 51) [x 777 %/
return —1;
} [x 277/
if (xp > *#C0) {
xo+ = 77;
xo++ = (xp++) & #TF;
}
else if (xp > #80) {
int d = (((*p & #3F) < 8) | (x(p + 1) & #*F8)) > 3;
int [= (x(p + 1) & #07) + 3;
BYTE xpp = (0 — d);

850 18.x.2011 15:08 TEXT: DECODING COMPRESSED TEXT 21

if (pp < outbuf V (o +1) > outend) {

(leftovers 51) [x 77T %/

return —2; /* out of bounds x/
} [x 177 x/
while (I—) xo++ = xpp ++;
pt=2

else if (xp > #09 V #p = #00) {
*0++ = *p+t;

else {
int n = xp++;
if ((o+n) > outend) {
(leftovers 51) [x 777 %/
return —3;
} [x 177/
while (n— > 0) xo++ = *p++;
}
}

return 0;

}

51. (leftovers 51) =
fprintf (stderr, "inbuf leftovers:,");
while (p < inend) fprintf (stderr,"0x%02x,,", *p++);

This code is used in section 50.

52. Some MOBI format encoders terminate each input record with a NUL. The NUL is
implicit in the output buffer; its presence in the input buffer should not count against the
input buffer size. In fact, the buffer size counts assume this. As a result, we ignore the NUL
lest we overrun the output buffer.

(TEXt: decode special case for trailing NUL 52) =
if (xinend = *#0) inend —;

This code is used in section 50.

53. (prototypes 23) +=
int TEXt_decompress(BYTE x,const size_t, BYTE x, const size_t);

22 ZTXT: WEASEL READER DECODER 18.x.2011 15:08 §54

54. zTXT: Weasel Reader decoder.

Weasel Reader was developed by John Gruenenfelder. (Palm’s lawyers objected to the
original name, GutenPalm.) While the reader is capable of consuming TEXt type files,
zTXT files were invented for it. The zTXT format applies gzip compression to the text,
providing significantly better compression than DOC format. The format is extremely well-
documented at

http://gutenpalm.sourceforge.net.
In addition to the reader, that site also includes a zTXT encoder/decoder, makeztzt; this
decoding routine is based on the ztzt_disect() routine from that program.

To support gzip compression, we require the 2{ib library and header files; sources can be
obtained from

http://www.gzip.org/zlib/.

(functions 21) +=
void zTXT_decode (void)

(zTXT: local data 55)
(zTXT: get record 0 56)
(zTXT: dump record 0?7 57)
(zTXT: process data 61)

}

855 18.x.2011 15:08 ZTXT: WEASEL READER DECODER 23

55. We first read record 0, which contains version, record count, record size, and pointers
for bookmarks and annotations. We’ll describe each of these as we use them in the following
sections. Notice that we don’t bother storing the empty bytes specified at the end of the
structure to pad rec0 to an even size.

#define ZTXT_RANDOMACCESS #01
#define ZTXT_NONUNIFORM #02
#define ZTXT_RECO_SIZE
(2 * sizeof (DWord) + 7 * sizeof (Word) + 2 * sizeof (BYTE))

(zTXT: local data 55) =
BYTE xr0, xp;
int i;
struct {
Word version;
‘Word numRecords;
DWord size;
Word recordSize;
Word numBookmarks;
Word bookmarkRecord;
‘Word numAnnotations;
Word annotationRecord;
BYTE flags;
BYTE reserved;
DWord crc32;
} rec0;
See also sections 60 and 64.

This code is used in section 54.

24 ZTXT: WEASEL READER DECODER 18.x.2011 15:08 856

56. (zTXT: get record 0 56) =
p =10 = read_pdb_record (0);
if (size_pdb_record (0) < ZTXT_RECO_SIZE) fatal("record, 0,is too,short!");
store_Word (p, rec0 .version);
store_Word (p, rec0 .numRecords);
store_DWord (p, rec0 .size);
store_Word (p, rec0 .recordSize);
store_Word (p, rec0 .numBookmarks);
store_Word (p, rec0.bookmarkRecord);
store-Word (p, rec0 .numAnnotations);
store_Word (p, rec0 .annotationRecord);
rec0.flags = xp++;
ptt;
store_DWord (p, rec0.crc32);
free(r0); r0 = NULL;

This code is used in section 54.

57. If we want to display record 0, now is the time.

(zTXT: dump record 0?7 57) =

if (flags & FLAG_RECZERD) {

(zTXT: show record 0 58)
EXIT_IF_LAST_FLAG(FLAG_RECZERO);

}

This code is used in section 54.

58. (zTXT: show record 0 58) =

printf ("Record, ,0:\n");

printf ("LLzTXT version 0x%x =.%d . hd\n", recO .version, recl .version > 8,
rec0 .version & *FF);

printf (" %dudata records, /%d bytes uncompressed data\n", recO.numRecords,
rec(.size);

printf ("L text record size %d\n", rec0.recordSize);

printf ("L %d bookmarks, listed in record, %d\n", rec0.numBookmarks,
rec0 .bookmarkRecord);

printf ("L %duannotations, listed in record %d\n", recO .numAnnotations,
rec0 .annotationRecord);

printf ("L flags ,0x%02x", recO.flags);

if (rec0.flags & ZTXT_RANDOMACCESS) printf (", (random access)");

if (rec0.flags & ZTXT_NONUNIFORM) printf (", (non-uniform length)");

printf ("\n,,CRC32,=,0x%08x\n", recO.crc32);

This code is used in section 57.

859 18.x.2011 15:08 ZTXT: WEASEL READER DECODER

59. (include files 4) +=
#include <zlib.h>

60.
#define MAXWBITS 15

(zTXT: local data 55) +=
BYTE xinbuf, xoutbuf;

z_stream zs;
DWord insize = 0;

25

61. As we’ve noted, the zTXT format relies on the zlib compression library, written by
Jean-loup Gailly and Mark Adler, and based on the open-source gzip program. Either block
or global compression can be used on the zTXT text, depending on whether you want to
have to load the whole text into the Palm memory at once. However, for decoding purposes,
the compressed text can be treated as though it is a single block. As a result, we begin

decompressing by reading all the compressed data into a single buffer.

