
Robust Performance Testing on the CheapJe�reys Copeland and HaemerJanuary 2011AbstractWe �nd ourselves impaled on a common software-performance-testing dilemma: how to measure performance meaningfully. To solveour problem, we invent a statistical test. Out of this, we get an auto-mated performance-testing scheme that's cheap and easy to implement.The DilemmaSoftware changes constantly. It's easy to change performance by accidentwhile trying to add new features or �x bugs. When that happens, we want toknow. (By performance, we usually mean speed, though the same problemarises when measuring other performance limits, such as memory usage.)A typical approach, borrowed from hardware testing, is to try to naildown the test environment, eliminating as much noise as possible, then runa small, de�ned set of performance tests, recording the numbers and trackingchanges to those numbers over time.This approach has a handful of problems:1. Run-to-run variation. Multitasking computers run many processessimultaneously. These processes compete for resources with your tests;the resulting variation is hard to control for.The software you're testing may even have several components that runsimultaneously, and their order and priorities may not be somethingyou can (or even should) control during testing.Both of these can lead to a fair amount of run-to-run variation.2. Limited scope. For complex software, the more kinds of test casesyou can run, the more kinds of changes you can detect. A require-ment to make the environment and test target as precise as possible1



blocks this. What's more, dedicating hardware to specialized, tightlycontrolled, performance testing makes it unavailable for other testing.3. Multiple platforms. Successful software often presses to be portable.As soon as your customers have a wide variety of machine types andcon�gurations, testing performance on a single con�guration is likelooking under the lamp-post for your keys because the light's betterthere.4. Moore's law. The computer you can buy today is faster, and hasmore memory and a bigger disk, than a computer you bought a yearago at the same price.If your test measurements require a con�guration that you establishedtwo years ago, an upgrade will let you do more tests in less time, butyou'd have to �gure out how to compare today's apples to yesterday'soranges. This problem won't go away soon. [Moore 1965]1On one horn, you want to de�ne the test environment precisely. On theother, this can create arti�cial numbers that are less-and-less relevant astime goes on.This is particularly problematic for software performance testing becausethe ecosystem in which software lives metamorphoses so often and so dra-matically.We'd like a performance test methodology that's robust in the face ofthese sorts of changes.Two Kinds of Performance ChangeIt helps to break performance changes into two broad categories.The �rst is changes that change everything down uniformly.Sometimes, someone really does make a change that speeds everythingup by a factor of two. Porting compute-bound tests to hardware that's halfas fast has the opposite e�ect.Let's put changes that slow things down (or speed them up) monotoni-cally into this group, too. An example might be something that cuts downthe run time of every test to the logarithm of the original time.1Gordon Moore, \Cramming more components onto integrated circuits," Electronics38 (1965) 2



The second is everything else | changes that e�ect some tests, but leaveothers untouched.For example, when printer-language developers tweaks PDF printing tomake it more e�cient, only the PDF-printing-performance tests speed up.If engineers do their work on machines with fast disks and a fast �le system,but the target hardware has slow disks and an operating system with par-ticularly ine�cient disk handling, I/O-bound tests on the target may proveunexpectedly slow compared to compute-bound tests.We will focus on detecting this second class of changes.The Solution: Test RanksConsider, for a moment, the ranks of test times instead of raw times. If werank time-to-completion of ten tests, a uniform slowdown or speedup willleave these ranks unchanged. All other things being equal, a collection oftests that rank 1 2 3 4 5 6 7 8 9 on an Intel Atom netbook should still rank1 2 3 4 5 6 7 8 9 on a supercomputer: the �rst test's still faster than thelast.But if tests that have always ranked 1 2 3 4 5 6 7 8 9 abruptly show upranked 9 8 7 6 5 4 3 2 1, we have reason to believe something is afoot. Thisis an advantage of looking at ranks instead of raw numbers.Ranks also eliminate some run-to-run noise e�ects. In unchanging envi-ronments, run times like these:8.3, 5.24, 1.2, 18.5are transformed into ranks like these:3, 2, 1, 4and are indistinguishable from these:9.1, 5.0, 0.9, 18.0In both, the third test is the fastest, the last one is the slowest.Not all noise e�ects go away, though. Suppose, for example, we see thison one run 8.1, 7.9, 1.2, 18.5[ 3, 2, 1, 4 ]3



