
Synthesizing EPUB Files

September 2011

Abstract

The EPUB electronic book format is the current main standard for
publication of electronic books and an important format for the inter-
change of electronic publications. This note explores the format by show-
ing how to synthesize simple publications in the EPUB format.

This is revision 2.43, of 2017/05/02. It was printed 2017/5/2.

Introduction

With the profusion of devices and programs for reading electronic books, there
has also been a profusion of e-book formats. Seemingly each device has its own
native format. Initially, in the very first years of the current century, a standard
called the Open eBook Publication Structure emerged for the preparation of
electronic content. Unfortunately, each device or software provider used the
OEB format as source material for their own converter to a native format. Two
prime examples were the Mobipocket format developed by the French company
of the same name for use by readers on various Personal Digital Assistants,
and Microsoft’s LIT format used by its Pocket PC product. This profusion of
native formats — even ones generated from common source material — meant
either that consumers of electronic media had to convert their own e-books or
producers of electronic media had to make multiple formats available.

As the International Digital Publications Forum replaced OEB with EPUB,
many devices have corrected that early native format error. They are able to
consume EPUB as a native format, even when (like with the Sony product
line) they also have a proprietary format. Additionally, desktop software, (such
as Adobe’s Digital Editions) and many portable device applications (such as
FBReader for Android, Lexcycle Stanza for iPhone, and Freya for Windows
Phone) consume the EPUB format.

The exception that proves the universality rule is the Amazon Kindle. Ama-
zon bought Mobipocket in 2005, and used the Mobi format as the basis for the
Kindle. However, the Mobipocket Creator software for user-generated Kindle
content is capable of accepting both OEB and EPUB books as input.

So what’s in an EPUB file? At first glance, it is a ZIP archive containing
HTML files with some connective goo. Fortunately, there are two ways to

1

2 September 2011

understand how something is made: you can take one of them apart1 or you
can build one of them.

In a previous piece of software one of us examined a number of common
e-book formats for the Palm handheld by deconstructing them. In this case,
it makes more sense to generate EPUB files to examine the fine details of how
they are composed. We’ll do this by converting text files (as we explain below).
Even if the full program is not useful as-is, the parts that create EPUB files are
likely helpful as stand-alone modules.

How will we know when we’ve succeeded? Because the EPUB files we gen-
erate will be readable on our devices and by the desktop applications. We also
can rely on the epubcheck program, which provides a very complete syntax and
consistency check and is available as a Google Code project, to validate our
EPUB structure.

Overview of EPUB

Our description of EPUB files above as “a ZIP archive containing HTML files”
is actually a gross oversimplification as we’ll see in the next pages.

There are actually three interlocked standards that comprised EPUB:

• OCF, the Open Container Format, which describes the layout of files
within the EPUB. The EPUB can either be presented wrapped as a ZIP
archive, which is the most common form to load into devices or software, or
as files on a file system under a central root directory. OCF also describes
the restrictions on the names of the files in the container.

• OPF, the Open Packaging Format, which describes the control files in the
EPUB. These files provide the overall metadata for the book, and describe
its internal structure.

• OPS, the Open Publication Structure, which describes the structure of
the content of the book.

Warning we need to throw in someplace... Many of these devices and appli-
cations also use digital rights management hooks in the EPUB format. We will
mention these, but a full exploration of the DRM aspects of EPUB is out of
scope for this article. Ditto some notes about font mangling. Ditto some notes

about EPUB 2.0.1 vs EPUB 3.0.

Overview of Literate Programming

Language warning: This program is written using the literate programming
tool noweb, which allows us to intersperse narrative text with Perl program
fragments. (We would have used our normal literate programming tool CWEB,
but the problem at hand is better suited to the notational density of Perl.) The

1“Dad: the Air Force has much cooler things to take apart than bicycles.” — Airman

James Schwarzin-Copeland, explaining his career choice to a dubious parent.

September 2011 epub.nw 3

program chunks are all named, and flow up to a chunk with the name “*”. The
descriptive names of the chunks are numbered and cross-referenced for ease.

Plan of the Program

We’ll generate our EPUBs from flat text files. Why from simple text? Because
it saves us having to worry about conversion from and only about conversion to.
Also, because in the past, we’ve found simple text converters helpful, as with
an earlier filter to convert lists of standard RFC822 mail messages into Palm
e-book files so we could read long mail threads on our handhelds.

An alternative would be to generate EPUBs from a list of web pages, using
Perl’s lwp package to collect the HTML from the URLs. However, we’d still have
to parse the HTML to extract the interesting text and elide the advertisements.
Plus, the web site instapaper.com already does this quite well.

To do: We could have plug-in procedures for text conversion — means we
need to do detection, followed by dispatch. Oh, we’ve got an RFC 822, so run
this routine; no, I don’t see a mail header, run this instead. That allows addition
of other decoders easily.

So, how would we explain what we’re doing in the form of a manual page
for the program? We’d start with something like this:

3 〈POD 3〉≡

=head1 NAME

text2epub -- convert RFC822 files into EPUB documents

=head1 SYNOPSIS

text2epub <flags> <files>

=head1 DESCRIPTION

I<text2epub> processes text files

into a standard EPUB e-book,

with each text file presented as a separate "chapter"

in the book.

4 epub.nw September 2011

Assembling

To do: Need to discuss the packaging requirements, especially the ZIP wrapper.
We will construct our program in the inverse of the way we would deconstruct

an EPUB file. We looked at the contents of EPUB files by unzipping them, and
poring over the individual components. Thus, we begin by writing the code to
prepare the ZIP file.

We assume that we have stored the component files for the EPUB in a
working directory $wd and that we have lists of them in three arrays: one
containing the control information @control, one containing the content files
@content, and one containing (optional) image files @images.

The EPUB file must start with an uncompressed mimetype file, hence the -0
flag. There must be no extended header data in the ZIP file for the mimetype
file, hence the -X flag. The contents of the mimetype file are mandated.

After we’ve assembled the EPUB, we add the mimetype file to @control so
that it’s included in the list of files for later clean up.

We finish by noticing that we’ve assembled the EPUB file in the working
directory. This means we need to change back to the directory from which we
launched this script, and move the EPUB file to its intended full path name.

4 〈utilities to assemble the EPUB 4〉≡
sub assemble_final_package() {

my $e = basename($epub);

(my $launch_dir = qx(pwd)) =~ s/\s//g;

change into the working directory

unless (chdir $wd) {

die "can’t change into $wd?!?!";

}

do we want verbose output from the zip command?

my $q = ($opt_v) ? "" : "-q";

〈create mimetype file 5a〉
system("zip -0 -X $q $e mimetype");

〈capture directory names 5b〉
system("zip $q $e " . join(" ", @dirlist));

system("zip $q $e " . join(" ", reverse @control));

system("zip $q $e " . join(" ", @content, @images));

unless (chdir $launch_dir) {

die "can’t change back to $launch_dir?!?!";

}

qx(mv $wd/$e $epub);

add mimetype to the control file list

so it can be removed later

push @control, "mimetype";

}

Defines:

assemble_final_package, used in chunk 35c.