(zTXT: process data 61) =
for (i =1; i < recO0.numRecords; i++)
insize += size_pdb_record ();
p = inbuf = ck_malloc(insize);
for (i =1; i < recO0.numRecords; i++) {
(void x) read_pdb_noalloc (i, p);
p += size_pdb_record (i);

if (p > inbuf + insize) fatal("zTXT,file header size too,small: %d", PDBsize);

}

See also sections 62, 63, and 68.

This code is used in section 54.

26 ZTXT: WEASEL READER DECODER 18.x.2011 15:08 §62

62. Then we decompress the whole buffer in one step. This section is a more-or-less direct
crib from the ztzt_disect routine in John Gruenenfelder’s makeztzt.

(zTXT: process data 61) +=
zs.zalloc = Z_NULL;
z5.zfree = Z_NULL;
zs.opaque = Z_NULL;
zs.next_in = inbuf;
zs.avail_in = insize;
outbuf = zs.next_out = ck_malloc(rec0.size + 1);
zs.avasl_out = rec(.size + 1;
if (inflateInit2 (& zs,MAXWBITS) # Z_0K) fatal("decompression init failed");
i = inflate(&zs,Z_SYNC_FLUSH);
if (zs.msg # NULL) fatal("zlib error: %s", z5.msg);
if ((i # Z_STREAM_END) A (i # Z_0K))
fatal ("decompressionufailed: verror,from inflate");
if (zs.avail_in > 0)
fatal ("decompressionuf ailed: uoutputubufferunotubiguenough");
x(zs.next_out) = *\0’;
inflateEnd (& zs);
if (—(flags & FLAG_SUPONLY)) {
forintf (ofp,"%s", outbuf);
) fflush (ofp);

63. If we want to save the supplemental information — if we have specified the -o flag —
we do that now. We’ll save both the bookmarks and annotations.

If there are bookmarks in the file, rec0.numBookmarks is greater than zero, and the
bookmarks themselves are record number rec0.bookmarkRecord. Similarly, if there are an-
notations, recl.numAnnotations is greater than zero, and the annotation titles and locations
are specified in rec0.annotationRecord. Both records contain an array of offset/title pairs as
described in the next section. The actual text of the annotations is in separate records, fol-
lowing the annotation record: the text of the first annotation is in rec0.annotationRecord +1,
and so on.

(zTXT: process data 61) +=

if (o_name # NULLV flags & FLAG_SUPTEXT) {

if (rec0.numBookmarks > 0) {
(zTXT: show bookmarks 65)
}

if (recO0.numAnnotations > 0) {
(zTXT: show annotations 67)
}

}

§64 18.x.2011 15:08 ZTXT: WEASEL READER DECODER 27

64. We need the bookmark and annotation structures as local data. The data structure
for bookmarks and annotations is the identical. The bytes in either the bookmark record,
recO .bookmarkRecord or the annotation one, recO.annotationRecord, are a list of the tag
structure described here.

#define ZTXT_MARK_LEN 20
#define ZTXT_SNIP 60

(zTXT: local data 55) +=
struct {
DWord offset;
BYTE title[ZTXT_MARK_LEN + 1];
} tag;
FILE xsup;
BYTE xindex_record;

65. We’ll read the bookmark record, and loop through the bookmarks, printing the offset,
the text of the bookmark, and the surrounding text from the body of the file.

(zTXT: show bookmarks 65) =
sup = (flags & FLAG_SUPTEXT) ? ofp : next_ofile(""," .bk");
index_record = read_pdb_record (rec0.bookmarkRecord);
for (i = 0; i < recO0.numBookmarks; i++) {
(zTXT: show a tag 66)
}
free(index_record);
if (—(flags & FLAG_SUPTEXT)) fclose(sup);

This code is used in section 63.

66. (zTXT: show a tag 66) =
BYTE xpp, xppe, temp;

p = index_record + i * (sizeof (DWord) + ZTXT_MARK_LEN);
store_DWord (p, tag.offset);
store_ZString (p, tag.title, ZTXT _MARK_LEN);
pp = outbuf + tag.offset;
ppe = MIN(pp + ZTXT_SNIP, outbuf + rec0.size);
if (pp < outbuf V pp > (outbuf + rec0.size))
fatal ("bad zTXT_bookmark, or annotation pointer");
temp = xppe; xppe = 0;

if (flags & FLAG_SUPTEXT) fprintf (sup,"\n\n=====\n");
forintf (sup, "hsu@uhdL—>\nLLuu<%s>\n", tag.title, tag.offset, pp);
*ppe = temp;

This code is used in sections 65 and 67.

28 ZTXT: WEASEL READER DECODER 18.x.2011 15:08 867

67. And similarly, for annotations. However, since we also want to show the text of the
annotations, we’ll write them into separate files. Remember that the annotation offset is
probably to the top of the screen on which the note appears, which means that the snippet
of text we show will probably not contain the text title. [[[I'm not sure I'm happy with the
way these are output. Should we be displaying a full screen of text as the “snippet” for each
annotation? That would display the text labeling the annotation, and give us context for the
annotation text. What does makeztzt do? JJ]
(zTXT: show annotations 67) =
index_record = read_pdb_record (rec0.annotationRecord);
for (i = 0; i < recO0.numAnnotations; i++) {
BYTE xtext;
sup = (flags & FLAG_SUPTEXT) ? ofp : next_ofile(""," .not");
(zTXT: show a tag 66)
text = read_pdb_record (rec0.annotationRecord + i + 1);
forintf (sup, "%hs\n", text);
free(text);
if (—(flags & FLAG_SUPTEXT)) fclose(sup);

free (index_record);

This code is used in section 63.