and this on a second 8.0, 8.2, 1.2, 18.5[ 2, 3, 1, 4 ]should we think they're di�erent, or not? Maybe the �rst two tests are reallythe same speed and the di�erence is noise. Can we make a statistic thathelps us measure that?Why yes, we can.The Null Hypothesis: All Ranks Are EquivalentAs a �rst step, let's look at what happens when every test is really the samespeed | when every di�erence is due to system noise.On one end of the spectrum, if tests ranked 1 : : : N in the �rst run alwayshave the same relative times, no matter how many times I run them, thenall N ranks will be stable from run to run.Suppose, however, the tests are just as likely to come up in any otherposition in a second run | the order is random and N : : : 1 is just as likelyas 1 : : : N . In this case, if we do two runs, how many tests are likely to havethe same rank in both runs?Answer: one.Among all N ! equally probable arrangements for the second run, the testthat's rank 1 in the �rst has rank 1 in (N � 1)! of them. The same holds foreach of the N original ranks, so the total number of stable ranks over all N !possible permutations is N(N � 1)! = N !. If �S is the expected number ofstable ranks, �S = N !N ! = 1 (1)(See the Appendix for an alternate derivation, using subfactorials.)But how often should I expect to get 2 stable points instead? Or 3?What's the distribution?The Distribution of Stable Ranks is ApproximatelyPoissonImagine a lot of di�erent test cases, all of which run in the same amount oftime. All rank di�erences are caused by noise.4



If I have 10,000 equivalent tests, whose run time varies at random, fromrun to run, then the chance that the any test in the �rst run will have thesame rank time in the second is only 0.0001, but there are 10,000 di�erentranks.This is a textbook setup for a Poisson distribution. The probability ofseeing exactly k events, if there are, on average, �, is given byf(k;�) = �ke��k! (2)For our case, the expected number of stable ranks is � = 1. This meansP (exactly S stable ranks) = f(1;S) = e�1S! (3)The chance that a random rearrangement will leave only 1 test with thesame rank it started with | exactly 1 stable rank | is P (1) = 1e � 0:37.Ditto for the chance of no stable ranks.2The chance of �nding exactly 2 stable ranks is half that.A hallmark of the Poisson distribution is that the variance and the meanare equal. In our case, Poisson-distributed, stable-rank counts would show�2S = �S = � = 1.This is also true if I have 100,000 equivalent tests; however, on the otherend of the scale, we hit a special case.If, however, instead of 10,000 tests, you have only one, the mean numberof stable ranks is still 1. No matter how many times you run the test, it'sstill the fastest. Or the slowest, depending on whether your glass is halfempty or half full. But the variance of this count is 0. �S = 1;�2S = 0Exactly one test? Exactly one stable rank, every single time.The distribution of stable ranks for N = 1 isn't even close to Poisson.So, if we have a lot of equivalent tests, the number of stable ranks isPoisson distributed, and if we only have one test, it's not. How about fornumbers of tests in between 1 and 10,000? How fast does the distributionof the number of stable ranks approach a Poisson?For starters, we might ask how large N must be for the variance to beginto approach the mean.A little algebra invoking subfactorials yields a surprising result: �2S =�S = 1 for every N > 1.Okay, it surprised us. (For details, see the Appendix.)2This provides another proof of the well-known limit limn!1(n<n! ) = 1e (for specialvalues of \well-known"). 5



