
pdbdecodeExtract Palm Electronic Book Contentsrevision: 1.25 of 2009/09/03 21:16:31printed: 18.x.2011 15:08printed from version being edited!!!
Section PageIntroduction . 1 1Implementation language and environment . 2 3PDB structures . 13 8PDB �le header . 14 8PDB record headers . 26 12PDB record bodies . 33 13Determine �le type . 37 15TEXt: Palm DOC decoder . 41 16TEXt: Decoding uncompressed text . 47 18TEXt: Decoding compressed text . 48 19zTXT: Weasel Reader decoder . 54 22MOBI: MobiPocket decoder . 69 29MOBI: Decoding Hu�man compressed data . 78 32PNRd: Peanut Reader Decoder . 79 33Utility routines . 93 40Index . 105 47

x1 18.x.2011 15:08 INTRODUCTION 1What I cannot create, I do not understand.| notation left at the top ofRichard Feynman'sblackboard when he died.1. Introduction.[[[See TEXbook p106, for a di�erent way to do webref.]]]There are a number of di�erent electronic book formats for the Palm handheld device, eachwith a di�erent software application for the Palm. The electronic book �les are all wrappedas standard Palm database (PDB) �les. The PDB format provides the overall structureof the data (for example, the record sizes and headers); the e-book formats each providea di�erent encoding of the book data within that structure (for example, how the text iscompressed). There are at least six di�erent e-book formats in general use, distinguishableby the type and creator tags in their �le headers:� Traditional Palm DOC format (type TEXt, creator REAd),� Weasel Reader compression (type zTXT, creator GPlm),� Palm Reader/Peanut Press (type PNRd, creator PPrd),� Mobipocket (type BOOK, creator MOBI),� iSilo (type ToGo, creator ToGo),� Plucker (type Data, creator Plkr).[[[Plucker format is described in the Plucker documentation downloadable bundle. In the 1.8version, it's �le plucker-1.8/manual/DBFormat.html.]]]This program decodes the �rst four of these formats and recovers the source text (andsometimes images) for the e-books. Providing a way of decoding the content is a vital stepin converting from one e-book format to another. The actual conversion to a new format isbeyond the scope of this program | indeed, the reader software packages generally provideadjunct software for the desktop computer to convert text into the appropriate PDB �les.Additional issues out-of-scope for this program:� Converting the text markup: We don't attempt to process or strip the markup datainterspersed with the text describing font style and size, paragraph breaks, and so forth.Each of the e-book formats uses a di�erent markup language: Palm Reader uses a verylight-weight markup, for example; Weasel expects text with no markup; Mobipocket relieson the Open E-Book markup language, which is a very complete HTML-like languageand is the emerging standard used for electronic publishing. Similarly, we don't do linebreaking on the text bodies, which often end up with each paragraph in a single long line,nor do we attempt to fold imbedded line-ending characters to their Unix or Windowsstandard forms.� Digital rights management and encryption: This program as originally written doesn'thandle any form of digital rights management (DRM), in which e-books are encrypted orkeyed to a particular user or device. E-books for both Mobipocket and Palm Reader canbe DRM-locked, either for the exclusive use of the purchaser, or to expire after a pre-settime as with a lending library. At the risk of violating the Digital Millennium CopyrightAct, someone could use CWEB's change �le mechanism to add code to this program

2 INTRODUCTION 18.x.2011 15:08 x1which breaks or circumvents DRM and encryption schemes. (Breaking the encryptionprobably involves running reader software under a simulator and debugger.)� Comparison of source texts: If we have multiple versions of a source text | say, theoriginal version and one we just decoded from an e-book form | we may want to comparethem. To do this we would need to do a word-by-word comparison of the two versions,probably ignoring possible markup. As useful as this functionality might be (and as muchas I expect to need it), it is the purview of a di�erent piece of software.

x2 18.x.2011 15:08 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 32. Implementation language and environment. There exist numerous Perl scriptsfor Palm �le manipulation, including at least two modules for TEXt/REAd format and twofor zTXT/GPlm. It would be logical to write modules for the other formats, but writing a Cprogram reduces the dependencies on Perl modules, and the Perl base environment. It alsomakes a program that will be most-easily portable to other operating systems.But why CWEB rather than straight C? Because the formats are complicated, and theliterate programming model gives us a better way to produce the notes on the formats.Also, changes for particular operating systems can be easily handled by CWEB's change �lemechanism, which allows modi�cations to be made to program source via an supplementarysource �le leaving the original source unchanged. It means we need to ship the raw C anda printable version of the source, since we can't assume everyone has CWEB installed, butI am willing to accept that inconvenience.And, similarly, why write in C, rather than the trendier C++? While CWEB supportsC++, the advantages of C++ for this project are nil. It is unnecessary to build a classfor each e-book type, since the decoding for the individual types is already separated intoits own subroutine. Even if it made sense to build a class for each e-book type for dataprivacy, we already have the necessary isolation by making the data for each type local toits decoding routine. The notion of making each e-book type a derived class of a genericPDB class is likewise silly, since we only decode one type of book at a time, and the dataisolation is not necessary in such a small project. The one syntactic advantage of C++ forour purposes, the ability to include declarations anywhere in the code body, is obviated byCWEB features which allow us to explain code in a di�erent order than the computer willsee it. By making sections of code that are additions to previous-de�ned sections, we canfreely intermix declaration sections with code sections.The ultimate CWEB reference is The CWEB System of Structured Documentation, byDonald E Knuth and Silvio Levy (Addison-Wesley, 1993, ISBN 0-201-57569-8. The softwareitself can be downloaded fromhttp://www-cs-faculty.stanford.edu/~knuth/cweb.html.For further information on literate programming, see Daniel Mall's literate programmingweb site http://www.literateprogramming.com/.The list of additional references includes Knuth's original literate programming paper,http://www.literateprogramming.com/knuthweb.pdf.This software was developed on Microsoft Services for Unix release 3.5, running onMicrosoft Windows XP Service Pack 2. [[[Before �nal release it should also be built andtested on Linux and as a native Windows program.]]]

4 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 18.x.2011 15:08 x33. The program outline is simple:h include �les 4 ih data types 13 ih prototypes 23 ih global data 7 ih global macros 95 ih functions 21 imain (int argc ; char �argv [])f h local data in main 5 ihmain program 6 iexit (0);g4. We'll need a number of include �les, so let's begin listing the obvious ones. We'll addto this list as we continue.h include �les 4 i �#include <stdio.h>#include <string.h>#include <stdarg.h>See also sections 20, 22, 29, and 59.This code is used in section 3.5. We begin the body of the program by processing the
ags. Let's �rst stipulate the\usage" message, and some local data.h local data in main 5 i �int i;const char �usage = "Usage: pdbdecode [-a] [-i] [[-h] [-r] [\-0]] [-s] [-v] [-w] [-o base] file";See also sections 16 and 19.This code is used in section 3.

x6 18.x.2011 15:08 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 56. The usage message shows the synopsis of the command line. To enumerate the
ags:-h Display the contents of the global PDB header, which contains data about the �le itself.-r Display all the individual record headers, which contain data such as location of therecord within the �le.-0 Display the data in record 0 of the PDB �le, which contains data about the contents ofthe �le.-a Turn on all three of -h, -r, and -0.-i Appends non-graphic supplemental data | bookmarks, annotations | to stdout . Thegraphic data is ignored unless there is also a -o.-oloc Specify the output location. If loc is an existing directory, or if the name ends with aslash, we produce the output �les in that directory. If loc is a simple name, we generate�le names of the form locnnnnn, where nnnnn is a sequential �ve-digit number. If there isno -o
ag, we only output the base text to stdout . See subroutine next o�le () for details.-s Only output the supplemental data, such as bookmarks and pictures, and don't outputthe body text. This is the opposite of running without -o to only output the body text.Even if we don't output it, we still extract the body text as a consistency check.-v Display the version and copyright banners and exit.-w Issue extra warnings[[[We should use POSIX getopt () for parsing the command-line options, but I don't think it'savailable as such on Windows, which would make the Windows port harder.]]]hmain program 6 i �i = 1;while (i < argc ^ (argv [i][0]) � '-') fswitch (argv [i][1]) fcase 'h':
ags j= FLAG_HEADERS;break;case 'r':
ags j= FLAG_RECHDRS;break;case '0':
ags j= FLAG_RECZERO;break;case 'a':
ags j= (FLAG_HEADERS j FLAG_RECHDRS j FLAG_RECZERO);break;case 's':
ags j= FLAG_SUPONLY;break;case 'i':
ags j= FLAG_SUPTEXT;break;case 'o': o name = (argv [i][2]) ? (&argv [i][2]) : (argv [++i]);break;case 'v': h print version and copyright 8 iexit (0);default: fatal ("bad flag <%c>\n%s"; argv [i][1]; usage);gi++;

6 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 18.x.2011 15:08 x6gif (i � argc) fatal ("no filename?\n%s"; usage);See also sections 10, 12, 17, 18, 24, 28, 31, and 40.This code is used in section 3.7. Now that we've used the command-line
ags, let's de�ne the bit
ags for them, andthe global data we need to support them.#de�ne FLAG_HEADERS #01#de�ne FLAG_RECHDRS #02#de�ne FLAG_RECZERO #04#de�ne FLAG_SUPONLY #08#de�ne FLAG_SUPTEXT #10h global data 7 i �int
ags = 0;char �o name =NULL ;FILE �ofp ;See also sections 11, 14, 26, 30, 37, and 38.This code is used in section 3.8. Of course, if we're printing the version number, we don't need a
ag bit: we just displaythe version, build date, copyright information, and call it quits. We go to some e�ort tostrip just the raw revision number and date out of the strings our revision control systemprovides, which makes this code a little more baroque than it might be otherwise. In casestripping the data fails, we just print the whole strings.h print version and copyright 8 i �f char �revisionId = "$Revision: 1.25 $";char �revisionDate = "$Date: 2009/09/03 21:16:31 $";char �idp = strchr (revisionId ; ' ');char �ide = idp ? strchr (idp + 1; ' ') :NULL ;char �dap = strchr (revisionDate ; ' ');char �dae = dap ? strchr (dap + 1; ' ') :NULL ;int leni = ide � idp � 1;int lend = dae � dap � 1;if (idp �NULL_ide �NULL_dap �NULL_dae �NULL)printf ("pdbdecode, %s %s\n"; revisionId ; revisionDate);elseprintf ("pdbdecode, version %.*s (%.*s)\n"; leni ; idp + 1; lend ; dap + 1);gSee also section 9.This code is used in section 6.