68. For zTXT, we want free the input and output buffers only after we’ve displayed the
bookmarks and annotations.
(zTXT: process data 61) +=

free (inbuf);
free (outbuf);

869 18.x.2011 15:08 MOBI: MOBIPOCKET DECODER 29

69. MOBI: MobiPocket decoder.

Since the MobiPocket reader is available on nearly every PDA (both Palm and Pocket
PC) and on cell phones, e-books in MobiPocket format are the most portable between
devices. It achieves this portability by supporting the Open E-book format as its primary
input language. However, since most MOBI-format books are encrypted, they are not easily
portable to different formats. The MobiPocket reader is available from

http://mobipocket.com/.
The site also has several programs to convert files into MOBI format.

MOBI files are essentially a superset of TEXt format files, as we mentioned in the TEXt
decoder sections. This is taken to its logical absurdity by some MOBI format files actually
being tagged as TEXt. In this case, we can distinguish them from a regular TEXt because
record 0 is larger for a MOBI.

In addition to the text records accounted for in record 0, a MOBI file may also contain extra
records, that is, the record count in the PDB header and in record 0 may differ. Typically,
these extra records will be images, and we save these as .bmp files. This means that the
text portion of a MOBI file tagged as TEXt can be read by a TEXt reader such as TealDoc
without confusion using the record count in record 0. However, the additional data in the
extra records can be viewed by the MobiReader.

For ready examples of this format, note that Baen Books uses MOBI format with the TEXt
tag for the Palm-format e-books on their web site and CDs included with their physical
books.

70. Let’s begin:

(functions 21) +=

void MOBI_decode(void)

{
(MOBI: local data 71)
(MOBI: get record 0 72)
(MOBI: dump record 07 73)
(MOBI: process data 75)

}

30 MOBI: MOBIPOCKET DECODER 18.x.2011 15:08 8§71

71. The MOBI local data is identical (for the moment) to the record zero structures for
TEXt format. [[[For the moment, we're ignoring the extra information in a MOBI record zero, in
part because we don’t understand what'’s there. Need to add some notes about the extra stuff
once we figure it out.]]]

#define MOBI_RECO_SIZE (2 x sizeof (DWord) + 4 * sizeof (Word))

(MOBI: local data 71) =
BYTE xr0, *p;
int ¢;
int n;
struct {

Word version;
Word reserved;
DWord doc_size;
Word num_recs;
Word rec_size;
Word encrypted;
Word reserved?2;
} rec0;

This code is used in section 70.

72. (MOBI: get record 0 72) =
n = size_pdb_record (0);
if (n < MOBI_RECO_SIZE) fatal("record O is too short!");
p =10 = read_pdb_record (0);
store_Word (p, rec0 .version);
store_Word (p, rec0 .reserved);
store_DWord (p, rec0 .doc_size);
store_Word (p, rec0.num_recs);
store_Word (p, rec0 .rec_size);
store_Word (p, rec0 .encrypted);
free(r0); r0 = NULL;

This code is used in section 70.

73. If we want to display record 0, we do so now, and exit.
(MOBI: dump record 0?7 73) =
if (flags & FLAG_RECZERO) {
(MOBI: show record 0 74)
EXIT_IF_LAST_FLAG(FLAG_RECZERO);

}

This code is used in section 70.

§74 18.x.2011 15:08 MOBI: MOBIPOCKET DECODER 31

74. (MOBI: show record 0 74) =

printf ("Record, ,0:\n");

printf ("Luversion 0x%x, (%s,u%s) \n",
rec(.version,
((rec0.version = 1) ? "uncompressed"
: ((rec0.version = 2) 7 "compressed" : "UNKNOWN")),
((rec0.encrypted = 0) ? "unencrypted" : "encrypted"));

printf ("L full uncompressed text,size %d bytes\n", rec0.doc_size);

printf ("uucontains %d body records, with maximum uncompressed size /d\n",
rec .num_recs, rec0 .rec_size);

This code is used in section 73.

75. Again, processing the data for the MOBI format is a lot like processing the data for
the TEXt format. Indeed, we reuse some of the sections for processing TEXt files. However,
MOBI also has a “high compression” variant, using Huffman encoding, which we also handle.

(MOBI: process data 75) =
(MOBL: check for encryption 76)
if (recO.version = 1) {
(TEXt: process uncompressed 47)
}
else if (recO.version =2) {
(TEXt: process compressed 48)
}
else if (recO.version = #4448) {
(MOBI: process Huffman compressed data 78)
}
else
fatal ("undefined, version, in MOBI file 0x%x", rec0.version);
if (o_name #NULL) {
(MOBI: save ancillary data 77)

}

This code is used in section 70.

76. We used to check for an encrypted MOBI file by trying decompress the first record and
conclude it’s encrypted if the decompression fails. However, we now know what word in
record 0 stores that information, and we use it instead.

(MOBI: check for encryption 76) =

{

if (rec0.encrypted # 0) fatal("can’t process encrypted MOBI, format");

}

This code is used in section 75.

32 MOBI: MOBIPOCKET DECODER 18.x.2011 15:08 877

77. For a MOBI file, we may have extra records at the end containing images. We can
tell there are extra records if the number of records specified in record zero is smaller than
the number of records in the global file header. Usually — but not always — these are
images in Microsoft bmp file format, which our regular Unix image viewer zv recognizes.
Interestingly, it appears that the images are named sequentially inside the MOBI file, so that
our approach of putting the contents of the image files into sequentially-numbered bmp files
is exactly right.

(MOBI: save ancillary data 77) =

for (i = rec0.num_recs + 1; i < hdr.numRecords; i++) {
BYTE xbuf;
int n;
ofp = next_ofile(""," .bmp");
buf = read_pdb_record (i);
n = size_pdb_record (1);
fwrite (buf , sizeof (BYTE), n, ofp);
free(buf); buf = NULL;
felose (ofp);

}

This code is used in section 75.

78. MOBI: Decoding Huffman compressed data.
Here we uncompress the Huffman-compressed variant of a MOBI file.

(MOBI: process Huffman compressed data 78) =
fatal ("oops 'Luthere’s no Huffman decompression code here yet! ");

This code is used in section 75.