The Poisson Approximation Works for Small NSince the mean and variance are identical for all values of N > 1, we needto ask about the approach to "Poisson-ness" in a di�erent way.First, you can see that none of our distributions will really be a Poisson.The tail of a true Poisson stretches rightwards to in�nity: in a Poisson,P (S) > 0 for all values of S > 0. Not so for stable ranks. For a collectionof tests of size N , P (S) = 0 for all S > N . When you re-run 10 tests, youwon't ever get 11 that have the same rank they did the �rst time.We'll illustrate with a simulation. Here's example output for N = 5.iterations = 1000, N = 5mean(nr of stable points) = 0.968var(nr of stable points) = 0.926976observed counts: 366 396 154 78 6 0expected counts (Poisson): 368 368 184 61 15 3 1For each trial we rearranged 5 ranks at random and then measured thenumber of stable ranks. In 1000 trials, 366 of trials ended with no stablepoints, 396 trials had exactly one, and no trial had all �ve. In a true Poissondistribution, we'd have expected 368 with no stable points, 368 with exactlyone, and 3 with all �ve.And one with six. Whoops!Still, the observed distribution looks, by eyeball, a lot like a Poisson,even at this, small value of N .A �2 goodness-of-�t test detects a di�erence, but also suggests a wayto ask the question we started with: how large does N need to be for thedi�erence to be undetectable with a �2 test?We don't have an analytic solution. In our simulations, however, whenN > 10 even a �2 test is fooled: we cannot distinguish the distribution ofstable ranks from one predicted by a true Poisson.Even with quite small collections of tests of similar speed, a Poissondistribution with � = 1 does an adequate job of predicting the number ofstable ranks from run-to-run.In Real-Life, Not All Tests Have The Same RanksA more typical situation might be this:6



A set of fast tests form a cluster, c1, which di�er in their order onlybecause of system noise. The next fastest group of tests, c2, are all slowerthan the tests in c1, but are, again, equivalent to one another.Next, an individual test, t1, runs slower than all the tests in c2, but fasterthan the tests in a third cluster, c3.The remaining tests either arrange themselves into performance clustersor are singletons with unique orders; their run times arrange themselves onan axis like this:c1 < c2 < t1 < c3 < t2 < c4 < t3 < t4 < � � � (4)What is the expected number of stable ranks for the entire collection?If there are T tests with a unique order and C clusters, then�S = CXi=1 �ci + TXi=1 �ti = C + T (5)Since each the number of stable ranks for cluster cn has a variance of 1but each unique test has a variance of 0,�2S = C (6)we have, as an upper limit, �2S � �S : (7)Even a pair of unrelated tests with equivalent run times, modulo noise,make a cluster, so if we're collecting data from enough di�erent tests, withfew singletons, we may have �2S ' �S (8)If the number of tests with unique run times is small, we can approxi-mate the overall distribution of stable points as a sum of independent Pois-son distributions with identical distributions. Because the sum of Poissondistributions is, counter-intuitively,3 a Poisson distribution4 the distributionshould be approximately this:3F.W. Stahl, personal communication.4Fredrick Mosteller and R.E.K Rourke, Sturdy Statistics: Nonparametric and OrderStatistics. Addison-Wesley, 1973. If you sum enough Poisson distributions, then � becomeslarge, and the distribution becomes approximately Normal, as the Central Limit Theorempredicts. 7



P (S stable ranks) ' f(S;C + T ) = (C + T )Se�(C+T )S! (9)The average number of stable points will be �S = C+T , and the standarddeviation of that number, �S � pC + T = p�S.ARecipe for Cheap, Automated, Performance-RegressionTestingHow can you put this into practice? Here's a recipe.1. Establish a baseline.Run a large number of di�erent test cases through the system.Unit tests, functional tests, conformance tests, ... everything's gristfor the mill. Indeed, the more diverse your tests, the better, becausethey will be a�ected di�erently by performance changes in di�erentparts of the system under test.Rank all tests by time-to-completion.Don't create separate performance testing suite, or even do a separaterun, just time the ones you're already doing.2. Find a mean and variance for the statistic.Run them again a few times, and look to see how many ranks stay thesame from run-to-run. Noise should produce di�erent stable ranks indi�erent runs, but you can ignore that detail. You're only looking fora total.If, however, there are, say, 100 stable ranks, then that's your expectedvalue and an upper bound to the approximate variance. The standarddeviation is the square root of that: 10.3. Use the statistic as a sentinelHave your test software report this number every day. You shouldexpect something between 80 and 120 stable ranks (�� 2�).Or pour the code being tested onto a di�erent platform: a shiny,new Intel Mac Air instead of an archaic G3 iBook or, perhaps aquad-core Athlon box running Linux instead of an �ve-year-old IBM8