x9 18.x.2011 15:08 IMPLEMENTATION LANGUAGE AND ENVIRONMENT 79. In the case where we displaying the version information, we also want to display thecopyright information. We put out the basic copyright here, and if we later have a sectiondiscussing the licensing terms, we may make an addition to the section.h print version and copyright 8 i +�printf ("Copyright, Jeffrey L Copeland\n");10. The input �le is also straight-forward. Because we intend to port this to Windows,we add the "b" option to fopen , which is necessary for that platform.hmain program 6 i +�in�lename = argv [i];ifp = fopen (in�lename ; "rb");if (ifp �NULL) fperror (in�lename);exit (1);g11. Since we have only one input �le, we make its FILE � global, so that we don't haveto pass it in calls to our read utilities.h global data 7 i +�char �in�lename ;FILE �ifp ;12. Open the basic output �le if necessary; see subroutine next o�le () for the mechanicsof supplemental �les.hmain program 6 i +�if (o name �NULL) ofp = stdout ;else ofp = next o�le (""; "");

8 PDB STRUCTURES 18.x.2011 15:08 x1313. PDB structures.We'll use the names the Palm documentation uses for basic scalar types. They are storedin the �le in network order, most signi�cant byte �rst. (Except for BYTE, which replacesthe Palm unsigned char type Byte to avoid a con
ict with the types used by zlib .)format Word intformat DWord intformat BYTE inth data types 13 i �typedef unsigned short Word;typedef unsigned long DWord;typedef unsigned char BYTE;This code is used in section 3.14. PDB �le header.We begin by de�ning the PDB �le header block. The format is de�ned in the Palmdeveloper documentation set athttp://www.palmos.com/dev/support/docs/fileformats/Intro.html.http://www.palmos.com/dev/tech/overview.htmlThe individual �elds in the �le header are described as comments in the structure below.Additional notes appear in the next section.#de�ne LEN_TTL 32#de�ne LEN_HDR ((LEN_TTL + 4 + 4) + 3 � sizeof (Word) + 8 � sizeof (DWord))h global data 7 i +�struct fchar title [LEN_TTL]; =� title, NUL-terminated �=Word attributes ; =�
ags �=Word version ; =� application-speci�c version tag �=DWord creationDate ; =� �le dates �=DWord modi�cationDate ; =� ... �=DWord lastBackupDate ; =� ... �=DWord modi�cationNumber ; =� how many times �le was updated �=DWord appInfoId ; =� o�set within �le to appInfo block �=DWord sortInfoId ; =� o�set within �le to sorfInfo block �=char type [5]; =� type identi�cation �=char creator [5]; =� creator identi�cation �=DWord uniqueIdSeed ; =� random seed for record identi�ers �=DWord recordO�set ; =� o�set to record zero �=Word numRecords ; =� total number of records in �le �=g hdr ;size t PDBsize ; =� total size of PDB �le �=

x15 18.x.2011 15:08 PDB FILE HEADER 915. Some notes on the data elements in hdr :Numeric data in a PDB �le is stored in big-endian format. The title is already expectedto be NUL terminated, but we include an extra byte in type and creator so we can add aterminating NUL.The names appInfoId and sortInfoId are misnomers.There is a handwave about the number of padding bytes following the header if there isnot a record list, however, we ignore this since non-empty e-books always have a record list.The total size for the PDB �le is declared in the previous section, but to be pedantic, it'snot part of the header block; we actually get the data from external sources.The attributes �eld is bit-
ags, and the possible
ag values are de�ned here:#de�ne ATTR_RESOURCE #01#de�ne ATTR_READONLY #02#de�ne ATTR_DIRTY #04#de�ne ATTR_BACKUP #08#de�ne ATTR_OKNEWER #10#de�ne ATTR_RESET #20#de�ne ATTR_OPEN #40#de�ne ATTR_LAUNCHABLE #20016. We need a bu�er into which to read the �le header.h local data in main 5 i +�BYTE b[LEN_HDR]; �p = b;17. Once de�ned, we can read the �le header as a lump and store it a �eld at a time.hmain program 6 i +�ck read (b; LEN_HDR);store String (p; hdr :title ; LEN_TTL);store Word (p; hdr :attributes);store Word (p; hdr :version);store DWord (p; hdr :creationDate);store DWord (p; hdr :modi�cationDate);store DWord (p; hdr :lastBackupDate);store DWord (p; hdr :modi�cationNumber);store DWord (p; hdr :appInfoId);store DWord (p; hdr :sortInfoId);store ZString (p; hdr :type ; 4);store ZString (p; hdr :creator ; 4);store DWord (p; hdr :uniqueIdSeed);store DWord (p; hdr :recordO�set);store Word (p; hdr :numRecords);

10 PDB FILE HEADER 18.x.2011 15:08 x1818. We also want to populate the �le size, which we need to get from a call to the operatingsystem.hmain program 6 i +�if (stat (in�lename ;&sb) < 0)fatal ("unable to stat input file");PDBsize = (size t) sb :st size ;19. We need a local structure for capturing the �le statistics.h local data in main 5 i +�struct stat sb ;20. Some additional include �les declare the data types used by stat() .h include �les 4 i +�#include <sys/types.h>#include <sys/stat.h>21. We have a routine to print out our Palm-format date values. The PDB �le's dateshave an epoch of 1 January 1904, rather than the POSIX standard 1 January 1970. Notethat many PDB-generating programs have bugs and use the Unix date, rather than thePalm one. This accounts for early twenty-�rst-century PDB �les apparently being dated inthe late 1930s. We try to display the intended date, rather than the actual one, by assumingthat the dates in our �les should be after the POSIX epoch. If the time is earlier than thePOSIX epoch, we append a warning '??'. (Just for reference: DATE_OFFSET as a POSIXtime t is 1 January 2036 at 4pm.)#de�ne DATE_OFFSET 2082844800#de�ne SCRATCH_BUF_SIZE 64h functions 21 i �char �show time (DWord t palm)f static char buf [SCRATCH_BUF_SIZE];int posix date = (t palm < DATE_OFFSET) ? 1 : 0;time t tt = (time t)(posix date ? t palm: (t palm � DATE_OFFSET));memset (buf ; 0; SCRATCH_BUF_SIZE);if (t palm � 0L) return buf ;strftime (buf ; SCRATCH_BUF_SIZE; "%Y/%m/%d@%H:%M:%S"; localtime (&tt));if (posix date) strcat (buf ; "??");return buf ;gSee also sections 33, 34, 35, 41, 50, 54, 70, 79, 88, 94, 97, 98, 99, 100, and 102.This code is used in section 3.

x22 18.x.2011 15:08 PDB FILE HEADER 1122. We need the include �le declaring time data types:h include �les 4 i +�#include <time.h>23. We need to collect the function prototypes for our utility functions. We'll make ahabit of declaring them right after their de�nitions.h prototypes 23 i �char �show time (DWord);See also sections 36, 39, 53, 89, and 103.This code is used in section 3.24. If we just wanted to dump the �le header data, let's do that.#de�ne EXIT_IF_LAST_FLAG(x)
ags &= �(x);if (:
ags) exit (0);else printf ("\n");hmain program 6 i +�if (
ags & FLAG_HEADERS) fh dump �le header 25 iEXIT_IF_LAST_FLAG(FLAG_HEADERS);g25. This section prints a reasonably formatted rendition of the �le header. [[[We reallyshould decompose attributes and identify what bits are set in text form.]]]h dump �le header 25 i �printf ("title: <%s>\n"; hdr :title);printf ("attributes: 0x%x, version 0x%x, mod number %d\n"; hdr :attributes ;hdr :version ; hdr :modi�cationNumber);printf ("Ctime 0x%x = %u\t%s\n"; hdr :creationDate ; hdr :creationDate ;show time (hdr :creationDate));printf ("Mtime 0x%x = %u\t%s\n"; hdr :modi�cationDate ; hdr :modi�cationDate ;show time (hdr :modi�cationDate));printf ("Btime 0x%x = %u\t%s\n"; hdr :lastBackupDate ; hdr :lastBackupDate ;show time (hdr :lastBackupDate));printf ("type/creator: %s/%s; "; hdr :type ; hdr :creator);printf ("app/sort: %d/%d; "; hdr :appInfoId ; hdr :sortInfoId);printf ("seed: %d\n"; hdr :uniqueIdSeed);printf ("record offset 0x%lx, number of records %d, file size %d\n";hdr :recordO�set ; hdr :numRecords ;PDBsize);This code is used in section 24.