September 2011 epub.nw 5

Uses basename 26b, @content 6, @control 6, @dirlist 6, $epub 34b, @images 6, $opt_v 37a,

and $wd 6.

As we noted, the mimetype file is dictated:

5a 〈create mimetype file 5a〉≡
unless (open M, "> mimetype") {

die "can’t create mimetype file";

}

print M "application/epub+zip";

close M;

Some of the files in our EPUB may be in subdirectories. To make the EPUB
consistent, we need to zip the directories as well as their contents. Let’s extract
the names of the directories from the @control, @content and @images lists.
The resulting list of directories needs to be a global to facilitate cleanup later.

5b 〈capture directory names 5b〉≡
@dirlist = ();

my %dirlist = ();

foreach (@control, @content, @images) {

my $d = dirname($_);

next unless (length($d));

my @d = split /\//, $d;

my $dd;

foreach (@d) {

$dd .= "$_/";

$dirlist{$dd}++;

}

}

@dirlist = sort keys %dirlist;

Uses @content 6, @control 6, $dirlist 6, @dirlist 6, dirname 26a, and @images 6.

6 epub.nw September 2011

This all assumed some globals, which we should declare. The only confusing
one may be $wd, the directory in which we have gathered the components of the
EPUB, and $suffix, the suffix for the working directory name.

6 〈declare global variables 6〉≡
my @control;

my @content;

my @images;

my @dirlist;

my $wd;

my $suffix = ".work";

Defines:

$content, used in chunks 12, 25a, and 35b.

@content, used in chunks 6, 4, 6, 5b, 6, 9, 10a, 13, 15b, 6, 25a, 35a, and 36b.

$control, never used.

@control, used in chunks 6, 4, 6, 5–7, 11a, 13, 14a, 23b, and 36b.

$dirlist, used in chunk 5b.

@dirlist, used in chunks 4, 5b, and 36b.

$images, never used.

@images, used in chunks 6, 4, 6, 5b, 6, 9, 6, and 21a.

$suffix, used in chunks 6, 32, and 34a.

$wd, used in chunks 6, 4, 6, 7, 9, 11a, 13–15, 21a, 23b, 25a, 32, 34a, and 36b.

September 2011 epub.nw 7

Components

Assembling the pieces is one thing, but we have a lot to create. We have a
number of required files, which give structure to the book, and provide pointers
to the other pieces. Each of these routines will be responsible for adding the
files they create to the @control, @content, or @images lists as appropriate.

We begin with an Open Packaging Format (OPF) file, which contains the
wrapper for the entire book. For convenience, we’ll derive the OPF file name
from the target EPUB’s name. We need to return the file name created because
we’ll use it later.

The OPF file contains the manifest, reading order (also called the spine),
and indexing information.

The manifest contains a unique identifier so that our reader can tell this
book from other books loaded into it. The standard does not specify what this
unique identifier is, but for a book, it would likely be the ISBN. (The reader
is not allowed to fail if it encounters two differnt books with the same unique
identifier, which rather contradicts the use of “unique” in that definition.) The
identifier is named in the package tag, and defined in the identifier tag in the
metadata. We’ll use the system time as our identifier.

7 〈utilities to assemble the EPUB 4〉+≡
sub create_opf() {

my $opf = basename(filename($epub)) . ".opf";

unless (open F, "> $wd/$opf") {

die "can’t create OPF file $opf";

}

header information: XML version & IDPF namespace

print F ’<?xml version="1.0" encoding="UTF-8" ’,

’standalone="no"?>’, "\n";

print F ’<package version="2.0" ’,

’xmlns="http://www.idpf.org/2007/opf" ’,

’unique-identifier="BookId">’, "\n";

〈OPF metadata 8a〉
〈OPF manifest creation 9〉
〈OPF spine creation 10a〉
〈OPF guide creation 10b〉
print F "</package>\n";

close F;

push @control, $opf;

return $opf;

}

Defines:

create_opf, used in chunk 35b.

Uses basename 26b, @control 6, $epub 34b, filename 26c, $opf 36a, and $wd 6.

8 epub.nw September 2011

The OPF file contains metadata about the book, such as the author and
title. The minimal XML namespaces for this particular section are Dublin Core
and OPF.

This section contains the definition of the unique identifier we described and
declared above. We are allowed to optionally include the “scheme” attribute in
the identifier tag to name the system that generated the unique identifier, for
example, scheme="ISBN".

It’s worth noting that the manifest can contain a <rights> tag, which con-
tains information about rights for the content. Rights management is out of
scope for this article. To do: discuss how this relates to DRM-ness.

To do: Include the “file-as” attribute for the author, by inverting first and
last name.

8a 〈OPF metadata 8a〉≡
my $timestamp = strftime("%Y-%m-%d", localtime(time()));

print F " <metadata ",

’xmlns:dc="http://purl.org/dc/elements/1.1/" ’,

’xmlns:opf="http://www.idpf.org/2007/opf">’, "\n";

print F " <dc:title>$book_title</dc:title>\n";

print F " <dc:creator opf:role=\"aut\">",

"$book_author</dc:creator>\n";

print F " <dc:language>en</dc:language>\n";

print F " <dc:date>$timestamp</dc:date>\n";

print F " <dc:identifier id=\"BookId\">",

$bookid, "</dc:identifier>\n";

print F " </metadata>\n";

Uses $book_author 34b, $bookid 36a, and $book_title 34b.

That last part required the POSIX module so we could use the strftime

function.

8b 〈include packages 8b〉≡
use POSIX;

September 2011 epub.nw 9

The manifest provides a list of all the content files in the book — the text,
the CSS, the images. We would also list any font files or included XML schemas.
Lastly, we list the index file here. (More about the index file when we discuss
the <spine> section.) Each entry in the manifest has to contain an id tag, the
file name, and the file type.

To do: need to add cover picture to the manifest, too

9 〈OPF manifest creation 9〉≡
print F " <manifest>\n";

my $n = 1;

foreach (@content) {

print F ’ <item id="cc’, $n++, ’" href="’, $_ ,

’" media-type="application/xhtml+xml" />’, "\n";

}

print F ’ <item id="cover" href="’, basename($opt_C),

’" media-type="image/’, image_type($opt_C), ’" />’,

"\n"

if ($opt_C);

$n = 1;

foreach (@images) {

print F ’ <item id="im’, $n++, ’" href="’, basename($_),

’" media-type="image/’, image_type("$wd/$_"), ’" />’, "\n";

}

print F ’ <item id="css" href="’, $css,

’" media-type="text/css" />’, "\n";

print F ’ <item id="ncx" href="’, $ncx,

’" media-type="application/x-dtbncx+xml" />’, "\n";

print F " </manifest>\n";

Uses basename 26b, @content 6, $css 36a, @images 6, image_type 31a, $ncx 36a, $opt_C 37a,

and $wd 6.