879 18.x.2011 15:08 PNRD: PEANUT READER DECODER 33

79. PNRd: Peanut Reader Decoder.

The Peanut Press format is used by the Palm Reader,

http://ereader.com/product/browse/software.

As with the MobiReader, the site contains software to convert text into Peanut Press format.

...insert note about the format of the PDB

. structure of rec 0: Word version; 0xFF == encrypted, 0x0A == ztxt, 0x02 == trad

palm compression

For the structure of the basic decoding routing, we use the same pattern we’ve used three
times already.

(functions 21) +=
void PNRd_decode(void)

(PNRd: local data 80)
(PNRd: get record 0 81)
(PNRd: dump record 07 83)
(PNRd: process data 86)

}

80. There are at least three different versions for PNRA files, indicated by the first Word

in record 0.

e values greater than OxFF mark an encrypted gzip-compressed file — not supported here;

e 0x02 is an un-encrypted, classic-Palm compressed file — I’ve never seen one of them in
the wild;

e 0xO0A is a gzip-compressed file — this is the most common version in the field, generated
by the DropBook program from the EReader site.

Each of these versions has a different record 0 layout, none of which are sufficiently
documented. Because the information I have about the data in record 0 is cribbed from
disparate, contradictory, badly-documented sources, we’ll just have variables for the parts
we actually care about that we know are present.

(PNRA: local data 80) =
struct {
Word version;
Word tztRecords;
} rec0;
BYTE xp;

This code is used in section 79.

34 PNRD: PEANUT READER DECODER 18.x.2011 15:08 §81

81. We store the record count based on the version of the file.
(PNRd: get record 0 81) =

p = read_pdb_record (0);

store_Word (p, rec0 .version);

(PNRJ: check for valid version 82)

if (rec0.version = #0A) p += 10;

store_Word (p, rec0 .txtRecords);

free(p); p=NULL;

This code is used in section 79.

82.
(PNRd: check for valid version 82) =
if (rec0.version > #FF) fatal("encrypted PNRd file");
if (recO.version # #02 A rec0 .version # #0A) fatal("unrecognized PNRd format");

This code is used in section 81.

83. We may also want to show the data we collected about the file.
(PNRd: dump record 0?7 83) =
if (flags & FLAG_RECZERD) {
(PNRd: show record 0 84)
EXIT_IF_LAST_FLAG(FLAG_RECZERD);

}

This code is used in section 79.

84. We have captured very little data from record 0, but let’s show what we have:
(PNRd: show record 0 84) =

printf ("Record ,0:\n");

printf ("L version ,0x%02x, text records, %d\n", recl.version, recO.txtRecords);
See also section 85.

This code is used in section 83.

885 18.x.2011 15:08 PNRD: PEANUT READER DECODER 35

85. At the same time we show record 0, we can show the metadata for the book in the
second to last record, hdr.numRecords — 3. This data is present in books generated by
the DropBook utility, where the last record consists of the string MeTaInFo. The metadata
consists of the title, the author, the copyright, the publisher, and the ISBN number.

#define PNRD_METATAG '"MeTaInFo"

(PNRd: show record 0 84) +=
if (size_pdb_record (hdr.numRecords — 1) = strlen (PNRD_METATAG) + 1) {
char xpt = read_pdb_record (hdr.numRecords — 1);

if (strcmp (pt,PNRD_METATAG) = 0) {
char xp = read_pdb_record (hdr.numRecords — 3);
char *xps = p;
int g;
pTintf("uuutitle:|_||_.|_.|_.|_,<°/.s>\n",p);
p += strlen(p) + 1;
printf ("uuuauthor : yuuu<hs>\n", p);
p += strlen(p) + 1;
printf ("uLucopyright : <%s>\n", p);
p += strlen(p) + 1;
printf ("uuupublisher: <%s>\n", p);
p += strlen(p) + 1;
printf ("LuuISBN: Luuuuu<hs>\n", p);
free (ps);

}

free(pt);

}

86. If we don’t want to dump the contents of record 0, we proceed to dumping the
body text and supplemental records a record at a time. Notice that if we don’t want
the supplemental data, we skip that step.
(PNRd: process data 86) =

int rec;

(PNRd: process the text records 87)

if (o_name #NULL) {

(PNRd: process the supplemental records 90)

}

This code is used in section 79.

36 PNRD: PEANUT READER DECODER 18.x.2011 15:08 887

87. We walk through the text records, uncompressing and dumping each one. The gzip
uncompression is wrapped into a separate routine for convenience. The routine allocates
and returns a buffer, which the caller must free.

(PNRd: process the text records 87) =
for (rec = 1; rec < rec0.tztRecords; rec++) {
BYTE xbuf, xubuf;

buf = read_pdb_record (rec);
ubuf = PNRd_uncompress (buf , size_pdb_record (rec));
if (—(flags & FLAG_SUPONLY)) fprintf (ofp,"%s", ubuf);
free (buf);
free (ubuf);

}

This code is used in section 86.

888 18.x.2011 15:08 PNRD: PEANUT READER DECODER 37

88. Here’s the routine to inflate gzip-type PNRA data. This is more-or-less the same
process we use to uncompress the text from the zTXT format. Unfortunately, it appears
that maximum uncompressed buffer size is not stored in record 0, so we make a guess,
and are prepared to increase it iteratively until we have enough room to inflate the current
record.