12 PDB RECORD HEADERS 18.x.2011 15:08 x2626. PDB record headers.Now we come to the individual record headers. There is one of these for each one of thehdr :numRecords records in the PDB �le.h global data 7 i +�struct PDBrec header fDWord o�set ;BYTE attributes ;BYTE uniqueID [3];g;27. Again, the attributes byte is a set of bit �elds.#de�ne REC_DELETE #80#de�ne REC_DIRTY #40#de�ne REC_BUSY #20#de�ne REC_SECRET #10#de�ne REC_CATEGORY #0F28. Let's allocate and read the record headers now.hmain program 6 i +�rec hdrs = (struct PDBrec header ��)ck malloc (sizeof (struct PDBrec header �) � hdr :numRecords);for (i = 0; i < hdr :numRecords ; i++) frec hdrs [i] = (struct PDBrec header �)ck malloc (sizeof (struct PDBrec header));rec hdrs [i]~o�set = read DWord ();ck read (&(rec hdrs [i]~attributes); 1);ck read (rec hdrs [i]~uniqueID ; 3);g29. h include �les 4 i +�#include <stdlib.h>30. h global data 7 i +�struct PDBrec header ��rec hdrs ;31. We may also want to dump the record headers:hmain program 6 i +�if (
ags & FLAG_RECHDRS) fh dump record headers 32 iEXIT_IF_LAST_FLAG(FLAG_RECHDRS);g

x32 18.x.2011 15:08 PDB RECORD HEADERS 1332. [[[Here, also, we should decompose the attribute bits into text.]]]h dump record headers 32 i �for (i = 0; i < hdr :numRecords ; i++) fprintf ("record %d: offset 0x%x, attr 0x%x, size %d, id 0x%02x%02x%02x\n";i; rec hdrs [i]~o�set ; rec hdrs [i]~attributes ; size pdb record (i);rec hdrs [i]~uniqueID [0]; rec hdrs [i]~uniqueID [1]; rec hdrs [i]~uniqueID [2]);gThis code is used in section 31.33. PDB record bodies.We need a utility routine for grabbing a record from the PDB �le. We can assume we'rereading the records sequentially, but it's safer to plan that we're going to read arbitraryrecords. We return NULL if the record number requested is out of range, or we can't seekto the record position.Normally, this routine allocates memory to hold the record, and it's the caller's responsi-bility to free it. Just for insurance, we allocate one extra byte and load it with a NUL.h functions 21 i +�BYTE �read pdb record (const Word recnum)f long recpos ;size t recsize ;BYTE �buf ;if (recnum � hdr :numRecords) return NULL ;recpos = rec hdrs [recnum]~o�set ;if (fseek (ifp ; recpos ; SEEK_SET) < 0) return NULL ;recsize = size pdb record (recnum);buf = malloc (recsize + 1);memset (buf ; 0; recsize + 1);ck read (buf ; recsize);return buf ;g

14 PDB RECORD BODIES 18.x.2011 15:08 x3434. We need the postulated routine to get the size of a given PDB record. This dependson the table rec hdrs being global data. And strictly speaking, this should probably returna DWord not a size t.h functions 21 i +�size t size pdb record (const Word recnum)f size t recsize ;if (recnum � (hdr :numRecords � 1))recsize = PDBsize � rec hdrs [recnum]~o�set ;elserecsize = rec hdrs [recnum + 1]~o�set� rec hdrs [recnum]~o�set ;g35. We also provide a version of the read routine that operates into a pre-allocated bu�er.The caller is responsible for ensuring the bu�er is big enough to contain the data. We returna pointer to the bu�er speci�ed.h functions 21 i +�BYTE �read pdb noalloc (const Word recnum ;BYTE �obuf)f long recpos ;size t recsize ;if (recnum � hdr :numRecords) return NULL ;recpos = rec hdrs [recnum]~o�set ;if (fseek (ifp ; recpos ; SEEK_SET) < 0) return NULL ;recsize = size pdb record (recnum);ck read (obuf ; recsize);return obuf ;g36. h prototypes 23 i +�BYTE �read pdb record (const Word);BYTE �read pdb noalloc (const Word;BYTE �);size t size pdb record (const Word);

x37 18.x.2011 15:08 DETERMINE FILE TYPE 1537. Determine �le type.At this point, we'd like to know what �le type we have, and dispatch to the appropriateconverter.Let's set up a table of types and creators vs decoding routines.h global data 7 i +�struct dispatch fchar type [5];char creator [5];void ((�decode)(void));g disp [] = ff"TEXt"; "REAd";TEXt decodeg;f"zTXT"; "GPlm"; zTXT decodeg;f"BOOK"; "MOBI";MOBI decodeg;f"PNRd"; "PPrs";PNRd decodeg;g;#de�ne DISPATCH_SIZE ((sizeof (disp))=(sizeof (disp [0])))38. Also, for convenience, let's remember what kind of book we're decoding.h global data 7 i +�enum book formats ffmt ERROR = �1; fmt TEXt = 0; fmt zTXT ; fmt MOBI ; fmt PNRdg;enum book formats current book format = fmt ERROR;39. h prototypes 23 i +�void TEXt decode (void);void zTXT decode (void);void MOBI decode (void);void PNRd decode (void);40. hmain program 6 i +�for (i = 0; i < DISPATCH_SIZE; i++) fif (memcmp (disp [i]:type ; hdr :type ; 4) � 0^memcmp (disp [i]:creator ; hdr :creator ; 4) � 0) fcurrent book format = i;disp [i]:decode ();break;ggif (i � DISPATCH_SIZE)fatal ("I don't know how to decode file type %s/%s.";hdr :type ; hdr :creator);

16 TEXT: PALM DOC DECODER 18.x.2011 15:08 x4141. TEXt: Palm DOC decoder.The Palm DOC format was �rst used in the TealDoc and Aportis Reader applications.It was reverse-engineered and is now widely understood. For two articles on generating theformat, see: http://alumnus.caltech.edu/~copeland/work/palm.htmland http://alumnus.caltech.edu/~copeland/work/palmcomp.html.Those sources provide further references.In the uncompressed form, TEXt just provides the text broken up into 4096-byte records.In its compressed form, TEXt uses a simple, quick-to-compute, run-length encoding tocompress the text.Some versions of readers for this format provide rudimentary bookmark features, but wewill ignore those.h functions 21 i +�void TEXt decode (void)f hTEXt: local data 42 ihTEXt: get record 0 43 ihTEXt: dump record 0? 44 ihTEXt: process data 46 ig42. The �rst thing we need to know about a �le in format TEXt is the data in record 0.Record 0 for TEXt contains a version tag (a
ag to tell whether the data is compressed), thetotal size of the document, the number of records, and the maximum uncompressed recordsize.#de�ne TEXT_REC0_SIZE (2 � sizeof (DWord) + 4 � sizeof (Word))hTEXt: local data 42 i �BYTE �r0 ; �p;int i;int n;struct fWord version ;Word reserved ;DWord doc size ;Word num recs ;Word rec size ;DWord reserved2 ;g rec0 ;This code is used in section 41.

x43 18.x.2011 15:08 TEXT: PALM DOC DECODER 1743. If our record zero is too short, something's wrong. If it's longer than expected, we'vegot a MOBI �le with a TEXt tag, so we just redirect our processing to MOBI decode .[[[We should now know enough to identify a MOBI �le explicitly, rather than by implication,so we should �x the second if statement in this section.]]]hTEXt: get record 0 43 i �n = size pdb record (0);if (n < TEXT_REC0_SIZE) fatal ("record 0 is too short!");if (n > TEXT_REC0_SIZE) return MOBI decode ();p = r0 = read pdb record (0);store Word (p; rec0 :version);store Word (p; rec0 :reserved);store DWord (p; rec0 :doc size);store Word (p; rec0 :num recs);store Word (p; rec0 :rec size);free (r0); r0 =NULL ;This code is used in section 41.44. If we want to display record 0, we do so now, and exit.hTEXt: dump record 0? 44 i �if (
ags & FLAG_RECZERO) fhTEXt: show record 0 45 iEXIT_IF_LAST_FLAG(FLAG_RECZERO);gThis code is used in section 41.45. hTEXt: show record 0 45 i �printf ("Record 0:\n");printf (" version 0x%x (%s)\n";rec0 :version ; ((rec0 :version � 1) ? "uncompressed": ((rec0 :version � 2) ? "compressed" : "UNKNOWN")));printf (" full uncompressed text size %d bytes\n"; rec0 :doc size);printf (" contains %d body records, with maximum uncompressed size %d\n";rec0 :num recs ; rec0 :rec size);This code is used in section 44.

18 TEXT: PALM DOC DECODER 18.x.2011 15:08 x4646. If we're decoding the contents of the �le, there is a basic bifurcation in the processing.If rec0 :version is 1, we have an uncompressed �le; if rec0 :version is 2, it's compressed; othervalues cause an error.hTEXt: process data 46 i �if (rec0 :version � 1) fhTEXt: process uncompressed 47 igelse if (rec0 :version � 2) fhTEXt: process compressed 48 igelsefatal ("undefined version in TEXt file 0x%x"; rec0 :version);This code is used in section 41.47. TEXt: Decoding uncompressed text.Uncompressed processing is painfully simple. Remembering that we append a NUL toeach record as it is read, we just print the records. We also check if we're only interested inoutputing the supplemental data: if that's the case for a TEXt format �le, we really outputno data.hTEXt: process uncompressed 47 i �for (i = 1; i � rec0 :num recs ; i++) fBYTE �buf ;buf = read pdb record (i);if (:(
ags & FLAG_SUPONLY)) fprintf (ofp ; "%s"; buf);free (buf);gThis code is used in sections 46 and 75.

x48 18.x.2011 15:08 TEXT: DECODING COMPRESSED TEXT 1948. TEXt: Decoding compressed text.Processing compressed data is a little more complicated. We know the uncompressedsize of the maximum record from rec0 :rec size , so we pre-allocate the decompression bu�er.Again, we check if asked to only output supplemental data.hTEXt: process compressed 48 i �BYTE �ubuf = malloc (rec0 :rec size + 1);for (i = 1; i � rec0 :num recs ; i++) fBYTE �buf ;int e;size t n = size pdb record (i);buf = read pdb record (i);hTEXt: decompress 49 ifree (buf);if (:(
ags & FLAG_SUPONLY)) fprintf (ofp ; "%s"; ubuf);#if 0printf ("\n\n==========\n\n");#endifgfree (ubuf);This code is used in sections 46 and 75.49. Because TEXt-style decompression is also used by MOBI format �les, we'll wrap thedecompression as a utility function.The odd second clause in the if statement is a workaround for a bug in the MobipocketCreator program: The uncompressed bu�er ends with junk characters. As a result, we oftentry to put decompressed characters past the end of the output bu�er. However, it appearsthat these can be safely ignored, so if we've returned from TEXt decompress of a MOBI bookwith an out-of-bounds error, we can ignore it.hTEXt: decompress 49 i �e = TEXt decompress (buf ; n; ubuf ; rec0 :rec size + 1);if (e ^ current book format 6= fmt MOBI)fatal ("overflowed TEXt uncompression buffer: record %d, error %d"; i; e);if (e ^ current book format � fmt MOBI) error ("record %d, error %d"; i; e);=� ??? �=This code is used in section 48.