10 epub.nw September 2011

We also need a spine, which tells us the reading order of the components.
The spine contains only the list of content files. The items in the spine are
designated by referring to the item ids from the manifest. Items in the spine
can be designated auxiliary — that is, not read in linear order, for example in a
pop up window — by including the linear="no" attribute. The default if the
“linear” attribute is missing (or is the attribute linear="yes" is present) is for
the file to be what is called a primary file.

The spine keyword has the required attribute of toc, which refers back to
the item id in the manifest for the NCX index file. We’ll fully flesh out the
index file in a moment.

10a 〈OPF spine creation 10a〉≡
print F " <spine toc=\"ncx\">\n";

$n = 1;

foreach (@content) {

print F ’ <itemref idref="cc’, $n++, ’" />’, "\n";

}

print F " </spine>\n";

Uses @content 6.

The OPF file also has one more section, the guide, which is optional. This
section names the common sections of the book — table of contents, cover —
so they can be found easily. We include this section because it gives the EPUB
reader a way to easily find the first text page and the table of contents.

→Can we use a single print statement with EOF here?

10b 〈OPF guide creation 10b〉≡
print F " <guide>\n";

print F ’ <reference href="’, $cover, ’" ’,

’title="Cover" type="cover" />’, "\n"

if ($opt_C);

print F ’ <reference href="’, $toc, ’" ’,

’title="Table of Contents" type="toc" />’, "\n"

unless ($opt_t);

print F ’ <reference href="’, $first_text, ’" ’,

’title="Text" type="text" />’, "\n";

print F " </guide>\n";

Uses $cover 36a, $first_text 36a, $opt_C 37a, $opt_t 37a, and $toc 36a.

September 2011 epub.nw 11

The NCX file is the required index file. NCX was originally defined in
ANSI/NISO Z39.86-2005, the Specification for Digital Talking Books, or DTBs.
NCX stands for “Navigation Control file for XML.”2

There are two parts that we are concerned with: the metadata and the
navigation map. We’ll construct them in the next few sections, and return the
name of the NCX file, after adding it to the control file list.

11a 〈utilities to assemble the EPUB 4〉+≡
sub create_ncx() {

my $ncx = basename(filename($epub)) . ".ncx";

open F, "> $wd/$ncx";

print F <<"EOF";

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ncx PUBLIC "-//NISO//DTD ncx 2005-1//EN"

"http://www.daisy.org/z3986/2005/ncx-2005-1.dtd">

<ncx version="2005-1" xml:lang="en-US"

xmlns="http://www.daisy.org/z3986/2005/ncx/">

EOF

〈NCX header and metadata 11b〉
〈NCX navigation map 12〉
print F "</ncx>\n";

close F;

push @control, $ncx;

return $ncx;

}

Defines:

create_ncx, used in chunk 35b.

Uses basename 26b, @control 6, $epub 34b, filename 26c, $ncx 36a, and $wd 6.

The NCX metadata duplicates information that’s already in the OPF file,
but much of it is required by the NCX chapter of the talking book specification.
(Interestingly, even though the metadata is required by the NCX chapter of the
DTB specification, it doesn’t appear to actually be confirmed by the epubcheck
program.) We include this data anyway to be compliant with the broader spec.

11b 〈NCX header and metadata 11b〉≡
print F ’<head>

<meta name="dtb:uid" content="’, $bookid, ’" />

<meta name="dtb:depth" content="1" />

<meta name="dtb:totalPageCount" content="0" />

<meta name="dtb:maxPageNumber" content="0" />

</head>’, "\n";

print F "<docTitle><text>$book_title</text></docTitle>\n";

print F "<docAuthor><text>$book_author</text></docAuthor>\n";

Uses $book_author 34b, $bookid 36a, and $book_title 34b.

2The OPF specification also calls it “Navigation Center eXtended,” which appears nowhere

else that we can detect.

12 epub.nw September 2011

The navigation map is ... To do: more explanation

12 〈NCX navigation map 12〉≡
print F "<navMap>\n";

foreach (0..$#content) {

my $n = $_+1;

print F "<navPoint playOrder=\"$n\" id=\"play_$n\">\n",

" <navLabel><text>", $titles[$_],

"</text></navLabel>\n",

’ <content src="’, $content[$_], ’" />’, "\n",

"</navPoint>\n";

}

print F "</navMap>\n";

Uses $content 6 and $titles 14b.

September 2011 epub.nw 13

We may have a cover image specified on the command line. If so, we want
to add it at the head of the contents array. This means we need to call this
after we create the table of contents, which is also inserted at the head of the
contents array. We return the name of the file containing the cover reference,
which we create here, not the cover image itself.

13 〈utilities to assemble the EPUB 4〉+≡
sub create_cover() {

my $cover = basename(filename($epub)) . "-cover.html";

my $image = basename($opt_C);

open F, "> $wd/$cover";

print F <<"EOF";

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Cover</title>

</head>

<body>

<div class="body">

</div>

</body>

</html>

EOF

close F;

if (-r $opt_C) {

qx(cp $opt_C $wd);

} else {

warn "can’t open cover image $opt_C\n"

}

unshift @content, $cover;

unshift @titles, "Cover";

push @control, $image;

return $cover;

}

Defines:

create_cover, used in chunk 35b.

Uses basename 26b, @content 6, @control 6, $cover 36a, $epub 34b, filename 26c,

$opt_C 37a, @titles 14b, and $wd 6.

14 epub.nw September 2011

In addition to the mimetype file, the other mandatory file in the package is
container.xml, which provides a pointer to the OPF file. It must appear in the
META-INF subdirectory of the EPUB. This routine creates the container file,
using the global name of the OPF file.

14a 〈utilities to assemble the EPUB 4〉+≡
sub create_container() {

mkdir_p "$wd/META-INF";

unless (open F, "> $wd/META-INF/container.xml") {

die "can’t create container.xml file";

}

print F <<"EOF";

<?xml version="1.0"?>

<container

xmlns="urn:oasis:names:tc:opendocument:xmlns:container"

version="1.0">

<rootfiles>

<rootfile full-path="$opf"

media-type="application/oebps-package+xml" />

</rootfiles>

</container>

EOF

close F;

push @control, "META-INF/container.xml";

}

Defines:

create_container, used in chunk 35b.

Uses @control 6, mkdir_p 27a, $opf 36a, and $wd 6.

We’ve posited another global array for generating the table of contents:

14b 〈declare global variables 6〉+≡
my @titles;

Defines:

$titles, used in chunks 12 and 25a.

@titles, used in chunks 13, 25a, and 35a.

September 2011 epub.nw 15

Reading and processing the input files

We’ve deliberately deferred discussing how the input files are processed. If you
only cared about what is in an EPUB, you can stop reading now. However, we
need to write some code to get the read the data for our book, which is what
we’ll do now.