(functions 21) +=
BYTE xPNRd_uncompress(BYTE xinbuf,size_t insize)
{
size_t outsize = 8 x 1024;
BYTE xoutbuf = malloc(outsize + 1);

z_stream zs;
int status;

zs.zalloc = Z_NULL;
zs.zfree = Z_NULL;
zs.opaque = Z_NULL;
if (inflateInit2 (&zs,MAXWBITS) # Z_OK) fatal("decompression,init, failed");
zs.next_in = inbuf;
zs.avail_in = insize;
zs.next_out = outbuf;
zs.avail_out = outsize;
do {
status = inflate(&zs,Z_SYNC_FLUSH);
if (zs.msg # NULL) fatal("2zlibgerror: js", zs.msg);
if ((status # Z_STREAM_END) A (status # Z_0K))
fatal ("decompressionufailed: perror_ from_ inflate");
if (zs.avail_in > 0) {
size_t | = zs.next_out — outbuf;
size_t delta = outsize;
outsize x= 2;
outbuf = realloc(outbuf, outsize + 1);
zs.next_out = outbuf +(;
zs.avail_out += (outsize /2);

} while (status # Z_STREAM_END);
*(zs.next_out) = *\0’;

inflateEnd (&zs);

return outbuf;

}

89. (prototypes 23) +=
BYTE xPNRd_uncompress BYTE x, size_t);

38 PNRD: PEANUT READER DECODER 18.x.2011 15:08 890

90. In PNR4 files, we will sometimes have leftover records — the difference between
rec0 .txtRecords in the PNRd header, and hdr.numRecords in the global PDB header — which
will typically contain images and supplementary data such as bookmarks and annotations.
Here is where we figure out what to do about them.

It appears that all images in PNRd files are PNG format. The tag of PNG, is provided as
the first four bytes of the record.

If we don’t recognize the record as an image, we put out the first couple of characters of
the record.

[[[We should be able, through experimentation and before-and-after comparisons, to figure
out how the bookmarks and annotations are actually stored. J]]

#define PNRA_PNG "PNG_"

(PNRd: process the supplemental records 90) =
for (rec = rec0.tztRecords; rec < hdr.numRecords; rec++) {
BYTE xbuf = read_pdb_record (rec);

if (strnemp (buf, PNRA_PNG, strlen(PNRd_PNG)) =0) {
(PNRJd: save an image 91)
}
else {
char tag[SCRATCH_BUF_SIZE|, *p;
int i;
memset (tag, 0, SCRATCH_BUF _SIZE);
for (p =tag,i=0; i <4; i++) {
snprintf (tag + strlen(tag), SCRATCH_BUF_SIZE — strien(tag),
(buf[i] > >0’ Abuf[i] < #7F) 7 "Y%e™ : "\\x%02x", buf [i]);

error("didn’t_ recognize supplemental record %d: %s", rec, tag);

}
free (buf);
}

This code is used in section 86.

§91 18.x.2011 15:08 PNRD: PEANUT READER DECODER 39

91. An image record has the file name imbedded in it. We assume the file name is NUL
terminated. Once we’ve got the file name, we can open the file for output using nezt_ofile ()
which ensures the file ends up in the right directory.

(PNRd: save an image 91) =
Word bufsz = size_pdb_record (rec);
char xfilename = buf + strlen(PNRd_PNG);
FILE ximagef;
BYTE ximagep;

if (strlen(filename) > bufsz V strlen(filename) > FILENAME_MAX)
fatal ("badly, formed filename in, PNG_ block");
imagef = next_ofile(filename,"");
See also section 92.

This code is used in section 90.

92. If the image data is bodily a PNG file, the data will start with the PNG file signature,
so we will search for that string and declare it the beginning of the image data. It appears
that the structure of the record containing the image is to have four bytes of record tag,
PNG,,, the file name padded to 54 bytes, and two Words containing the width and height.
This implies that the included PNG image always starts at the sixth-third byte of the record,
but explicitly searching is safer.
The decription of the PNG format is available at
http://www.libpng.org/pub/png/,
and in particular, the explanation of the file signature from the specification’s rationale is
instructive:
This signature both identifies the file as a PNG file and provides for immediate detection
of common file-transfer problems. The first two bytes distinguish PNG files on systems
that expect the first two bytes to identify the file type uniquely. The first byte is chosen
as a non-ASCII value to reduce the probability that a text file may be misrecognized as
a PNG file; also, it catches bad file transfers that clear bit 7. Bytes two through four
name the format. The CR-LF sequence catches bad file transfers that alter newline
sequences. The control-Z character stops file display under MS-DOS. The final line
feed checks for the inverse of the CR-LF translation problem.
We postulate a routine memstr () which is analogous to POSIX strstr(), but which doesn’t
stop at NUL characters in the string being searched.

#define PNG_SIG "\x89PNG\r\n\x1A\n"

(PNRd: save an image 91) +=
imagep = (BYTE x) memstr (buf ,PNG_SIG, bufsz);
if (imagep = NULLVimagep > (buf + bufsz))
fatal ("bad PNG,file in record, %d", rec);
fwrite(imagep , sizeof (BYTE), bufsz — (imagep — buf), imagef);
fclose (imagef);

40 UTILITY ROUTINES 18.x.2011 15:08 893

93. Utility routines.
We have used a number of globally-useful utility routines. Let’s finally get around to
defining them.

94. We start with the big-endian read routines.

(functions 21) +=

Word read_Word (void)

{
Word n = 0;
BYTE p[2];
ck_read (p,2);
n = (((BYTE)(p[0])) & #*FF) < 8;
n |= ((BYTE)(p[l]) & *FF);
return n;

}

DWord read_DWord (void)

{
long n =0y;
BYTE p[4];
ck_read (p, 4);
n = (BYTE)(p[0])) & *FF) < 24;
n |= ((BYTE)(p[1])) & #FF) < 16;
n |= ((BYTE)(p[2])) & #FF) < 8;
n |= ((BYTE)(p[3])) & *FF);

return n;

895 18.x.2011 15:08 UTILITY ROUTINES 41

95. We'll also define big-endian storage macros and two string-copiers. Notice that second
string-copier assumes the target is at least one character longer than the copy and places a
terminating NUL in the target.