20 TEXT: DECODING COMPRESSED TEXT 18.x.2011 15:08 x5050. This is the wrapped decompressor. We provide input and output bu�ers and theirsizes. The output bu�er size needs to be one larger than expected for a terminating NUL.TEXt format compression is based on a simple run-length encoding. There are four classesof characters in the compressed data block:� Characters between 0x01 and 0x08 are a byte count introducing a literal block. Forexample, the Latin 1 sequence \�Oô�c" (characters 0xD6, 0xF4 0xE7) would be encoded as0x03, 0xD6, 0xF4, 0xE7.� Characters from ASCII tab (0x09) through DEL (0x7F) and NUL (0x00) represent them-selves.� A byte between 0x80 and 0xBF begins a two-byte pair representing a sequence of betweenthree and ten bytes repeated within the previous 2047 bytes of uncompressed text. Thisis stored by subtracting three from the length, and packing it and the distance into aWord as #8000+ (distance � 3) + (length � 3).� Finally, characters between 0xC0 and 0xFF represent a space followed by an ASCIIcharacter between space (0x40) and DEL (0x7F), combined by setting the high bit ofthe second character. Thus, \ J" (0x40, 0x4A) becomes 0xCA.We provide di�ering error returns for each place we can go out of bounds on the de-compression bu�er, but in the existing callers only check for a non-zero return to indicateerrors.h functions 21 i +�int TEXt decompress (BYTE �inbuf ; const size t insize ;BYTE �outbuf ; constsize t outsize)f BYTE �o = outbuf ;BYTE �p = inbuf ;BYTE �outend = outbuf + outsize ; =� terminating NUL �=BYTE �inend = inbuf + insize � 1;memset (outbuf ; 0; outsize);hTEXt: decode special case for trailing NUL 52 iwhile (p � inend) fif (o � outend)f =� ??? �=h leftovers 51 i =� ??? �=return �1;g =� ??? �=if (�p � #C0) f�o++ = ' ';�o++ = (�p++) & #7F;gelse if (�p � #80) fint d = (((�p& #3F)� 8) j (�(p+ 1) & #F8))� 3;int l = (�(p+ 1) & #07) + 3;BYTE �pp = (o� d);

x50 18.x.2011 15:08 TEXT: DECODING COMPRESSED TEXT 21if (pp < outbuf _ (o+ l) � outend) fh leftovers 51 i =� ??? �=return �2; =� out of bounds �=g =� ??? �=while (l��) �o++ = �pp++;p += 2;gelse if (�p � #09 _ �p � #00) f�o++ = �p++;gelse fint n = �p++;if ((o + n) � outend) fh leftovers 51 i =� ??? �=return �3;g =� ??? �=while (n�� > 0) �o++ = �p++;ggreturn 0;g51. h leftovers 51 i �fprintf (stderr ; "inbuf leftovers: ");while (p � inend) fprintf (stderr ; "0x%02x "; �p++);This code is used in section 50.52. Some MOBI format encoders terminate each input record with a NUL. The NUL isimplicit in the output bu�er; its presence in the input bu�er should not count against theinput bu�er size. In fact, the bu�er size counts assume this. As a result, we ignore the NULlest we overrun the output bu�er.hTEXt: decode special case for trailing NUL 52 i �if (�inend � #0) inend ��;This code is used in section 50.53. h prototypes 23 i +�int TEXt decompress (BYTE �; const size t;BYTE �; const size t);

22 ZTXT: WEASEL READER DECODER 18.x.2011 15:08 x5454. zTXT: Weasel Reader decoder.Weasel Reader was developed by John Gruenenfelder. (Palm's lawyers objected to theoriginal name, GutenPalm.) While the reader is capable of consuming TEXt type �les,zTXT �les were invented for it. The zTXT format applies gzip compression to the text,providing signi�cantly better compression than DOC format. The format is extremely well-documented at http://gutenpalm.sourceforge.net.In addition to the reader, that site also includes a zTXT encoder/decoder, makeztxt ; thisdecoding routine is based on the ztxt disect() routine from that program.To support gzip compression, we require the zlib library and header �les; sources can beobtained from http://www.gzip.org/zlib/.h functions 21 i +�void zTXT decode (void)f h zTXT: local data 55 ih zTXT: get record 0 56 ih zTXT: dump record 0? 57 ih zTXT: process data 61 ig

x55 18.x.2011 15:08 ZTXT: WEASEL READER DECODER 2355. We �rst read record 0, which contains version, record count, record size, and pointersfor bookmarks and annotations. We'll describe each of these as we use them in the followingsections. Notice that we don't bother storing the empty bytes speci�ed at the end of thestructure to pad rec0 to an even size.#de�ne ZTXT_RANDOMACCESS #01#de�ne ZTXT_NONUNIFORM #02#de�ne ZTXT_REC0_SIZE(2 � sizeof (DWord) + 7 � sizeof (Word) + 2 � sizeof (BYTE))h zTXT: local data 55 i �BYTE �r0 ; �p;int i;struct fWord version ;Word numRecords ;DWord size ;Word recordSize ;Word numBookmarks ;Word bookmarkRecord ;Word numAnnotations ;Word annotationRecord ;BYTE
ags ;BYTE reserved ;DWord crc32 ;g rec0 ;See also sections 60 and 64.This code is used in section 54.

24 ZTXT: WEASEL READER DECODER 18.x.2011 15:08 x5656. h zTXT: get record 0 56 i �p = r0 = read pdb record (0);if (size pdb record (0) < ZTXT_REC0_SIZE) fatal ("record 0 is too short!");store Word (p; rec0 :version);store Word (p; rec0 :numRecords);store DWord (p; rec0 :size);store Word (p; rec0 :recordSize);store Word (p; rec0 :numBookmarks);store Word (p; rec0 :bookmarkRecord);store Word (p; rec0 :numAnnotations);store Word (p; rec0 :annotationRecord);rec0 :
ags = �p++;p++;store DWord (p; rec0 :crc32);free (r0); r0 =NULL ;This code is used in section 54.57. If we want to display record 0, now is the time.h zTXT: dump record 0? 57 i �if (
ags & FLAG_RECZERO) fh zTXT: show record 0 58 iEXIT_IF_LAST_FLAG(FLAG_RECZERO);gThis code is used in section 54.58. h zTXT: show record 0 58 i �printf ("Record 0:\n");printf (" zTXT version 0x%x = %d.%d\n"; rec0 :version ; rec0 :version � 8;rec0 :version & #FF);printf (" %d data records, %d bytes uncompressed data\n"; rec0 :numRecords ;rec0 :size);printf (" text record size %d\n"; rec0 :recordSize);printf (" %d bookmarks, listed in record %d\n"; rec0 :numBookmarks ;rec0 :bookmarkRecord);printf (" %d annotations, listed in record %d\n"; rec0 :numAnnotations ;rec0 :annotationRecord);printf (" flags 0x%02x"; rec0 :
ags);if (rec0 :
ags & ZTXT_RANDOMACCESS) printf (" (random access)");if (rec0 :
ags & ZTXT_NONUNIFORM) printf (" (non-uniform length)");printf ("\n CRC32 = 0x%08x\n"; rec0 :crc32);This code is used in section 57.

x59 18.x.2011 15:08 ZTXT: WEASEL READER DECODER 2559. h include �les 4 i +�#include <zlib.h>60.#de�ne MAXWBITS 15h zTXT: local data 55 i +�BYTE �inbuf ; �outbuf ;z streamzs ;DWord insize = 0;61. As we've noted, the zTXT format relies on the zlib compression library, written byJean-loup Gailly and Mark Adler, and based on the open-source gzip program. Either blockor global compression can be used on the zTXT text, depending on whether you want tohave to load the whole text into the Palm memory at once. However, for decoding purposes,the compressed text can be treated as though it is a single block. As a result, we begindecompressing by reading all the compressed data into a single bu�er.h zTXT: process data 61 i �for (i = 1; i � rec0 :numRecords ; i++)insize += size pdb record (i);p = inbuf = ck malloc (insize);for (i = 1; i � rec0 :numRecords ; i++) f(void �) read pdb noalloc (i; p);p += size pdb record (i);if (p > inbuf + insize) fatal ("zTXT file header size too small: %d";PDBsize);gSee also sections 62, 63, and 68.This code is used in section 54.