The following routines convert the text input to an HTML file, and puts
it in the global working directory where we’re gathering our components. We
return the name of the output file and a “title”. The title is either the name of
the input file, or (in the case of an e-mail file) the first line.

We’ll assemble this routine in chunks over the next few sections.

15a 〈utilities to convert the text files 15a〉≡
sub convert_file($) {

my $in = shift;

unless (open IN, "< $in") {

warn "unable to open input file $in\n";

return ("", "");

}

〈body of convert file 15b〉
}

Defines:

convert_file, used in chunk 35a.

We define and open the output file right away. This allows us to short-
circuit processing if we have no place to put the results. We check to make
sure the output file name isn’t already used. The standard says names can’t be
duplicated after case folding, so our check includes that, too. We have a fallback
scheme for alternate output file names. (We might also have, for example, the
same input file name from different source directories, or want to process the
same input file twice. But this is us just being carefully pedantic.)

15b 〈body of convert file 15b〉≡
my $out = basename($in);

my @x;

while (grep(/$out.html/i, @content)) {

$out .= "-";

}

$out = "$out.html";

unless (open OUT, "> $wd/$out") {

warn "unable to create output file $out\n";

return ("", "");

}

Uses basename 26b, @content 6, and $wd 6.

16 epub.nw September 2011

One of the compelling uses for this script will be in converting e-mail into
EPUBs, so our basic conversion routine does a little checking to see if our input
file is mail, and does some supplementary processing on it. To make this check
possible, we begin by grabbing the first blank-line-delimited paragraph.

If there is no header block — if we’ve got a pure text file — we add a
“textfile” paragraph at the top as a delimiter, and make the first line of the file
the “subject.”

16a 〈body of convert file 15b〉+≡
$/ = "\n\n";

my $h = <IN>;

undef $/;

my ($s, $b);

$b = <IN>;

close IN;

〈insurance for empty text body 16b〉
〈get charset header 19a〉
if ($h =~ m/From:/s && $h =~ m/Subject:/) {

($h, $s) = convert_header($h);

} else {

$h =~ m/^(.*?)\n/s;

$s = $1;

$b = $h . $b;

$h = "<p class=\"textfile\"></p>\n";

}

〈errant control characters 17a〉
$b = convert_body($b);

my $p = create_prolog($s);

print OUT $p, "<body>\n", $h, $b, "</body></html>\n";

close OUT;

return ($out, $s);

Uses convert_body 19c, convert_header 18, and create_prolog 23a.

Very rarely, we’ll have an empty file body. In that case, to prevent down-
stream complaints, we make sure we define an empty body.

16b 〈insurance for empty text body 16b〉≡
$b = "" unless defined $b;

September 2011 epub.nw 17

We find, sometimes, that transmission errors or other problems drop control
characters into the body text. These cause trouble with our EPUB readers. To
prevent that we do a little prophylactic fixup by stripping out the bad control
characters. As a special case, rather than stripping form-feeds, we’ll replace
them with newlines.

17a 〈errant control characters 17a〉≡
if ($b =~ m/[$bad_control]/) {

warn "errant control characters removed from $in:\n";

while ($b =~ m/(^.*?[$bad_control].*?$)/mg) {

my $x = $1;

$x =~ s/[$bad_control]/sprintf "<0x%02x>", ord($&) /eg;

warn " $x\n";

}

$b =~ s/\f/\n\n\n/g;

$b =~ s/[$bad_control]/ /g;

}

Some control characters are necessary — newline and tab, for example. Let’s
start with a string of all of them and strip out the ones that aren’t “errant”.
(Yes, we could just do that directly, but it’s harder to understand what’s in the
list we want to preserve.)

17b 〈declare global variables 6〉+≡
my $bad_control;

foreach (1..0x1f) { $bad_control .= chr($_); }

$bad_control =~ s/[\t\n\r]//sg;

18 epub.nw September 2011

If we have a mail file, we only care about keeping a few lines in the header,
and want to add some markup to those.

18 〈utilities to convert the text files 15a〉+≡
sub convert_header($) {

my $h = shift;

convert the header to UTF-8

$h = text_to_UTF8($h);

prevent confusion about some embedded characters

$h = escape_html($h);

my $s = ($h =~ m/^Subject:\s+(.*)$/m) ?

$1 : "default subject";

my $hh = "<p class=\"subj\">$s</p>\n";

$hh .= "<p class=\"from\">From: $1</p>\n"

if ($h =~ m/^From:\s+(.*)$/m);

$hh .= "<p class=\"date\">Date: $1</p>\n"

if ($h =~ m/^Date:\s+(.*)$/m);

add a little extra space at the end

$hh .= "<p class=\"secbrk\"></p>\n";

return ($hh, $s);

}

Defines:

convert_header, used in chunk 16a.

Uses text_to_UTF8 27b.

September 2011 epub.nw 19

We also need to check the header lines for a “Content-Type:” header. If
there is one, we need to capture the “charset” which we can will need to convert
the file to UTF-8. Since the Content-Type header is often split across lines,
we’ll join lines first; we want to check only the specified header line, rather than
looking for any instance of “charset” in the header block. This has to happen
before we delete the header lines we don’t want to preserve for our converted
file. We finish by ensuring that we have knowledge of the named charset; we
default to iso-8859-1 and issue a warning otherwise. We’ll define the tables
later on.

To do: This completely ignores use of “Content-Transfer-Encoding: quoted-
printable”, in which we transfer in 7-bit ASCII with escapes like =3D and = at
the end of wrapped lines.

19a 〈get charset header 19a〉≡
$h =~ s/\n[\t]+/ /sg;

$h =~ m/^Content-Type: .*?charset="?([\w-]+)/mi;

$charset = length($1) ? lc($1) : $default_charset;

if (!exists($mapping{$charset})) {

warn "unrecognized charset $charset in file $in --"

. " assuming $default_charset\n";

$charset = $default_charset;

}

19b 〈declare global variables 6〉+≡
my $charset;

my $default_charset = "iso-8859-1";

Convert the body

Next, want to convert the body text.

19c 〈utilities to convert the text files 15a〉+≡
sub convert_body($) {

my $b = shift;

〈body of convert body 20〉
}

Defines:

convert_body, used in chunk 16a.

20 epub.nw September 2011

We begin by doing some full-body conversion on the text. We remove any e-
mail signature blocks, fix up some special characters, and make the line endings
all standard.

20 〈body of convert body 20〉≡
convert the text out of the native charset

$b = text_to_UTF8($b);

strip off the signature block in the message

$b =~ s/^--\s*\n.*//ms;

prevent confusion about some embedded characters

$b = escape_html($b);

fix up funny line endings

$b =~ s/\r//sg; # strip possible DOS line endings

$b =~ s/[\t]*$//mg; # strip blanks at line ends

Uses text_to_UTF8 27b.