(global macros 95) =
#define store_DWord (p,n)

{
n = (BYTE)(p[0])) & *FF) < 24;
n |= ((BYTE)(p[1])) & #FF) < 16;
n |= ((BYTE)(p[2])) & #FF) < &;
n |= ((BYTE)(p[3])) & *FF);
p+=4
}
#define store_Word (p,n)
{
n = (BYTE) (p[0])) & #FF) < 8;
n |= (BYTE)(p[l]) & #FF);
p+=2
}
#define store_String(p, s,n)
{
memcpy (s, p,n);
p+=n;
}
#define store_ZString(p, s,n)
{
memcpy (s, p,n);
x(s+mn)=0;
p+=mn;
}

See also section 96.

This code is used in section 3.

96. Two additional utility macros, which are nrmally defined in POSIX headers, but may
not be defined in all environments.

(global macros 95) +=

#ifndef MAX

#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#endif

#ifndef MIN

#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#endif

42 UTILITY ROUTINES 18.x.2011 15:08 897

97. We also have a generic error-checking read routine.
(functions 21) +=
void ck_read (void *p, size_t n)
{
if (fread (p, sizeof (char),n, ifp) < n) {
if (feof (ifp))
fatal ("early EQOF");
else

fatal("bad read");
}
}

98. And error reporting.
format error fatal

(functions 21) +=
void error(const char xfmt, ...)

{
va_list ap;
fflush (stdout);
va_start(ap, fmt);
ufprintf (stderr, fmt, ap);
forintf (stderr,"\n");
va_end (ap);

}

void fatal(const char xfmt, ...)

{
va_list ap;
fflush (stdout);
va_start(ap, fmt);
ufprintf (stderr, fmt, ap);
forintf (stderr,"\n");
va_end (ap);
exit (1);

899 18.x.2011 15:08

99. We also need an allocator.

(functions 21) +=
void xck_malloc(size_t n)

{

void *r;
r = malloc(n);
if (r=NULL)
fatal ("bad jallocation");
return 7;

}

UTILITY ROUTINES

43

44 UTILITY ROUTINES 18.x.2011 15:08 §100

100. We need a utility to open an output file name, based on the global base in o_name.
We will need files for both the base text, but may also need files for supplemental data like
pictures and bookmarks. This routine chooses the name of the file based on information
supplied and opens it; it is the caller’s responsibility to close it. If we call this with a
name and extension we prepend the directory name; if we only supply an extension, we
concatenate the directory and a sequential file number.

Our strategy for automatically generating an output file name is pretty straight-forward.
If the global o_name provided by the -o flag is a directory, we choose names within the
directory sequentially from 00000. If o_name is a file name, we use it as the base for our
output name and append a sequence number.

(This is probably too complicated by half.)

(functions 21) +=
FILE xnext_ofile(const char xname, const char xext)
{
static int first_call = 1;
static int dir = 0;
static int sequence = 0;
struct stat sb;
char fullname[FILENAME_MAX];
FILE xf;

if (first_call) {
(set up next_ofile 101)
first_call = 0;
}
if (strlen(name)) snprintf (fullname,FILENAME_MAX, dir 7 "%s/%s%hs" : "%shshs",
o_name ? o_name : "", name, ext);
else snprintf (fullname, FILENAME_MAX, dir 7 "%s/%05d%s" : "%s%05d%s",
o_name ? o_name : "", sequence ++, ext);
if ((f = fopen(fullname,"wb")) = NULL) {
perror (fullname);
exit (1);
}

return f;

§101 18.x.2011 15:08 UTILITY ROUTINES 45

101. (set up next_ofile 101) =
if (o_name A o_name[strlen(o_name) —1]=/") {
dir ++;
o_name|[strlen(o_name) — 1] = 0;

if (stat(o_name,&sb) < 0) {
if (dir A mkdir (o-name,°777) < 0)

fatal ("can’t create output directory_ %s", o_name);

else {
if (sb.st_mode & S_IFDIR)
dir ++;
else
error("possibleuoutputufileuconf1ict|_,°/.s", o_name);
}

This code is used in section 100.

102. We invented a routine memstr() while finding PNG images in PNR4 files. Here it is:

(functions 21) +=
void xmemstr(char xbig,char xlittle, size_t len)
{
int [= strien(little);
char e = big +len — 1 —[;
char xp = big;
while (p <e) {
p = memchr (p, xlittle, len);
if (p =NULL) return NULL;
if (memcmp (p, little,l) = 0) return p;
pt;
}

return NULL;

}

46 UTILITY ROUTINES 18.x.2011 15:08 §103

103.

(prototypes 23) +=
Word read_Word (void);
DWord read_DWord (void);
void ck_read (void x,size_t);
void fatal(const char x, ...);
void error(const char x, ...);
void *ck_malloc(size_t);
FILE xnext_ofile(const char %, const char x);
void smemstr(char x,char *,size_t);

104.

§105 18.x.2011 15:08

105. Index.

INDEX 47

A number of sections, namely, 1, 2, 6, 25, 32, 43, 67, 71, 90, still contain working notes,
which can be recognized because they are set in slanted sans serif type.
Just to prevent confusion, this index lists the section numbers of the references, not the

page numbers.

annotationRecord: 55, 56, 58, 63, 64, 67.
ap: 98.

appInfold: 14, 15, 17, 25.

argc: 3, 6.

argv: 3, 6, 10.

ATTR_BACKUP: 15.

ATTR_DIRTY: 15.

ATTR_LAUNCHABLE: 15.

ATTR_OKNEWER: 15.

ATTR_OPEN: 15.

ATTR_READONLY: 15.

ATTR_RESET: 15.

ATTR_RESOURCE: 15.

attributes: 14, 15, 17, 25, 26, 27, 28, 32.

avail_in: 62, 88.

avail_out: 62, 88.

b: 16.

big: 102.

book_formats: 38.

bookmarkRecord: 55, 56, 58, 63, 64, 65.

buf: 21, 33, 47, 48, 49, 77, 87, 90, 91, 92.

bufsz: 91, 92.