26 ZTXT: WEASEL READER DECODER 18.x.2011 15:08 x6262. Then we decompress the whole bu�er in one step. This section is a more-or-less directcrib from the ztxt disect routine in John Gruenenfelder's makeztxt .h zTXT: process data 61 i +�zs :zalloc = Z_NULL;zs :zfree = Z_NULL;zs :opaque = Z_NULL;zs :next in = inbuf ;zs :avail in = insize ;outbuf = zs :next out = ck malloc (rec0 :size + 1);zs :avail out = rec0 :size + 1;if (in
ateInit2 (&zs ; MAXWBITS) 6= Z_OK) fatal ("decompression init failed");i = in
ate (&zs ; Z_SYNC_FLUSH);if (zs :msg 6=NULL) fatal ("zlib error: %s"; zs :msg);if ((i 6= Z_STREAM_END) ^ (i 6= Z_OK))fatal ("decompression failed: error from inflate");if (zs :avail in > 0)fatal ("decompression failed: output buffer not big enough");�(zs :next out) = '\0';in
ateEnd (&zs);if (:(
ags & FLAG_SUPONLY)) ffprintf (ofp ; "%s"; outbuf);�ush (ofp);g63. If we want to save the supplemental information | if we have speci�ed the -o
ag |we do that now. We'll save both the bookmarks and annotations.If there are bookmarks in the �le, rec0 :numBookmarks is greater than zero, and thebookmarks themselves are record number rec0 :bookmarkRecord . Similarly, if there are an-notations, rec0 :numAnnotations is greater than zero, and the annotation titles and locationsare speci�ed in rec0 :annotationRecord . Both records contain an array of o�set/title pairs asdescribed in the next section. The actual text of the annotations is in separate records, fol-lowing the annotation record: the text of the �rst annotation is in rec0 :annotationRecord+1,and so on.h zTXT: process data 61 i +�if (o name 6=NULL_
ags & FLAG_SUPTEXT) fif (rec0 :numBookmarks > 0) fh zTXT: show bookmarks 65 igif (rec0 :numAnnotations > 0) fh zTXT: show annotations 67 igg

x64 18.x.2011 15:08 ZTXT: WEASEL READER DECODER 2764. We need the bookmark and annotation structures as local data. The data structurefor bookmarks and annotations is the identical. The bytes in either the bookmark record,rec0 :bookmarkRecord or the annotation one, rec0 :annotationRecord , are a list of the tagstructure described here.#de�ne ZTXT_MARK_LEN 20#de�ne ZTXT_SNIP 60h zTXT: local data 55 i +�struct fDWord o�set ;BYTE title [ZTXT_MARK_LEN+ 1];g tag ;FILE �sup ;BYTE �index record ;65. We'll read the bookmark record, and loop through the bookmarks, printing the o�set,the text of the bookmark, and the surrounding text from the body of the �le.h zTXT: show bookmarks 65 i �sup = (
ags & FLAG_SUPTEXT) ? ofp : next o�le (""; ".bk");index record = read pdb record (rec0 :bookmarkRecord);for (i = 0; i < rec0 :numBookmarks ; i++) fh zTXT: show a tag 66 igfree (index record);if (:(
ags & FLAG_SUPTEXT)) fclose (sup);This code is used in section 63.66. h zTXT: show a tag 66 i �BYTE �pp ; �ppe ; temp ;p = index record + i � (sizeof (DWord) + ZTXT_MARK_LEN);store DWord (p; tag :o�set);store ZString (p; tag :title ; ZTXT_MARK_LEN);pp = outbuf + tag :o�set ;ppe = MIN(pp + ZTXT_SNIP; outbuf + rec0 :size);if (pp < outbuf _ pp > (outbuf + rec0 :size))fatal ("bad zTXT bookmark or annotation pointer");temp = �ppe ; �ppe = 0;if (
ags & FLAG_SUPTEXT) fprintf (sup ; "\n\n=====\n");fprintf (sup ; "%s @ %d ->\n <%s>\n"; tag :title ; tag :o�set ; pp);�ppe = temp ;This code is used in sections 65 and 67.

28 ZTXT: WEASEL READER DECODER 18.x.2011 15:08 x6767. And similarly, for annotations. However, since we also want to show the text of theannotations, we'll write them into separate �les. Remember that the annotation o�set isprobably to the top of the screen on which the note appears, which means that the snippetof text we show will probably not contain the text title . [[[I'm not sure I'm happy with theway these are output. Should we be displaying a full screen of text as the \snippet" for eachannotation? That would display the text labeling the annotation, and give us context for theannotation text. What does makeztxt do?]]]h zTXT: show annotations 67 i �index record = read pdb record (rec0 :annotationRecord);for (i = 0; i < rec0 :numAnnotations ; i++) fBYTE �text ;sup = (
ags & FLAG_SUPTEXT) ? ofp : next o�le (""; ".not");h zTXT: show a tag 66 itext = read pdb record (rec0 :annotationRecord + i+ 1);fprintf (sup ; "%s\n"; text);free (text);if (:(
ags & FLAG_SUPTEXT)) fclose (sup);gfree (index record);This code is used in section 63.68. For zTXT, we want free the input and output bu�ers only after we've displayed thebookmarks and annotations.h zTXT: process data 61 i +�free (inbuf);free (outbuf);

x69 18.x.2011 15:08 MOBI: MOBIPOCKET DECODER 2969. MOBI: MobiPocket decoder.Since the MobiPocket reader is available on nearly every PDA (both Palm and PocketPC) and on cell phones, e-books in MobiPocket format are the most portable betweendevices. It achieves this portability by supporting the Open E-book format as its primaryinput language. However, since most MOBI-format books are encrypted, they are not easilyportable to di�erent formats. The MobiPocket reader is available fromhttp://mobipocket.com/.The site also has several programs to convert �les into MOBI format.MOBI �les are essentially a superset of TEXt format �les, as we mentioned in the TEXtdecoder sections. This is taken to its logical absurdity by some MOBI format �les actuallybeing tagged as TEXt. In this case, we can distinguish them from a regular TEXt becauserecord 0 is larger for a MOBI.In addition to the text records accounted for in record 0, a MOBI �le may also contain extrarecords, that is, the record count in the PDB header and in record 0 may di�er. Typically,these extra records will be images, and we save these as .bmp �les. This means that thetext portion of a MOBI �le tagged as TEXt can be read by a TEXt reader such as TealDocwithout confusion using the record count in record 0. However, the additional data in theextra records can be viewed by the MobiReader.For ready examples of this format, note that Baen Books uses MOBI format with the TEXttag for the Palm-format e-books on their web site and CDs included with their physicalbooks.70. Let's begin:h functions 21 i +�void MOBI decode (void)f hMOBI: local data 71 ihMOBI: get record 0 72 ihMOBI: dump record 0? 73 ihMOBI: process data 75 ig

30 MOBI: MOBIPOCKET DECODER 18.x.2011 15:08 x7171. The MOBI local data is identical (for the moment) to the record zero structures forTEXt format. [[[For the moment, we're ignoring the extra information in a MOBI record zero, inpart because we don't understand what's there. Need to add some notes about the extra stu�once we �gure it out.]]]#de�ne MOBI_REC0_SIZE (2 � sizeof (DWord) + 4 � sizeof (Word))hMOBI: local data 71 i �BYTE �r0 ; �p;int i;int n;struct fWord version ;Word reserved ;DWord doc size ;Word num recs ;Word rec size ;Word encrypted ;Word reserved2 ;g rec0 ;This code is used in section 70.72. hMOBI: get record 0 72 i �n = size pdb record (0);if (n < MOBI_REC0_SIZE) fatal ("record 0 is too short!");p = r0 = read pdb record (0);store Word (p; rec0 :version);store Word (p; rec0 :reserved);store DWord (p; rec0 :doc size);store Word (p; rec0 :num recs);store Word (p; rec0 :rec size);store Word (p; rec0 :encrypted);free (r0); r0 =NULL ;This code is used in section 70.73. If we want to display record 0, we do so now, and exit.hMOBI: dump record 0? 73 i �if (
ags & FLAG_RECZERO) fhMOBI: show record 0 74 iEXIT_IF_LAST_FLAG(FLAG_RECZERO);gThis code is used in section 70.

x74 18.x.2011 15:08 MOBI: MOBIPOCKET DECODER 3174. hMOBI: show record 0 74 i �printf ("Record 0:\n");printf (" version 0x%x (%s, %s)\n";rec0 :version ;((rec0 :version � 1) ? "uncompressed": ((rec0 :version � 2) ? "compressed" : "UNKNOWN"));((rec0 :encrypted � 0) ? "unencrypted" : "encrypted"));printf (" full uncompressed text size %d bytes\n"; rec0 :doc size);printf (" contains %d body records, with maximum uncompressed size %d\n";rec0 :num recs ; rec0 :rec size);This code is used in section 73.75. Again, processing the data for the MOBI format is a lot like processing the data forthe TEXt format. Indeed, we reuse some of the sections for processing TEXt �les. However,MOBI also has a \high compression" variant, using Hu�man encoding, which we also handle.hMOBI: process data 75 i �hMOBI: check for encryption 76 iif (rec0 :version � 1) fhTEXt: process uncompressed 47 igelse if (rec0 :version � 2) fhTEXt: process compressed 48 igelse if (rec0 :version � #4448) fhMOBI: process Hu�man compressed data 78 igelsefatal ("undefined version in MOBI file 0x%x"; rec0 :version);if (o name 6=NULL) fhMOBI: save ancillary data 77 igThis code is used in section 70.76. We used to check for an encrypted MOBI �le by trying decompress the �rst record andconclude it's encrypted if the decompression fails. However, we now know what word inrecord 0 stores that information, and we use it instead.hMOBI: check for encryption 76 i �f if (rec0 :encrypted 6= 0) fatal ("can't process encrypted MOBI format");gThis code is used in section 75.