September 2011 epub.nw 21

We may want to insert images into the text. If that’s the case, the image file
names will be specified using the Markdown syntax, on a standalone line with
the form:

![Alt text](path/to/image.jpg){size}

where the “Alt text” and “size” are optional. “size” (which is not part of the
Markdown standard) is of the form <digits>[%][h|w] – a percentage size,
defaulting to height, with an optional percent sign, and an optional h or w

specifier for height (default) or width. For example, {50%w} is fifty percent
width; {75} is three-quarters height. We need to convert those lines into image
tags, copy the image files into the working directory, and add the image file
names to the @images list. (Notice that we’re renaming the images to neutral
names on the copy so that we don’t risk odd formatting problems if the image
is named something like davinci_mona_lisa.jpg in which case we’d attempt
to italicize part of the name.)

21a 〈body of convert body 20〉+≡
while ($b =~ m/^!((\[.*?\])?\((.*?)\)(\{.*?\})?)/msg) {

my $tag = $1;

my $im = $3;

my $imf = (-r $im) ? $im : "$opt_i/$im";

if (! -r $imf) {

warn "can’t find image file $im\n";

$b =~ s/^!/ /m;

next;

}

$imagecount++;

my $seq = "image$imagecount" . extension($im);

push @images, $seq;

system("cp $imf $wd/$seq");

my $alt = ($tag =~ m/.*?\[(.*?)\]/s) ? $1 : $im;

$alt =~ s/_/-/g;

$alt = "alt=\"$alt\"";

my $size = ($tag =~ m/.*?\{(.*?)\%?[hw]?\}/) ? $1 : 100;

$size = (($tag =~ m/w\}/) ? "width" : "height")

. "=\"$size\%\"";

$b =~ s/^!\Q$tag\E$/<p>/sm;

}

only one blank line around each image tag

$b =~ s/\n+(<p>)\n+/\n\n$1\n\n/sg;

Uses extension 26d, @images 6, $opt_i 37a, and $wd 6.

And declare the global variable we used:

21b 〈declare global variables 6〉+≡
my $imagecount = 0;

22 epub.nw September 2011

Now we’ll deal with the paragraph text.
We’ll begin by stripping the white space off the the beginning and the end of

the text block, so that we don’t accidentally insert extra open or close paragraph
tags, particularly an open tag at the end.

22a 〈body of convert body 20〉+≡
$b =~ s/^\s+//s;

$b =~ s/\s+$//s;

Some of the paragraphs may be broken by blank lines, some designated by
indented first lines. We ensure the paragraphs are all broken by blank lines,
which will make tagging the paragraphs easier.

22b 〈body of convert body 20〉+≡
$b =~ s/^ +/\n$&/mg;

strip out the line-starting blanks, since

they’re now redundant

$b =~ s/^ +//mg;

Block out the basic paragraphs. Add an open paragraph tag at the beginning
of each paragraph, including the one at the very beginning of the text block.
That funny negative lookahead assertion, (?!<p) prevents a paragraph tag from
being inserted in a paragraph that already has one.

In the next line, we add the close paragraph tag, and finally add one at the
very bottom of the text block.

22c 〈body of convert body 20〉+≡
$b =~ s/(^|\n\n+(?!<p))/$&<p class="tx">/sg;

$b =~ s!\n\n+!</p>\n!sg;

$b .= "</p>\n";

We then have to do one more little bit of fixup: we have some cases where
we’ve got multiple opening <p> tags, in particular, instances of <p class="tx"><p>,
artifacts of inserting image tags.

22d 〈body of convert body 20〉+≡
$b =~ s/(<p.*?>)<p>/$1/sg;

Last, we want to handle some basic markup, underlines for italic and as-
terisks for bold. There are two things we need to be careful about: First, we
sometimes we use strings of those characters for section separators. So, we con-
vert paragraphs containing only those to a special section break. Second, we
need to take care to not cross italic and bold markup over paragraph breaks,
since the resulting markup has to be properly nested.

After that, we return.

22e 〈body of convert body 20〉+≡
$b =~ s!<p class="tx">([*]+|[_]+)</p>!

<p class="secbrk">*****</p>!sg;

$b =~ s!_([^<_]+?)_!<i>$1</i>!sg;

$b =~ s!*([^<*]+?)*!$1!sg;

$b;

September 2011 epub.nw 23

The prolog for the individual file we’ve converted needs to provide some
boilerplate such as a pointer to the CSS style sheet (which we’ll define in a
moment) and the title.

23a 〈utilities to convert the text files 15a〉+≡
sub create_prolog($) {

my $t = shift;

"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>

<html xmlns=\"http://www.w3.org/1999/xhtml\">

<head>

<title>$t</title>

<link href=\"$css\" rel=\"stylesheet\" type=\"text/css\" />

</head>

";

}

Defines:

create_prolog, used in chunk 16a.

Uses $css 36a.

In our markup, we’ve referred to some styles that we’ll now need to define in
a cascading style sheet. For simplicity, we define a constant set of CSS markup
across all books, even though some of this might not be used in every book. This
routine returns the name of the CSS file after adding it to the list of control
files.

23b 〈utilities to convert the text files 15a〉+≡
sub create_CSS() {

my $c = "news2epub.css";

unless (open F, "> $wd/$c") {

die "can’t create $c file";

}

print F <<"EOF";

〈CSS file contents 23c〉
EOF

close F;

push @control, $c;

return $c;

}

Defines:

create_CSS, used in chunk 35a.

Uses @control 6 and $wd 6.

The individual styles are broken out, with a bit of explanation in the next
few sections. We begin with the style for the basic HTML paragraph object.
This includes spacing, font size, and widow/orphan prevention.

23c 〈CSS file contents 23c〉≡
p { display: block; text-indent: 0em; text-align: left;

margin-top: 0em; margin-bottom: 0em; font-size: .9em;

widows: 2; orphans: 2 }

24 epub.nw September 2011

Next, we want some additional styles for our text layout. We have a style for
a standard indented paragraph, and one for a paragraph with block indentation.
We’ll also provide a section break style for centering little separators with a little
extra space above and below. Lastly, we provide a little bit of future-proofing
by providing centered text markup.

24a 〈CSS file contents 23c〉+≡
.tx { text-indent: 2em; }

.txb { margin-left: 4em; margin-top: .3em;

margin-bottom: .3em; }

.secbrk { text-align: center; margin-top: .5em;

margin-bottom: .5em; }

.txcb { text-align: center; font-weight: bold;

margin-top: .5em; }

.txc { text-align: center; }

Finally, we want a few styles for the header lines of e-mail messages we have
converted.

Notice that our style for “Subject:” lines takes a page break before. Ac-
cording to the CSS definitions, this is redundant, since there is an implied page
break at the beginning of each component file, but this makes it explicit. For
text files that are not e-mail messages, we can substitute the “textfile” style,
which carries the same page break instruction.

24b 〈CSS file contents 23c〉+≡
.subj { font-weight: bold; font-size: 125%;

page-break-before: always; text-indent: 0em; }

.from { font-style: italic; text-indent: 0em; }

.date { font-style: italic; text-indent: 0em; }

.textfile { page-break-before: always; }

September 2011 epub.nw 25

Our last action for the content is to create a table of contents. The resulting
TOC should be the first file in @content.