Thinkpad, running Windows XP. Then run and rank the same tests.The run times will change dramatically, and even non-linearly, butthey shouldn't change wildly: you still expect between 80 and 120stable ranks.However, when the number of stable ranks drops to 50 or rises to 150,some aspect of performance has changed signi�cantly. Time to raise ared 
ag and investigate further.We've presumed, above, that the process is in place, but that need noteven be true.A customer complains of a dramatic, overall performance drop froman earlier release of two years ago? Run a wide-spectrum, performance-stability test on daily checkpoints from your source-code database to seewhich revisions produced big changes.After you've found the neighborhood to look in, turn to your special,locked-down, carefully de�ned performance-testing platform for careful anal-ysis, to identify the speci�c culprit.This recipe automatically turns leftovers into food.SummaryAutomated software-performance testing may seem like it's thwarted by aHeisenberg-like Uncertainty Principle: the closer you look, the less yournumbers mean.One way around this is to fall back on a non-parametric approach thatlooks at ranks instead of precise times. If you use a large number of randomlychosen test cases, the number of stable ranks from run to run becomesPoisson distributed.This o�ers a simple way to turn existing, large libraries of automatedfunctional, integration, and system tests into platform-independent perfor-mance tests at little or no cost.The test cases need not be related or carefully constructed. You don'tneed to know the internals of the tests themselves. The clusters of run timesare formed by chance, not for any functional reason. The more clusters {the more tests that accidentally have the same run-times { the better. Andit's as automated as all the rest of your tests since, ideally, it's built fromall the rest of your automated tests. 9



Doing this doesn't tell you what's changed when you see a change |that requires further investigation | but it gives you an almost free sentinelfor when you need to investigate.You only need to start timing (and ranking) all the tests you're alreadyrunning.
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Appendix: Stable Ranks inRandom PermutationsDe�nitions and NotationA derangement is a permutation in which no element winds up in its originalposition. For example, with the numbers 12 69 7, the permutation 69 7 12 isa derangement, but 7 69 12 is not because 69 remains in the second position.The subfactorial of N is the number of derangements of a collection ofN, distinct elements.There are several di�erent notations for this function; we'll use Knuth'sN < because it is less ambiguous than the alternative !N .Conventions and a Useful TheoremBy convention, 0< = 1, just as 0! = 1. This makes a lot of subfactorialformulas consistent. However, note that 1! = 1, but 1< = 0. There's no wayto derange a single element.To reduce visual clutter, if we write an index-less sum, we mean theindex ranges from 0 to n, in whichever direction is convenient. That is,X k = k=nXk=0 k = k=0Xk=nk (10)We will use this theorem, presented without proof,n< = (n� 1)< + n � (�1)n (11)or its equivalent n<� (�1)n = n � (n� 1)< (12)which we lift from Graham, Knuth, and Patashnik [1994]55Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics:A Foundation for Computer Science. Addison-Wesley, 1989; second edition, 1994.
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Identities We'll UseWe shall use three identities about binomial coe�cients. nr! =  nn� r! (13)r nr! =  nn� r + 1!(n� r + 1) (14)(r + 1) nr + 1! =  nr!(n� r) (15)Finally, a special case of the binomial theoremf(x) = nX0  nk!xk = (1 + x)n (16)yields both this X nk!(�1)k = 0 (17)and this f 0(�1) =X k nk!(�1)(k�1) = 0 (18)Combining (12), (16), and (17) also gives us thisX k nk!(�1)(n�k) = X(n� r) nn� r!(�1)r (19)= Xn nn� r!(�1)r �X r nn� r!(�1)r= nX nr!(�1)r +X r nr!(�1)(r�1)= 0+ 0 = 0
12