32 MOBI: MOBIPOCKET DECODER 18.x.2011 15:08 x7777. For a MOBI �le, we may have extra records at the end containing images. We cantell there are extra records if the number of records speci�ed in record zero is smaller thanthe number of records in the global �le header. Usually | but not always | these areimages in Microsoft bmp �le format, which our regular Unix image viewer xv recognizes.Interestingly, it appears that the images are named sequentially inside the MOBI �le, so thatour approach of putting the contents of the image �les into sequentially-numbered bmp �lesis exactly right.hMOBI: save ancillary data 77 i �for (i = rec0 :num recs + 1; i < hdr :numRecords ; i++) fBYTE �buf ;int n;ofp = next o�le (""; ".bmp");buf = read pdb record (i);n = size pdb record (i);fwrite (buf ; sizeof (BYTE); n; ofp);free (buf); buf =NULL ;fclose (ofp);gThis code is used in section 75.78. MOBI: Decoding Hu�man compressed data.Here we uncompress the Hu�man-compressed variant of a MOBI �le.hMOBI: process Hu�man compressed data 78 i �fatal ("oops! there's no Huffman decompression code here yet!");This code is used in section 75.

x79 18.x.2011 15:08 PNRD: PEANUT READER DECODER 3379. PNRd: Peanut Reader Decoder.The Peanut Press format is used by the Palm Reader,http://ereader.com/product/browse/software.As with the MobiReader, the site contains software to convert text into Peanut Press format....insert note about the format of the PDB... structure of rec 0: Word version; 0xFF == encrypted, 0x0A == ztxt, 0x02 == tradpalm compressionFor the structure of the basic decoding routing, we use the same pattern we've used threetimes already.h functions 21 i +�void PNRd decode (void)f hPNRd: local data 80 ihPNRd: get record 0 81 ihPNRd: dump record 0? 83 ihPNRd: process data 86 ig80. There are at least three di�erent versions for PNRd �les, indicated by the �rst Wordin record 0.� values greater than 0xFF mark an encrypted gzip-compressed �le | not supported here;� 0x02 is an un-encrypted, classic-Palm compressed �le | I've never seen one of them inthe wild;� 0x0A is a gzip-compressed �le | this is the most common version in the �eld, generatedby the DropBook program from the EReader site.Each of these versions has a di�erent record 0 layout, none of which are su�cientlydocumented. Because the information I have about the data in record 0 is cribbed fromdisparate, contradictory, badly-documented sources, we'll just have variables for the partswe actually care about that we know are present.hPNRd: local data 80 i �struct fWord version ;Word txtRecords ;g rec0 ;BYTE �p;This code is used in section 79.

34 PNRD: PEANUT READER DECODER 18.x.2011 15:08 x8181. We store the record count based on the version of the �le.hPNRd: get record 0 81 i �p = read pdb record (0);store Word (p; rec0 :version);hPNRd: check for valid version 82 iif (rec0 :version � #0A) p += 10;store Word (p; rec0 :txtRecords);free (p); p =NULL ;This code is used in section 79.82.hPNRd: check for valid version 82 i �if (rec0 :version > #FF) fatal ("encrypted PNRd file");if (rec0 :version 6= #02 ^ rec0 :version 6= #0A) fatal ("unrecognized PNRd format");This code is used in section 81.83. We may also want to show the data we collected about the �le.hPNRd: dump record 0? 83 i �if (
ags & FLAG_RECZERO) fhPNRd: show record 0 84 iEXIT_IF_LAST_FLAG(FLAG_RECZERO);gThis code is used in section 79.84. We have captured very little data from record 0, but let's show what we have:hPNRd: show record 0 84 i �printf ("Record 0:\n");printf (" version 0x%02x, text records %d\n"; rec0 :version ; rec0 :txtRecords);See also section 85.This code is used in section 83.

x85 18.x.2011 15:08 PNRD: PEANUT READER DECODER 3585. At the same time we show record 0, we can show the metadata for the book in thesecond to last record, hdr :numRecords � 3. This data is present in books generated bythe DropBook utility, where the last record consists of the string MeTaInFo. The metadataconsists of the title, the author, the copyright, the publisher, and the ISBN number.#de�ne PNRD_METATAG "MeTaInFo"hPNRd: show record 0 84 i +�if (size pdb record (hdr :numRecords � 1) � strlen (PNRD_METATAG) + 1) fchar �pt = read pdb record (hdr :numRecords � 1);if (strcmp (pt ; PNRD_METATAG) � 0) fchar �p = read pdb record (hdr :numRecords � 3);char �ps = p;int i;printf (" title: <%s>\n"; p);p += strlen (p) + 1;printf (" author: <%s>\n"; p);p += strlen (p) + 1;printf (" copyright: <%s>\n"; p);p += strlen (p) + 1;printf (" publisher: <%s>\n"; p);p += strlen (p) + 1;printf (" ISBN: <%s>\n"; p);free (ps);gfree (pt);g86. If we don't want to dump the contents of record 0, we proceed to dumping thebody text and supplemental records a record at a time. Notice that if we don't wantthe supplemental data, we skip that step.hPNRd: process data 86 i �int rec ;hPNRd: process the text records 87 iif (o name 6=NULL) fhPNRd: process the supplemental records 90 igThis code is used in section 79.

36 PNRD: PEANUT READER DECODER 18.x.2011 15:08 x8787. We walk through the text records, uncompressing and dumping each one. The gzipuncompression is wrapped into a separate routine for convenience. The routine allocatesand returns a bu�er, which the caller must free.hPNRd: process the text records 87 i �for (rec = 1; rec < rec0 :txtRecords ; rec++) fBYTE �buf ; �ubuf ;buf = read pdb record (rec);ubuf = PNRd uncompress (buf ; size pdb record (rec));if (:(
ags & FLAG_SUPONLY)) fprintf (ofp ; "%s"; ubuf);free (buf);free (ubuf);gThis code is used in section 86.

x88 18.x.2011 15:08 PNRD: PEANUT READER DECODER 3788. Here's the routine to in
ate gzip -type PNRd data. This is more-or-less the sameprocess we use to uncompress the text from the zTXT format. Unfortunately, it appearsthat maximum uncompressed bu�er size is not stored in record 0, so we make a guess,and are prepared to increase it iteratively until we have enough room to in
ate the currentrecord.h functions 21 i +�BYTE �PNRd uncompress (BYTE �inbuf ; size t insize)f size t outsize = 8 � 1024;BYTE �outbuf = malloc (outsize + 1);z streamzs ;int status ;zs :zalloc = Z_NULL;zs :zfree = Z_NULL;zs :opaque = Z_NULL;if (in
ateInit2 (&zs ; MAXWBITS) 6= Z_OK) fatal ("decompression init failed");zs :next in = inbuf ;zs :avail in = insize ;zs :next out = outbuf ;zs :avail out = outsize ;do fstatus = in
ate (&zs ; Z_SYNC_FLUSH);if (zs :msg 6=NULL) fatal ("zlib error: %s"; zs :msg);if ((status 6= Z_STREAM_END) ^ (status 6= Z_OK))fatal ("decompression failed: error from inflate");if (zs :avail in > 0) fsize t l = zs :next out � outbuf ;size t delta = outsize ;outsize �= 2;outbuf = realloc (outbuf ; outsize + 1);zs :next out = outbuf + l;zs :avail out += (outsize=2);gg while (status 6= Z_STREAM_END);�(zs :next out) = '\0';in
ateEnd (&zs);return outbuf ;g89. h prototypes 23 i +�BYTE �PNRd uncompress (BYTE �; size t);

38 PNRD: PEANUT READER DECODER 18.x.2011 15:08 x9090. In PNRd �les, we will sometimes have leftover records | the di�erence betweenrec0 :txtRecords in the PNRd header, and hdr :numRecords in the global PDB header | whichwill typically contain images and supplementary data such as bookmarks and annotations.Here is where we �gure out what to do about them.It appears that all images in PNRd �les are PNG format. The tag of PNG is provided asthe �rst four bytes of the record.If we don't recognize the record as an image, we put out the �rst couple of characters ofthe record.[[[We should be able, through experimentation and before-and-after comparisons, to �gureout how the bookmarks and annotations are actually stored.]]]#de�ne PNRd PNG "PNG "hPNRd: process the supplemental records 90 i �for (rec = rec0 :txtRecords ; rec < hdr :numRecords ; rec++) fBYTE �buf = read pdb record (rec);if (strncmp (buf ;PNRd PNG ; strlen (PNRd PNG)) � 0) fhPNRd: save an image 91 igelse fchar tag [SCRATCH_BUF_SIZE]; �p;int i;memset (tag ; 0; SCRATCH_BUF_SIZE);for (p = tag ; i = 0; i < 4; i++) fsnprintf (tag + strlen (tag); SCRATCH_BUF_SIZE� strlen (tag);(buf [i] > ' ' ^ buf [i] < #7F) ? "%c" : "\\x%02x"; buf [i]);gerror ("didn't recognize supplemental record %d: %s"; rec ; tag);gfree (buf);gThis code is used in section 86.

x91 18.x.2011 15:08 PNRD: PEANUT READER DECODER 3991. An image record has the �le name imbedded in it. We assume the �le name is NULterminated. Once we've got the �le name, we can open the �le for output using next o�le ()which ensures the �le ends up in the right directory.hPNRd: save an image 91 i �Word bufsz = size pdb record (rec);char ��lename = buf + strlen (PNRd PNG);FILE �imagef ;BYTE �imagep ;if (strlen (�lename) > bufsz _ strlen (�lename) > FILENAME_MAX)fatal ("badly formed filename in PNG block");imagef = next o�le (�lename ; "");See also section 92.This code is used in section 90.92. If the image data is bodily a PNG �le, the data will start with the PNG �le signature,so we will search for that string and declare it the beginning of the image data. It appearsthat the structure of the record containing the image is to have four bytes of record tag,PNG , the �le name padded to 54 bytes, and two Words containing the width and height.This implies that the included PNG image always starts at the sixth-third byte of the record,but explicitly searching is safer.The decription of the PNG format is available athttp://www.libpng.org/pub/png/,and in particular, the explanation of the �le signature from the speci�cation's rationale isinstructive:This signature both identi�es the �le as a PNG �le and provides for immediate detectionof common �le-transfer problems. The �rst two bytes distinguish PNG �les on systemsthat expect the �rst two bytes to identify the �le type uniquely. The �rst byte is chosenas a non-ASCII value to reduce the probability that a text �le may be misrecognized asa PNG �le; also, it catches bad �le transfers that clear bit 7. Bytes two through fourname the format. The CR-LF sequence catches bad �le transfers that alter newlinesequences. The control-Z character stops �le display under MS-DOS. The �nal linefeed checks for the inverse of the CR-LF translation problem.We postulate a routine memstr () which is analogous to POSIX strstr (), but which doesn'tstop at NUL characters in the string being searched.#de�ne PNG_SIG "\x89PNG\r\n\x1A\n"hPNRd: save an image 91 i +�imagep = (BYTE �) memstr (buf ; PNG_SIG; bufsz);if (imagep �NULL_imagep � (buf + bufsz))fatal ("bad PNG file in record %d"; rec);fwrite (imagep ; sizeof (BYTE); bufsz � (imagep � buf); imagef);fclose (imagef);