25a 〈utilities to convert the text files 15a〉+≡
sub create_toc()

{

my $toc = "contents.html";

open F, "> $wd/$toc";

print F <<"EOF";

<?xml version="1.0" encoding="UTF-8"

standalone="no"?>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Table of Contents</title>

<link href="news2epub.css" rel="stylesheet" type="text/css" />

</head>

<body>

<p class="tochdr">Table of Contents</p>

EOF

foreach (0..$#content) {

print F ’<p class="toc">’,

$titles[$_], "</p>\n";

}

print F "</body></html>\n";

close F;

unshift @content, $toc;

unshift @titles, "Table of Contents";

return $toc;

}

Defines:

create_toc, used in chunk 35b.

Uses $content 6, @content 6, $titles 14b, @titles 14b, $toc 36a, and $wd 6.

We’ve referred to a couple of additional styles for our CSS style sheet, and
we should add them now. For example, we want a special hanging-indent text
style for entries in our table of contents. And, yes, the rendering for tochdr

is identical to subj, but they represent different structural elements, so should
have different structural markup.

25b 〈CSS file contents 23c〉+≡
.toc { padding-left: 2em; text-indent: -2em;

margin-bottom: .3em; }

.tochdr { font-weight: bold; font-size: 125%;

page-break-before: always; text-indent: 0em; }

26 epub.nw September 2011

Basic utility routines

We’ve used a number of utility routines through the preceeding sections. We
should probably define them.

Let’s begin with dirname, which returns the part before the last virgule in
the path name.

26a 〈utilities 26a〉≡
sub dirname($) {

my $x = shift;

return "" unless ($x =~ m#.*/#);

$x =~ s!/[^/]*$!!;

return $x;

}

Defines:

dirname, used in chunks 5b and 26a.

And, the companion, basename.

26b 〈utilities 26a〉+≡
sub basename($) {

my $x = shift;

$x =~ s!.*/!!;

return $x;

}

Defines:

basename, used in chunks 4, 7, 9, 11a, 13, 15b, 26, 32, 34a, and 35a.

And a similar routine to strip the extension off the end of a file, filename.

26c 〈utilities 26a〉+≡
sub filename($) {

my $x = shift;

$x =~ s!\..*?$!!;

return $x;

}

Defines:

filename, used in chunks 7, 11a, 13, 26, 32, and 34a.

And the inverse of filename to capture the extension alone, ignoring possible
directory names.

26d 〈utilities 26a〉+≡
sub extension($) {

my $x = shift;

$x = basename($x);

$x =~ s!.*?\.!.!;

return $x;

}

Defines:

extension, used in chunks 21a and 33.

Uses basename 26b.

September 2011 epub.nw 27

Another general-purpose utility we use is the equivalent of the command-
line “mkdir -p”, which ensures the parents of a directory we are creating are all
created.

27a 〈utilities 26a〉+≡
sub mkdir_p($) {

my $d = shift;

my $dd = "";

foreach (split /\//, $d) {

$dd .= "$_/";

next if (-d $dd);

unless (mkdir $dd, 0777) {

die "can’t create directory $dd";

}

}

}

Defines:

mkdir_p, used in chunks 14a and 32.

We need to convert text into UTF-8. In general, text will come to us in ISO-
8859-1 — Latin-1 — or that special Latin-1 variant, Windows 1252. However,
we need a routine that can choose among several options, based on the character
set we gleaned from the message header. We use a hash that contains references
to the mapping tables for each known character set, (If we’re already in UTF-8,
we short-circuit our return because there’s no mapping table for UTF-8.)

27b 〈utilities 26a〉+≡
sub text_to_UTF8($) {

my $text = shift;

return $text if ($mapping{$charset} eq "");

my $table = $mapping{$charset};

$text =~ s/[\x80-\xFF]/

UTF_to_UTF8($table->[ord($&)-0x80]) /eg;

$text;

}

Defines:

text_to_UTF8, used in chunks 18, 20, and 32.

Uses UTF_to_UTF8 30a.

28 epub.nw September 2011

Here’s the hash we referred to in the last section.

28a 〈charset conversion hash 28a〉≡
my %mapping = (

"utf-8" => "",

"iso-8859-1" => \@windows_1252,

"iso-8859-15" => \@iso_8859_15,

"us-ascii" => \@windows_1252,

"windows-1252" => \@windows_1252,

);

Uses @iso_8859_15 29 and @windows_1252 28b.

Now we have the mapping tables for the character sets. Each of these is
composed from conversion tables on the Unicode web site.

First, the Windows code page 1252 table, of which 8859-1 is a proper subset.

28b 〈charset conversion tables 28b〉≡
my @windows_1252 = (

0x80 .. 0x87

0x20AC, 0, 0x201A, 0x0192, 0x201E, 0x2026, 0x2020, 0x2021,

0x88 .. 0x8F

0x02C6, 0x2030, 0x0160, 0x2039, 0x0152, 0, 0x017D, 0,

0x90 .. 0x97

0, 0x2018, 0x2019, 0x201C, 0x201D, 0x2022, 0x2013, 0x2014,

0x98 .. 0x9F

0x02DC, 0x2122, 0x0161, 0x203A, 0x0153, 0, 0x017E, 0x0178,

0xA0 .. 0xFF

0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,

0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF,

0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7,

0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF,

0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,

0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF,

0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7,

0xD8, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF,

0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7,

0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF,

0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7,

0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF,

);

Defines:

$windows_1252, never used.

@windows_1252, used in chunk 28a.

September 2011 epub.nw 29

We rarely have input in character sets other than 8859-1 and UTF-8, but
to prove the concept of the table-driven translation, we’ll provide a conversion
for ISO-8859-15, which is very closely related to 8859-1, differing only in the
eight positions 0xA4, 0xA6, 0xA8, 0xB4, 0xB8, 0xBC, 0xBD, 0xBE. However,
we remove the high control characters, since the positions from 0x80 to 0x9F
won’t have to do double duty for their Windows values as in the 1252/Latin-1
table.

29 〈charset conversion tables 28b〉+≡
my @iso_8859_15 = (

0x80 .. 0x8F

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0x90 .. 0x9F

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0xA0 .. 0xFF

0xA0, 0xA1, 0xA2, 0xA3, 0x20AC, 0xA5, 0x160, 0xA7,

0x161, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF,

0xB0, 0xB1, 0xB2, 0x17D, 0xB4, 0xB5, 0xB6, 0xB7,

0x17E, 0xB9, 0xBA, 0xBB, 0x152, 0x153, 0x178, 0xBF,

0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,

0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF,

0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7,

0xD8, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF,

0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7,

0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF,

0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7,

0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF,

);

Defines:

$iso_8859_15, never used.

@iso_8859_15, used in chunk 28a.