BYTE: 13,16, 26, 33, 35, 36, 42, 47, 48,
50, 53, 55, 60, 64, 66, 67, 71, 77, 80,
87, 88, 89, 90, 91, 92, 94, 95.

ck_malloc: 28, 61, 62, 99, 103.
ck_read: 17, 28, 33, 35, 94, 97, 103.
crc32: 55, 56, 58.
creationDate: 14, 17, 25.
creator: 14, 15, 17, 25, 37, 40.
current_book_format: 38, 40, 49.
d: 50.

dae: 8.

dap: 8.

DATE_OFFSET: 21.

decode: 37, 40.

DEL: 50.

delta: 88.

dir: 100, 101.

disp: 37, 40.

dispatch: 37.

DISPATCH_SIZE:

distance: 50.

doc_size: 42, 43, 45, 71, 72, 74.

DWord: 13, 14, 21, 23, 26, 34, 42, 55,
60, 64, 66, 71, 94, 103.

e: 48, 102.

encrypted: 71, 72, 74, 76.

error: 98, 101, 103.

erit: 3, 6, 10, 24, 98, 100.

37, 40.

EXIT_IF_LAST_FLAG: 24, 31, 44, 57,
73, 83.

ext: 100.

f: 100.

fatal: 6, 18, 40, 43, 46, 49, 56, 61, 62,

66, 72, 75, 76, 78, 82, 88, 91, 92, 97,
98, 99, 101, 103.

fclose: 65, 67, 77, 92.

feof : 97.

Feynman, Richard Phillips: 1.
fflush: 62, 98.

filename: 91.

FILENAME_MAX: 91, 100.

first_call: 100.

FLAG_HEADERS: 6, 7, 24.
FLAG_RECHDRS: 6, 7, 31.
FLAG_RECZERD: 6, 7, 44, 57, 73, 83.
FLAG_SUPONLY: 6, 7, 47, 48, 62, 87.

)

FLAG_SUPTEXT: 6, 7, 63, 65, 66, 67.
flags: 6,7, 24, 31, 44, 47, 48, 55, 56, 57,
58, 62, 63, 65, 66, 67, 73, 83, 87.

fmt: 98.
fmt_ERROR: 38.
fmt_MOBI: 38, 49.
fmt_.PNRd: 38.
fmt_TEXt: 38.

48 INDEX

fmt_zTXT: 38.

fopen: 10, 100.

forintf: 47, 48, 51, 62, 66, 67, 87, 98.

fread: 97.

free: 43, 47, 48, 56, 65, 67, 68, 72, 77,
81, 85, 87, 90.

fseek: 33, 35.

fullname: 100.

fwrite: 77, 92.

getopt: 6.

hdr: 14, 15, 17, 25, 26, 28, 32, 33, 34,
35, 40, 77, 85, 90.

ide: 8.

ifp: 10, 11, 33, 35, 97.
imagef: 91, 92.

tmagep: 91, 92.

inbuf: 50, 60, 61, 62, 68, 88.
index_record: 64, 65, 66, 67.
mend: 50, 51, 52.
infilename: 10, 11, 18.
inflate: 62, 88.
inflateEnd: 62, 88.
inflateInit2: 62, 88.
isize: 50, 60, 61, 62, 88.
[50, 83, 102.
lastBackupDate: 14, 17, 25.
len: 102.

LEN_HDR: 14, 16, 17.
LEN_TTL: 14, 17.

lend: 8.

length: 50.

leni: 8.

little: 102.

localtime: 21.

main: 3.

malloc: 33, 48, 88, 99.
MAX: 96.

MAXWBITS: 60, 62, 88.
memchr: 102.

memcmp: 40, 102.
memcpy: 95.

18.x.2011 15:08 §105

memset: 21, 33, 50, 90.

memstr: 92, 102, 103.

MIN: 66, 96.

mkdir: 101.

MOBI_decode: 37, 39, 43, 70.

MOBI_RECO_SIZE: 71, 72.

modificationDate: 14, 17, 25.

modificationNumber: 14, 17, 25.

msg: 62, 88.

n: 42, 48, 50, 71, 77, 94, 97, 99.

name: 100.

next_in: 62, 88.

next_ofile: 6, 12, 65, 67, 77, 91, 100, 103.

next_out: 62, 88.

NUL: 15, 33, 47, 50, 52, 95.

num_recs: 42,43,45,47,48,71,72,74,77.

numAnnotations: 55, 56, 58, 63, 67.

numBookmarks: 55, 56, 58, 63, 65.

numRecords: 14, 17, 25, 26, 28, 32, 33,
34, 35, 55, 56, 58, 61, 77, 85, 90.

o: 50.

o_name: 6,7, 12, 63, 75, 86, 100, 101.

obuf: 35.

offset: 26, 28, 32, 33, 34, 35, 64, 66.

ofp: 7,12, 47, 48, 62, 65, 67, 77, 87.

opaque: 62, 88.

outbuf: 50, 60, 62, 66, 68, 88.

outend: 50.

outsize: 50, 88.

p: mv Qv @7 @7 ﬂv &7 &7 @7 9_47 9_77 M

PDBrec_header: 26, 28, 30.

PDBsize: 14, 18, 25, 34, 61.

perror: 10, 100.

PNG_SIG: 92.

PNRd_decode: 37, 39, 79.

PNRD_METATAG: 85.

PNRd_PNG: 90, 91.

PNRd_uncompress: 87,

posiz_date: 21.

pp: 50, 66.

ppe: G66.

printf: 8,9, 24, 25, 32, 45, 48, 58,
74, 84, 85.

8, 89.

§105 18.x.2011 15:08

ps: 85.
pt: 85.
r: 99.

read_-DWord: 28, 94, 103.

read_pdb_noalloc: 35, 36, 61.

read_pdb_record: 33, 36, 43, 47, 48, 56, 65,
67, 72, 77, 81, 85, 87, 90.

read_Word: 94, 103.

realloc: 88.

rec: 86, 87, 90, 91, 92.

REC_BUSY: 27.

REC_CATEGORY: 27.

REC_DELETE: 27.