40 UTILITY ROUTINES 18.x.2011 15:08 x9393. Utility routines.We have used a number of globally-useful utility routines. Let's �nally get around tode�ning them.94. We start with the big-endian read routines.h functions 21 i +�Word read Word (void)f Word n = 0;BYTE p[2];ck read (p; 2);n = (((BYTE)(p[0])) & #FF)� 8;n j= ((BYTE)(p[1]) & #FF);return n;gDWord read DWord (void)f long n = 0L;BYTE p[4];ck read (p; 4);n = (((BYTE)(p[0])) & #FF)� 24;n j= (((BYTE)(p[1])) & #FF)� 16;n j= (((BYTE)(p[2])) & #FF)� 8;n j= (((BYTE)(p[3])) & #FF);return n;g

x95 18.x.2011 15:08 UTILITY ROUTINES 4195. We'll also de�ne big-endian storage macros and two string-copiers. Notice that secondstring-copier assumes the target is at least one character longer than the copy and places aterminating NUL in the target.h global macros 95 i �#de�ne store DWord (p; n)f n = (((BYTE)(p[0])) & #FF)� 24;n j= (((BYTE)(p[1])) & #FF)� 16;n j= (((BYTE)(p[2])) & #FF)� 8;n j= (((BYTE)(p[3])) & #FF);p += 4;g#de�ne store Word (p; n)f n = (((BYTE)(p[0])) & #FF)� 8;n j= ((BYTE)(p[1]) & #FF);p += 2;g#de�ne store String (p; s; n)f memcpy (s; p; n);p += n;g#de�ne store ZString (p; s; n)f memcpy (s; p; n);�(s+ n) = 0;p += n;gSee also section 96.This code is used in section 3.96. Two additional utility macros, which are nrmally de�ned in POSIX headers, but maynot be de�ned in all environments.h global macros 95 i +�#ifndef MAX#de�ne MAX(a; b) (((a) > (b)) ? (a) : (b))#endif#ifndef MIN#de�ne MIN(a; b) (((a) < (b)) ? (a) : (b))#endif

42 UTILITY ROUTINES 18.x.2011 15:08 x9797. We also have a generic error-checking read routine.h functions 21 i +�void ck read (void �p; size t n)f if (fread (p; sizeof (char); n; ifp) < n) fif (feof (ifp))fatal ("early EOF");elsefatal ("bad read");gg98. And error reporting.format error fatalh functions 21 i +�void error (const char �fmt ; : : :)f va list ap ;�ush (stdout);va start (ap ; fmt);vfprintf (stderr ; fmt ; ap);fprintf (stderr ; "\n");va end (ap);gvoid fatal (const char �fmt ; : : :)f va list ap ;�ush (stdout);va start (ap ; fmt);vfprintf (stderr ; fmt ; ap);fprintf (stderr ; "\n");va end (ap);exit (1);g

x99 18.x.2011 15:08 UTILITY ROUTINES 4399. We also need an allocator.h functions 21 i +�void �ck malloc (size t n)f void �r;r = malloc (n);if (r �NULL)fatal ("bad allocation");return r;g

44 UTILITY ROUTINES 18.x.2011 15:08 x100100. We need a utility to open an output �le name, based on the global base in o name .We will need �les for both the base text, but may also need �les for supplemental data likepictures and bookmarks. This routine chooses the name of the �le based on informationsupplied and opens it; it is the caller's responsibility to close it. If we call this with aname and extension we prepend the directory name; if we only supply an extension, weconcatenate the directory and a sequential �le number.Our strategy for automatically generating an output �le name is pretty straight-forward.If the global o name provided by the -o
ag is a directory, we choose names within thedirectory sequentially from 00000. If o name is a �le name, we use it as the base for ouroutput name and append a sequence number.(This is probably too complicated by half.)h functions 21 i +�FILE �next o�le (const char �name ; const char �ext)f static int �rst call = 1;static int dir = 0;static int sequence = 0;struct stat sb ;char fullname [FILENAME_MAX];FILE �f ;if (�rst call) fh set up next o�le 101 i�rst call = 0;gif (strlen (name)) snprintf (fullname ; FILENAME_MAX; dir ? "%s/%s%s" : "%s%s%s";o name ? o name : "";name ; ext);else snprintf (fullname ; FILENAME_MAX; dir ? "%s/%05d%s" : "%s%05d%s";o name ? o name : ""; sequence++; ext);if ((f = fopen (fullname ; "wb")) �NULL) fperror (fullname);exit (1);greturn f ;g

x101 18.x.2011 15:08 UTILITY ROUTINES 45101. h set up next o�le 101 i �if (o name ^ o name [strlen (o name)� 1] � '/') fdir ++;o name [strlen (o name)� 1] = 0;gif (stat (o name ;&sb) < 0) fif (dir ^mkdir (o name ; �777) < 0)fatal ("can't create output directory %s"; o name);gelse fif (sb :st mode & S_IFDIR)dir ++;elseerror ("possible output file conflict %s"; o name);gThis code is used in section 100.102. We invented a routine memstr () while �nding PNG images in PNRd �les. Here it is:h functions 21 i +�void �memstr (char �big ; char �little ; size t len)f int l = strlen (little);char �e = big + len � 1� l;char �p = big ;while (p < e) fp = memchr (p; �little ; len);if (p �NULL) return NULL ;if (memcmp (p; little ; l) � 0) return p;p++;greturn NULL ;g

46 UTILITY ROUTINES 18.x.2011 15:08 x103103.h prototypes 23 i +�Word read Word (void);DWord read DWord (void);void ck read (void �; size t);void fatal (const char �; : : :);void error (const char �; : : :);void �ck malloc (size t);FILE �next o�le (const char �; const char �);void �memstr (char �; char �; size t);104.

x105 18.x.2011 15:08 INDEX 47105. Index.A number of sections, namely, 1, 2, 6, 25, 32, 43, 67, 71, 90, still contain working notes,which can be recognized because they are set in slanted sans serif type.Just to prevent confusion, this index lists the section numbers of the references, not thepage numbers.annotationRecord : 55, 56, 58, 63, 64, 67.ap : 98.appInfoId : 14, 15, 17, 25.argc : 3, 6.argv : 3, 6, 10.ATTR_BACKUP: 15.ATTR_DIRTY: 15.ATTR_LAUNCHABLE: 15.ATTR_OKNEWER: 15.ATTR_OPEN: 15.ATTR_READONLY: 15.ATTR_RESET: 15.ATTR_RESOURCE: 15.attributes : 14, 15, 17, 25, 26, 27, 28, 32.avail in : 62, 88.avail out : 62, 88.b: 16.big : 102.book formats: 38.bookmarkRecord : 55, 56, 58, 63, 64, 65.buf : 21, 33, 47, 48, 49, 77, 87, 90, 91, 92.bufsz : 91, 92.BYTE: 13, 16, 26, 33, 35, 36, 42, 47, 48,50, 53, 55, 60, 64, 66, 67, 71, 77, 80,87, 88, 89, 90, 91, 92, 94, 95.ck malloc : 28, 61, 62, 99, 103.ck read : 17, 28, 33, 35, 94, 97, 103.crc32 : 55, 56, 58.creationDate : 14, 17, 25.creator : 14, 15, 17, 25, 37, 40.current book format : 38, 40, 49.d: 50.dae : 8.dap : 8.DATE_OFFSET: 21.decode : 37, 40.DEL: 50.delta : 88.

dir : 100, 101.disp : 37, 40.dispatch: 37.DISPATCH_SIZE: 37, 40.distance : 50.doc size : 42, 43, 45, 71, 72, 74.DWord: 13, 14, 21, 23, 26, 34, 42, 55,60, 64, 66, 71, 94, 103.e: 48, 102.encrypted : 71, 72, 74, 76.error : 98, 101, 103.exit : 3, 6, 10, 24, 98, 100.EXIT_IF_LAST_FLAG: 24, 31, 44, 57,73, 83.ext : 100.f : 100.fatal : 6, 18, 40, 43, 46, 49, 56, 61, 62,66, 72, 75, 76, 78, 82, 88, 91, 92, 97,98, 99, 101, 103.fclose : 65, 67, 77, 92.feof : 97.Feynman, Richard Phillips: 1.�ush : 62, 98.�lename : 91.FILENAME_MAX: 91, 100.�rst call : 100.FLAG_HEADERS: 6, 7, 24.FLAG_RECHDRS: 6, 7, 31.FLAG_RECZERO: 6, 7, 44, 57, 73, 83.FLAG_SUPONLY: 6, 7, 47, 48, 62, 87.FLAG_SUPTEXT: 6, 7, 63, 65, 66, 67.
ags : 6, 7, 24, 31, 44, 47, 48, 55, 56, 57,58, 62, 63, 65, 66, 67, 73, 83, 87.fmt : 98.fmt ERROR: 38.fmt MOBI : 38, 49.fmt PNRd : 38.fmt TEXt : 38.