30 epub.nw September 2011

This next little utility is not really necessary. We could have obviated it (and
made our code more efficient) by populating the conversion tables with the UTF-
8 versions of the characters. However, by using the UTF code points instead,
the tables is clearer,3 and this conversion is not computationally expensive. If
there is no mapping provided, we return ?, though it could be argued we should
return no character.

30a 〈utilities 26a〉+≡
sub UTF_to_UTF8($) {

my $x = shift;

if ($x == 0x0) {

return ’?’;

} elsif ($x <= 0x007F) {

return $x;

} elsif ($x <= 0x07FF) {

my $h = (0xC0 | (($x & 0x07C0) >> 6));

my $l = (0x80 | ($x & 0x003F));

return chr($h) . chr($l);

} elsif ($x <= 0xFFFF) {

my $h = (0xE0 | (($x & 0xF000) >> 12));

my $m = (0x80 | (($x & 0x0FC0) >> 6));

my $l = (0x80 | ($x & 0x003F));

return chr($h) . chr($m) . chr($l);

} else {

return "XXXX";

}

}

Defines:

UTF_to_UTF8, used in chunk 27b.

We’d also like a common routine to fixup some common ASCII characters
that trip up our HTML rendering:

30b 〈utilities 26a〉+≡
sub escape_html($) {

my $x = shift;

$x =~ s/&/&/g; $x =~ s/</</g; $x =~ s/>/>/g;

return $x;

}

3“Instead of imagining that our main task is to instruct a computer what to do, let us

concentrate rather on explaining to human beings what we want a computer to do. — Donald

E Knuth, Literate Programming, 1984

September 2011 epub.nw 31

Lastly, we need a routine to determine image file type. This is required for
the media-type tag in the manifest entry for the cover image. We do this by
checking the first few bytes of the file for magic character sequences. This is a
low-rent, specialized version of the Unix file command.

31a 〈utilities 26a〉+≡
sub image_type($) {

my $image = shift;

my $line;

warn "can’t open $image to check type\n"

unless (open I, "< $image");

sysread I, $line, 32;

close I;

my ($m1, $m2, $m3, $m4) = unpack("a2a2a2a4", $line);

return "jpeg"

if ($m1 =~ m/\xff\xd8/

&& ($m4 =~ m/JFIF/ || $m4 =~ m/Exif/));

return "gif"

if ($m1 =~ m/GI/ && $m2 =~ m/F8/);

return "png"

if ($m1 =~ m/\x89P/ && $m2 =~ m/NG/);

return "???";

}

Defines:

image_type, used in chunk 9.

We’ve been dropping other utilities all along the way. Let’s collect the rest
of them:

31b 〈utilities 26a〉+≡
〈utilities to convert the text files 15a〉
〈utilities to assemble the EPUB 4〉

32 epub.nw September 2011

The main program

Of course, we have to use all this code in an organized fashion. Our main
program is not very complicated now that we’ve posited all the components of
conversion and construction.

We begin with some initialization, in which we set some defaults, parse the
command line options, and set up a working directory.

32 〈the main program 32〉≡
getopts("A:C:E:KT:i:ktv") ||

die "usage: $0 [-A author] [-C cover_image] [-T title] "

. "[-E epub] [-i dir] [-Kktv] files...";

$epub = ($opt_E) ? $opt_E : "zdefault.epub";

$epub .= ".epub" unless ($epub =~ m/\.epub$/);

$charset = $default_charset;

$book_title = ($opt_T)

? escape_html(text_to_UTF8($opt_T))

: "what the heck?";

$book_author = ($opt_A)

? escape_html(text_to_UTF8($opt_A))

: "who’s on first";

working directory

$wd = "," . filename(basename($epub)) . $suffix;

〈clean up the previous attempt 34a〉
mkdir_p $wd;

Uses basename 26b, $book_author 34b, $book_title 34b, $epub 34b, filename 26c,

mkdir_p 27a, $opt_A 37a, $opt_E 37a, $opt_T 37a, $suffix 6, text_to_UTF8 27b,

and $wd 6.

September 2011 epub.nw 33

We’ve can now finish out the manual page with descriptions of the command-
line flags.

33 〈POD 3〉+≡

=head1 OPTIONS

=over

=item B<-A>I<author>

Provide the author of the book.

=item B<-C>I<file>

Provide the image for the book cover.

=item B<-E>I<epub_file>

Give the output name of the EPUB file.

The I<.epub> extension is supplied by default.

=item B<-K>

Assume we want to create a Kindle book.

Don’t create the final EPUB file,

because we’ll run Mobipocket Creator

on the working directory.

Implies I<-k>.

=item B<-T>I<title>

Provide the title for the final book.

=item B<-i>I<dir>

Search for in-line images in I<dir> if they aren’t in the current

directory.

(The cover image path is explicit in the argument to the B<-C> flag.)

=item B<-k>

Don’t delete the working directory.

=item B<-t>

34 epub.nw September 2011

Don’t include the table of contents.

=item B<-v>

Provide verbose output.

=back

Uses extension 26d.

We may have a previous attempt to build this book, in which case we want
to sequester the results of that effort so we can start fresh. Move the EPUB
output file into the working directory if we can, and then rename the working
directory to something distinguishable.

34a 〈clean up the previous attempt 34a〉≡
my $alt = filename(basename($epub));

while (-s "$alt.epub" || -d ",$alt$suffix") { $alt .= "~"; }

qx(mv $epub $wd) if (-s $epub && -d $wd);

qx(mv $epub $alt.epub) if (-s $epub && ! -d $wd);

warn "$wd moved to ,$alt$suffix\n"

if (-d $wd);

rename $wd, ",$alt$suffix" if (-d $wd);

Uses basename 26b, $epub 34b, filename 26c, $suffix 6, and $wd 6.

We’ve introduced some global variables.

34b 〈declare global variables 6〉+≡
my $epub;

my $book_title;

my $book_author;

Defines:

$book_author, used in chunks 8a, 11b, and 32.

$book_title, used in chunks 8a, 11b, and 32.

$epub, used in chunks 4, 7, 11a, 13, 32, and 34a.

September 2011 epub.nw 35

Then, we process and convert the input files. We begin by creating the CSS
style sheet, and then loop through the input files and process each one.

35a 〈the main program 32〉+≡
$css = create_CSS();

foreach (@ARGV) {

default name & subject

my ($o, $s) = (basename($_) . ".html", "foo");

($o, $s) = convert_file($_);

warn length($o) ?

":: $_ -> $o\n" : "?? $_ not found\n"

if ($opt_v);

next unless (length($o));

push @content, $o;

push @titles, $s;

}

Uses basename 26b, @content 6, convert_file 15a, create_CSS 23b, $css 36a, $opt_v 37a,

and @titles 14b.

We can follow that by creating the wrapper components of the EPUB file,
beginning with preparing the table of contents. We use the current time as the
unique book id; this should really be something calculated from the contents.

To do: create a UUID via something like the Perl UUID::Tiny module.
To do: When we generate UUIDs for the identifier, we should add the

scheme="uuid" attribute.