REC_DIRTY: 27.

rec_hdrs: 28, 30, 32, 33, 34, 35.
REC_SECRET: 27.

rec_size: 42,43, 45, 48, 49, 71, 72, 74.
recnum: 33, 34, 35.

recordOffset: 14, 17, 25.

recordSize: 55, 56, 58.

recpos: 33, 35.

recsize: 33, 34, 35.

recO: 42,43, 45, 46, 47, 48, 49, 55, 56, 58,
61, 62, 63, 64, 65, 66, 67, 71, 72, 74,
75, 76, 77, 80, 81, 82, 84, 87, 90.

reserved: 42, 43, 55, 71, 72.

reserved?: 42, T1.

revisionDate: 8.

revisionld: 8.

r0: 42, 43, 55, 56, 71, 72.

S_IFDIR: 101.

sb: 18, 19, 100, 101.

SCRATCH_BUF_SIZE: 21, 90.
SEEK_SET: 33, 35.
sequence: 100.

show_time: 21, 23, 25.

size: 55, 56, 58, 62, 66.
size_pdb_record: 32, 33, 34, 35, 36, 43, 48,
56, 61, 72, 77, 85, 87, 91.

snprintf: 90, 100.
sortInfold: 14, 15, 17, 25.
st_mode: 101.

st_size: 18.

INDEX 49

stat: 18, 19, 100, 101.

status: 88.

stderr: 51, 98.

stdout: 6, 12, 98.

store_DWord: 17, 43, 56, 66, 72, 95.
store_String: 17, 95.
store_Word: 17, 43, 56, 72, 81, 95.
store_ZString: 17, 66, 95.
strcat: 21.

strchr: 8.

stremp: 85.

strftime: 21.

strlen: 85, 90, 91, 100, 101, 102.
strnemp: 90.

strstr: 92.

sup: 64, 65, 66, 67.

t_palm: 21.

tag: 64, 66, 90.

temp: 66.

text: 67.

TEXt_decode: 37, 39, 41.
TEXt_decompress: 49, 50, 53.
TEXT_RECO_SIZE: 42, 43.

title: 14, 17, 25, 64, 66, 67.

tt: 21.

trtRecords: 80, 81, 84, 87, 90.
type: 14, 15, 17, 25, 37, 40.

ubuf: 48, 49, 87.

untquelD: 26, 28, 32.

untqueldSeed: 14, 17, 25.

usage: 5, 6.

va_end: 98.

va_start: 98.

version: 14, 17, 25, 42, 43, 45, 46, 55, 56,

58, 71, 72, 74, 75, 80, 81, 82, 84.

ufprintf: 98.

Word: 13, 14, 33, 34, 35, 36, 42, 50, 55,
71, 80, 91, 92, 94, 103.

Z_NULL: 62, 88.

Z_OK: 62, 88.

z_stream: 60, 88.

Z_STREAM_END: 62, 88.

Z_SYNC_FLUSH: 62, 88.

50 INDEX

zalloc: 62, 88.

zfree: 62, 88.

zs: 60, 62, 88.
2TXT_decode: 37, 39, 54.
ZTXT_MARK_LEN: 64, 66.
ZTXT_NONUNIFORM: 55, 58.

ZTXT_RANDOMACCESS: 55, 58.

ZTXT_RECO_SIZE: 55, 56.
ZTXT_SNIP: 64, 66.

18.x.2011

15:08

§105

18.x.2011 15:08 NAMES OF THE SECTIONS

(MOBI: check for encryption 76) Used in section 75.
(MOBI: dump record 07 73) Used in section 70.
(MOBI: get record 0 72) Used in section 70.
(MOBI: local data 71) Used in section 70.
(MOBI: process Huffman compressed data 78) Used in section 75.
(MOBI: process data 75) Used in section 70.
(MOBI: save ancillary data 77) Used in section 75.
(MOBI: show record 0 74) Used in section 73.
(PNRd: check for valid version 82> Used in section 81.
(PNRd: dump record 07 83) Used in section 79.
(PNRd: get record 0 81) Used in section 79.
(PNRd: local data 80) Used in section 79.
(PNRd: process data 86) Used in section 79.
(PNRd: process the supplemental records 90) Used in section 86.
(PNRd: process the text records 87) Used in section 86.
<PNRd: save an image 91, 92> Used in section 90.
(PNRd: show record O 84,85) Used in section 83.
(TEXt: decode special case for trailing NUL 52) Used in section 50.
(TEXt: decompress 49) Used in section 48.
(TEXt: dump record 0?7 44) Used in section 41.
(TEXt: get record 0 43) Used in section 41.
(TEXt: local data 42) Used in section 41.
(TEXt: process compressed 48) Used in sections 46 and 75.

(TEXt: process data 46) Used in section 41.

(TEXt: process uncompressed 47) Used in sections 46 and 75.

(TEXt: show record 0 45) Used in section 44.

(data types 13) Used in section 3.

(dump file header 25) Used in section 24.

(dump record headers 32) Used in section 31.

(functions 21, 33, 34, 35, 41, 50, 54, 70, 79, 88, 94, 97, 98, 99, 100, 102) Used in section 3.
(global data 7, 11, 14, 26, 30, 37, 38) Used in section 3.

(global macros 95, 96) Used in section 3.

(include files 4, 20, 22, 29, 59) Used in section 3.

(leftovers 51) Used in section 50.

(local data in main 5, 16,19) Used in section 3.

(main program 6, 10, 12, 17, 18, 24, 28, 31,40) Used in section 3.

(print version and copyright 8,9) Used in section 6.

(prototypes 23, 36, 39, 53, 89, 103) Used in section 3.

(set up next_ofile 101) Used in section 100.

(zTXT: dump record 07 57) Used in section 54.

(zTXT: get record 0 56) Used in section 54.

(zTXT: local data 55, 60, 64) Used in section 54.

(zTXT: process data 61, 62, 63, 68) Used in section 54.

51

52 NAMES OF THE SECTIONS 18.x.2011

: show a tag 66) Used in sections 65 and 67.
: show annotations 67) Used in section 63.
: show bookmarks 65> Used in section 63.

: show record 0 58> Used in section 57.

15:08