48 INDEX 18.x.2011 15:08 x105fmt zTXT : 38.fopen : 10, 100.fprintf : 47, 48, 51, 62, 66, 67, 87, 98.fread : 97.free : 43, 47, 48, 56, 65, 67, 68, 72, 77,81, 85, 87, 90.fseek : 33, 35.fullname : 100.fwrite : 77, 92.getopt : 6.hdr : 14, 15, 17, 25, 26, 28, 32, 33, 34,35, 40, 77, 85, 90.i: 5, 42, 55, 71, 85, 90.ide : 8.idp : 8.ifp : 10, 11, 33, 35, 97.imagef : 91, 92.imagep : 91, 92.inbuf : 50, 60, 61, 62, 68, 88.index record : 64, 65, 66, 67.inend : 50, 51, 52.in�lename : 10, 11, 18.in
ate : 62, 88.in
ateEnd : 62, 88.in
ateInit2 : 62, 88.insize : 50, 60, 61, 62, 88.l: 50, 88, 102.lastBackupDate : 14, 17, 25.len : 102.LEN_HDR: 14, 16, 17.LEN_TTL: 14, 17.lend : 8.length : 50.leni : 8.little : 102.localtime : 21.main : 3.malloc : 33, 48, 88, 99.MAX: 96.MAXWBITS: 60, 62, 88.memchr : 102.memcmp : 40, 102.memcpy : 95.

memset : 21, 33, 50, 90.memstr : 92, 102, 103.MIN: 66, 96.mkdir : 101.MOBI decode : 37, 39, 43, 70.MOBI_REC0_SIZE: 71, 72.modi�cationDate : 14, 17, 25.modi�cationNumber : 14, 17, 25.msg : 62, 88.n: 42, 48, 50, 71, 77, 94, 97, 99.name : 100.next in : 62, 88.next o�le : 6, 12, 65, 67, 77, 91, 100, 103.next out : 62, 88.NUL: 15, 33, 47, 50, 52, 95.num recs : 42, 43, 45, 47, 48, 71, 72, 74, 77.numAnnotations : 55, 56, 58, 63, 67.numBookmarks : 55, 56, 58, 63, 65.numRecords : 14, 17, 25, 26, 28, 32, 33,34, 35, 55, 56, 58, 61, 77, 85, 90.o: 50.o name : 6, 7, 12, 63, 75, 86, 100, 101.obuf : 35.o�set : 26, 28, 32, 33, 34, 35, 64, 66.ofp : 7, 12, 47, 48, 62, 65, 67, 77, 87.opaque : 62, 88.outbuf : 50, 60, 62, 66, 68, 88.outend : 50.outsize : 50, 88.p: 16, 42, 50, 55, 71, 80, 85, 90, 94, 97, 102.PDBrec header: 26, 28, 30.PDBsize : 14, 18, 25, 34, 61.perror : 10, 100.PNG_SIG: 92.PNRd decode : 37, 39, 79.PNRD_METATAG: 85.PNRd PNG : 90, 91.PNRd uncompress : 87, 88, 89.posix date : 21.pp : 50, 66.ppe : 66.printf : 8, 9, 24, 25, 32, 45, 48, 58,74, 84, 85.

x105 18.x.2011 15:08 INDEX 49ps : 85.pt : 85.r: 99.read DWord : 28, 94, 103.read pdb noalloc : 35, 36, 61.read pdb record : 33, 36, 43, 47, 48, 56, 65,67, 72, 77, 81, 85, 87, 90.read Word : 94, 103.realloc : 88.rec : 86, 87, 90, 91, 92.REC_BUSY: 27.REC_CATEGORY: 27.REC_DELETE: 27.REC_DIRTY: 27.rec hdrs : 28, 30, 32, 33, 34, 35.REC_SECRET: 27.rec size : 42, 43, 45, 48, 49, 71, 72, 74.recnum : 33, 34, 35.recordO�set : 14, 17, 25.recordSize : 55, 56, 58.recpos : 33, 35.recsize : 33, 34, 35.rec0 : 42, 43, 45, 46, 47, 48, 49, 55, 56, 58,61, 62, 63, 64, 65, 66, 67, 71, 72, 74,75, 76, 77, 80, 81, 82, 84, 87, 90.reserved : 42, 43, 55, 71, 72.reserved2 : 42, 71.revisionDate : 8.revisionId : 8.r0 : 42, 43, 55, 56, 71, 72.S_IFDIR: 101.sb : 18, 19, 100, 101.SCRATCH_BUF_SIZE: 21, 90.SEEK_SET: 33, 35.sequence : 100.show time : 21, 23, 25.size : 55, 56, 58, 62, 66.size pdb record : 32, 33, 34, 35, 36, 43, 48,56, 61, 72, 77, 85, 87, 91.snprintf : 90, 100.sortInfoId : 14, 15, 17, 25.st mode : 101.st size : 18.

stat : 18, 19, 100, 101.status : 88.stderr : 51, 98.stdout : 6, 12, 98.store DWord : 17, 43, 56, 66, 72, 95.store String : 17, 95.store Word : 17, 43, 56, 72, 81, 95.store ZString : 17, 66, 95.strcat : 21.strchr : 8.strcmp : 85.strftime : 21.strlen : 85, 90, 91, 100, 101, 102.strncmp : 90.strstr : 92.sup : 64, 65, 66, 67.t palm : 21.tag : 64, 66, 90.temp : 66.text : 67.TEXt decode : 37, 39, 41.TEXt decompress : 49, 50, 53.TEXT_REC0_SIZE: 42, 43.title : 14, 17, 25, 64, 66, 67.tt : 21.txtRecords : 80, 81, 84, 87, 90.type : 14, 15, 17, 25, 37, 40.ubuf : 48, 49, 87.uniqueID : 26, 28, 32.uniqueIdSeed : 14, 17, 25.usage : 5, 6.va end : 98.va start : 98.version : 14, 17, 25, 42, 43, 45, 46, 55, 56,58, 71, 72, 74, 75, 80, 81, 82, 84.vfprintf : 98.Word: 13, 14, 33, 34, 35, 36, 42, 50, 55,71, 80, 91, 92, 94, 103.Z_NULL: 62, 88.Z_OK: 62, 88.z stream : 60, 88.Z_STREAM_END: 62, 88.Z_SYNC_FLUSH: 62, 88.

50 INDEX 18.x.2011 15:08 x105zalloc : 62, 88.zfree : 62, 88.zs : 60, 62, 88.zTXT decode : 37, 39, 54.ZTXT_MARK_LEN: 64, 66.ZTXT_NONUNIFORM: 55, 58.ZTXT_RANDOMACCESS: 55, 58.ZTXT_REC0_SIZE: 55, 56.ZTXT_SNIP: 64, 66.

18.x.2011 15:08 NAMES OF THE SECTIONS 51hMOBI: check for encryption 76 i Used in section 75.hMOBI: dump record 0? 73 i Used in section 70.hMOBI: get record 0 72 i Used in section 70.hMOBI: local data 71 i Used in section 70.hMOBI: process Hu�man compressed data 78 i Used in section 75.hMOBI: process data 75 i Used in section 70.hMOBI: save ancillary data 77 i Used in section 75.hMOBI: show record 0 74 i Used in section 73.hPNRd: check for valid version 82 i Used in section 81.hPNRd: dump record 0? 83 i Used in section 79.hPNRd: get record 0 81 i Used in section 79.hPNRd: local data 80 i Used in section 79.hPNRd: process data 86 i Used in section 79.hPNRd: process the supplemental records 90 i Used in section 86.hPNRd: process the text records 87 i Used in section 86.hPNRd: save an image 91, 92 i Used in section 90.hPNRd: show record 0 84, 85 i Used in section 83.hTEXt: decode special case for trailing NUL 52 i Used in section 50.hTEXt: decompress 49 i Used in section 48.hTEXt: dump record 0? 44 i Used in section 41.hTEXt: get record 0 43 i Used in section 41.hTEXt: local data 42 i Used in section 41.hTEXt: process compressed 48 i Used in sections 46 and 75.hTEXt: process data 46 i Used in section 41.hTEXt: process uncompressed 47 i Used in sections 46 and 75.hTEXt: show record 0 45 i Used in section 44.h data types 13 i Used in section 3.h dump �le header 25 i Used in section 24.h dump record headers 32 i Used in section 31.h functions 21, 33, 34, 35, 41, 50, 54, 70, 79, 88, 94, 97, 98, 99, 100, 102 i Used in section 3.h global data 7, 11, 14, 26, 30, 37, 38 i Used in section 3.h global macros 95, 96 i Used in section 3.h include �les 4, 20, 22, 29, 59 i Used in section 3.h leftovers 51 i Used in section 50.h local data in main 5, 16, 19 i Used in section 3.hmain program 6, 10, 12, 17, 18, 24, 28, 31, 40 i Used in section 3.h print version and copyright 8, 9 i Used in section 6.h prototypes 23, 36, 39, 53, 89, 103 i Used in section 3.h set up next o�le 101 i Used in section 100.h zTXT: dump record 0? 57 i Used in section 54.h zTXT: get record 0 56 i Used in section 54.h zTXT: local data 55, 60, 64 i Used in section 54.h zTXT: process data 61, 62, 63, 68 i Used in section 54.

52 NAMES OF THE SECTIONS 18.x.2011 15:08h zTXT: show a tag 66 i Used in sections 65 and 67.h zTXT: show annotations 67 i Used in section 63.h zTXT: show bookmarks 65 i Used in section 63.h zTXT: show record 0 58 i Used in section 57.