35b 〈the main program 32〉+≡
$first_text = $content[0];

$toc = create_toc() unless ($opt_t);

$cover = create_cover() if ($opt_C);

$bookid = time();

$ncx = create_ncx();

$opf = create_opf();

create_container();

Uses $bookid 36a, $content 6, $cover 36a, create_container 14a, create_cover 13,

create_ncx 11a, create_opf 7, create_toc 25a, $first_text 36a, $ncx 36a, $opf 36a,

$opt_C 37a, $opt_t 37a, and $toc 36a.

... and, finally, assembling the pieces into the EPUB.

35c 〈the main program 32〉+≡
assemble_final_package() unless ($opt_K);

Uses assemble_final_package 4.

36 epub.nw September 2011

We had some more globals in those two passages, which we’ll add to our raft
of declarations.

36a 〈declare global variables 6〉+≡
my $css;

my $first_text;

my $toc;

my $cover;

my $ncx;

my $opf;

my $bookid;

Defines:

$bookid, used in chunks 8a, 11b, and 35b.

$cover, used in chunks 10b, 13, and 35b.

$css, used in chunks 9, 23a, and 35a.

$first_text, used in chunks 10b and 35b.

$ncx, used in chunks 9, 11a, and 35b.

$opf, used in chunks 7, 14a, and 35b.

$toc, used in chunks 10b, 25a, and 35b.

We’ll finish with some cleanup. If we haven’t asked to save the working
directory, delete everything we’ve put in it.

36b 〈the main program 32〉+≡
unless ($opt_k || $opt_K) {

for (@content, @control) {

unless (unlink "$wd/$_") {

warn "can’t unlink file $_ from $wd\n";

}

}

for (@dirlist) {

unless (rmdir "$wd/$_") {

warn "can’t unlink directory $_ from $wd\n";

}

}

unless (rmdir $wd) {

warn "can’t unlink working directory $wd\n";

}

}

Uses @content 6, @control 6, @dirlist 6, $opt_k 37a, and $wd 6.

September 2011 epub.nw 37

Over the course of the main program, we needed to include some packages,
so let’s enumerate them now:

37a 〈include packages 8b〉+≡
use Getopt::Std;

use vars qw($opt_A $opt_C $opt_E $opt_T $opt_i $opt_k $opt_t $opt_v);

Defines:

$opt_A, used in chunk 32.

$opt_C, used in chunks 9, 10b, 13, and 35b.

$opt_E, used in chunk 32.

$opt_T, used in chunk 32.

$opt_i, used in chunk 21a.

$opt_k, used in chunk 36b.

$opt_t, used in chunks 10b and 35b.

$opt_v, used in chunks 4 and 35a.

Finally, to close out our construction, we put all these pieces together as a
single Perl script:

37b 〈* 37b〉≡
#! /usr/bin/perl -w

$Id: epub.nw,v 2.43 2017/05/02 23:21:58 jeff Exp $

use strict;

〈include packages 8b〉
〈declare global variables 6〉
〈charset conversion tables 28b〉
〈charset conversion hash 28a〉
〈utilities 26a〉
〈the main program 32〉
=pod

〈POD 3〉

=cut

38 epub.nw September 2011

Stuff to do

• Based on recommendations in the standard, we really need break up the
content into separate directories — content, control files, images.

• Obvious follow-on: EPUB to TEX converter.

• Consistent section naming – noun/verb or function/verb.

• Consistent file naming – we have some fixed names, like the CSS, but also
variables like cover name and OPF.

List of code chunks

〈* 37b〉
〈CSS file contents 23c〉
〈NCX header and metadata 11b〉
〈NCX navigation map 12〉
〈OPF guide creation 10b〉
〈OPF manifest creation 9〉
〈OPF metadata 8a〉
〈OPF spine creation 10a〉
〈POD 3〉
〈body of convert body 20〉
〈body of convert file 15b〉
〈capture directory names 5b〉
〈charset conversion hash 28a〉
〈charset conversion tables 28b〉
〈clean up the previous attempt 34a〉
〈create mimetype file 5a〉
〈declare global variables 6〉
〈errant control characters 17a〉
〈get charset header 19a〉
〈include packages 8b〉
〈insurance for empty text body 16b〉
〈the main program 32〉
〈utilities 26a〉
〈utilities to assemble the EPUB 4〉
〈utilities to convert the text files 15a〉

Index

UTF_to_UTF8: 27b, 30a
assemble_final_package: 4, 35c
basename: 4, 7, 9, 11a, 13, 15b, 26b, 26b, 26d, 32, 34a, 35a

September 2011 epub.nw 39

$book_author: 8a, 11b, 32, 34b
$bookid: 8a, 11b, 35b, 36a
$book_title: 8a, 11b, 32, 34b
$content: 6, 12, 25a, 35b
@content: 6, 4, 6, 5b, 6, 6, 9, 10a, 13, 15b, 6, 25a, 35a, 36b
$control: 6
@control: 6, 6, 4, 6, 5b, 6, 6, 7, 11a, 13, 14a, 23b, 36b
convert_body: 16a, 19c
convert_file: 15a, 35a
convert_header: 16a, 18
$cover: 10b, 13, 35b, 36a
create_CSS: 23b, 35a
create_container: 14a, 35b
create_cover: 13, 35b
create_ncx: 11a, 35b
create_opf: 7, 35b
create_prolog: 16a, 23a
create_toc: 25a, 35b
$css: 9, 23a, 35a, 36a
$dirlist: 5b, 6
@dirlist: 4, 5b, 6, 36b
dirname: 5b, 26a, 26a
$epub: 4, 7, 11a, 13, 32, 34a, 34b
extension: 21a, 26d, 33
filename: 7, 11a, 13, 26c, 26c, 26c, 32, 34a
$first_text: 10b, 35b, 36a
$images: 6
@images: 6, 4, 6, 5b, 6, 6, 9, 6, 21a
image_type: 9, 31a
$iso_8859_15: 29
@iso_8859_15: 28a, 29
mkdir_p: 14a, 27a, 32
$ncx: 9, 11a, 35b, 36a
$opf: 7, 14a, 35b, 36a
$opt_A: 32, 37a
$opt_C: 9, 10b, 13, 35b, 37a
$opt_E: 32, 37a
$opt_T: 32, 37a
$opt_i: 21a, 37a
$opt_k: 36b, 37a
$opt_t: 10b, 35b, 37a
$opt_v: 4, 35a, 37a
$suffix: 6, 6, 32, 34a
text_to_UTF8: 18, 20, 27b, 32
$titles: 12, 14b, 25a
@titles: 13, 14b, 25a, 35a

40 epub.nw September 2011

$toc: 10b, 25a, 35b, 36a
$wd: 6, 4, 6, 6, 7, 9, 11a, 13, 14a, 15b, 21a, 23b, 25a, 32, 34a, 36b
$windows_1252: 28b
@windows_1252: 28a, 28b