Stable Ranks over All PermutationsTheorem: The total number of stable ranks over all permutations on nelements is Sn = nXk=0 k nk!(n� k)< = n! (20)Proof: Consider all permutations on n elements. Among these, let thenumber of permutations with exactly k stable ranks be Sn(k).This number is the product of the number of ways we can choose exactlyk ranks to hold in �xed positions, times the number of ways we can rearrangethe remaining elements so that none is in its original place. That is,Sn(k) =  nk!(n� k)<and, adding up all cases,n! =XSn(k) =X nk!(n� k)< (21)To get the total number of stable ranks in all permutations, we multiplyeach term of this sum by k, the number of stable ranks it represents.Sn = nXk=0 kSn(k) = nXk=0 k nk!(n� k)< (22)= nXk=1 k nk!(n� k)< = n�1Xr=0(r + 1) nr + 1![n� (r + 1)]<Transforming with (14) gives us= n�1Xr=0  nr!(n� r)[n� (r + 1)]< (23)From (11), we have(n� r)< = (n� r) � [(n� r)� 1]< + (�1)(n�r) (24)so 13



Sn = n�1Xr=0 nr![(n� r)<� (�1)(n�r)] (25)= n�1Xr=0 nr!(n� r)<� n�1Xr=0  nr!(�1)(n�r)= " nXr=0 nr!(n� r)<�  nn!(n� n)<#�" nXr=0 nr!(�1)(n�r) �  nn!(�1)0#Invoking (20), (12), and (16), we get= n!� 1� nXr=0 nn� r!(�1)(n�r) + 1 = n! (26)This also gives us the result we found in equation (1), but counting in adi�erent way. �S = Snn! = 1 (27)Variance of Number of Stable RanksTheorem: The variance of the number of stable ranks in permutations onN objects (N > 1) is �2S = 1 (28)Proof: Begin with the standard familiar formula�2S = E(S2)�E2(S) (29)To get the �rst term, we consider the equationWS = n!E(S2) = nXi=0 k2 nk!(n� k)< (30)As before, we transform indices 14



= nXk=1 k2 nk!(n� k)< = n�1Xr=0(r + 1)2 nr + 1![n� (r + 1)]< (31)from (14) = n�1Xr=0(r + 1) nr!(n� r)[n� (r + 1)]< (32)= n�1Xr=0 r nr!(n� r)[n� (r + 1)]<+ n�1Xr=0  nr!(n� r)[n� (r + 1)]<= T1 + T2T2 is easy: we just walk backwards, repeating step (14) and retransform-ing indices in reverse.T2 = n�1Xr=0  nr!(n� r)[n� (r + 1)]< (33)= n�1Xr=0(r + 1) nr + 1![n� (r + 1)]<= nXk=1k nk!(n� k)<= nXk=0k nk!(n� k)<= n!(The last step from equation 20).T1 isn't hard either. We invoke (11), (19), and (18).T1 = n�1Xr=1 r nr!(n� r)[n� (r + 1)]< (34)= n�1Xr=0 r nr![(n� r)<� (�1)(n�r)]15



= n�1Xr=0 r nr!(n� r)<� n�1Xr=0 r nr!(�1)(n�r)= " nXr=1 r nr!� n nn!0<#� " nXr=1 r nr!(�1)(n�r) � n nn!(�1)0#= (n!� n)� (0� n)= n!so Wn = n!E(S2) = T1 + T2 = n! + n! = 2n! (35)E(S2) = 2:And �nally �2S = E(S2)�E2(S) = 2� 1 = 1: (36)
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