Literate Programming

An Introduction to
Literate Programming

by Jeffreys Copeland and Haemer

his month, we start a short

series on literate program-

ming. This is a technique
that includes some interesting fea-
tures, some odd mis-features and has
generated fanatic adherents and
detractors. We will pay some atten-
tion to literate programming's
advantages and disadvantages with
respect to portability issues.

Literate History

Literate programming is, in a sense,
an accicdent. It’s the side result of an
author who liked the way his books
looked, and a paradigim shift in tech-
nology.

In the mid-1960s, a bright combina-
torialist who was interested in com-
puters was finishing his Ph.D. and
post-doctoral work at Caltech. He sat
down 10 write several survey volumes
about the 12 most important topics in
computer science, beginning with bits
and ending with compilers. Those 12
topics were supposed Lo cover seven
volumes. The mathematician, of
course, was Donald Knuth, and the

series was titled The Art of Computer
Programming. The first volume
appeared in 1967.
Well, computer
science marches
on, and quickly.
By the time Knuth
had finished the
third volume (on
sorting and search-
ing) it was time to
revise the first vol-
ume. Then it was
lime to prepare a
revision on the
second volume.
Unfortunately,
before that could
be done, Addison-Wesley, which
had done all its mathematical type-
setting in Ireland, moved from hot-
lead Monotype equipment to cold-
type phototypesetting. Knuth’s
books were mathematically inten-
sive, and the equations set by the
new technology were not as pretty.
So, what's a good computer scien-
tist to do? Build a typesetting sys-

Jeffrey Copeland (copeland@alumni.caltech.edu) is a member of the technical staff at
QMS's languages group, in Boulder, CO. His recent adventures include internationahizing a large sales
and manufactwring system and providing software services to the admimstrators of the 1993 and 1994
Hugo awards. His research interests include internationalization, typesetting and cats and children.

Jeffrey S. Haemer (jsh@canary.com) is an independent consultant based in Boulder, CO. He
works, writes and speaks on the interrelated topics of open systems, stundards, software portability
and porting, and internationalization. Dr. Huemer has heen a featured speaker at Usenix, UniForum

and Expo Kuwait.

26

RS/Magazine JANUARY 1995

Literate Programming

tem, obviously. Knuth’s solution was to take a year off
from writing The Art of Computer Programming and build
a system to set type and a complementary system to build
fonts because he wanted to duplicate the Monotype Mod-
ern typeface used in his original books.

The first versions of those programs, which were called
TEX and Metafont, were written in SAIL, a language that
hadn’t found much favor outside the artificial intelligence
communities at Stanford University and the Massachusetts
Institute of Technology. (Let’s note here that TgX is a
trademark of the American Mathematical Society and
Metafont is a trademark of Addison-Wesley, just to keep
the lawyers happy.)

The first versions of TEX and Metafont were used to pro-
duce the second edition of Seminumerical Algorithms, but
their quality still wasn't up to the old hot-lead Monotype
equipment. Because portability was an issue, versions of
both programs were eventually written in Pascal. But even
Pascal wasn’t sufficient; to be portable, the programs had
to have good internal documentation.

This was where literate programming came in. Knuth
and his colleagues invented a language called WEB,
which combined a text description, in TgX, with Pascal
code. The WEB program text could be compiled with one

tool to extract the program source code, and with anoth-
er to make a printable document that described WEB'’s
internal workings. The most famous example is the TgX
program itself, which is written in WEB. 1t's described in
Knuth’'s TgX: The Program (Addison-Wesley, 1986).

This enterprise was an example of Pournelle’s Law
(“Everything takes longer and costs more”). Ten years
after the one year “to write some typesetting software,”
the final versions of TeX and Metafont were completed,
and Knuth is finally working on Volume 4 of ACP.

Literate vs. Structured Programming

The Art of Computer Programming begins with the fol-
lowing sentence: “The process of preparing orograms for
a digital computer is especially attractive, not only
because it can be economically and scientifically reward-
ing, but also because it can be an aesthetic experience
much like composing poetry or music.” Likewise, writing
a program in the literate programming discipline can be a
very good way to share that aesthetic experience.

More important, computer time is now cheap. Mainte-
nance costs and human time to interact with programs
outweigh the cost of time to run them and frequently
outweigh the cost of the computer itself. Today’s goal

Informix Software

Kick start your VAR program by offering a
complete line of Informix-based software
products. As the premier UNIX Informix distributor,
JBS has more than 6 years experience in
distribution and support of Informix Solutions. Call
and ask about our discounts on development or
runtime software, and the Developer's Assistance
Program.

RISC-Bas

The WX-15C d
colors on a Nig
guarantees 1}|cke

ixel resolution ©
‘:‘ includes base processot
Call JBS today to learn about becoming an e B00 oS

Authorized Informix Reseller.

¥ INFORMIX

| —
[Wyse WX:15C

\arifies even the finest

optimized for X specific applications WYSE

18 ” w
FacetTerm Ver. 3
. Increase your UNIX R
Ed X T(’Immal productivity with the
. FacetTerm
. ot crisp images in 256 windowin
ehverS\'sm}\[sp.'iggr?hsléreen? AT0Hz re"esS% rate environmgnt for
h-q?raegyviewing. and full-size 1024 X7 character terminals,
f- st details. AlphaWindow

¢, keyboard & mouse

ith control ASIC terminals and PCs.
i wi

FacetTerm runs up to 10 UNIX applications
simultaneously. Cut and paste between applications

as low as $3 0 SPFacetTerm

i**

. "As compiled by the University of Houston

Small-Business Developme

RV V- Y/

“Jones Business
Systems ranked -
#1 as the fastest
growing business

in Houston*

nt Center.

Lperuser
 Call TODAY For Your
Tl N iX .~ FREE Catalog -
FORMIX 1-800-876-8649
*or Fax In Your Order. ..

(713) 895-9333

@FapetT&m

Licerate Programming

should not be to describe the task to the computer,
but to describe it sufficiently to the next human who
will need to understand the program.

In his paper “Literate Programming” (The Computer
Journal, May 1984, Vol. 27, pp. 97-111) Knuth admits
to a more subtle reason for choosing the term: “Dur-
ing the 1970s, 1 was coerced like everyone else into
adopting the ideas of structured programming,
because 1 couldn't bear to be found guilty of writing
unstructured programs. Now [have a chance 1o get
even. By coining the phrase ‘literate programming,’ [
am imposing a moral commitment on everyone who
hears the term; surely nobody wants to admit writing
an illiterate program.”

From Knuth'’s statement, you may conclude that
structured programming and literate programming

@;
cannot coexist. Not true. By allowing for an orderly)

else {@;

search = *av;

else {@;
search = *av;

Listing 1.

@ This means that we now have to strip
the search string from the command
line, and put it in |search|.

@<isolate search string@s>=
if(ac <= 1) @<usage message@>@/

ac--;

exposition of a program, we can attack the problem in
any order that's appropriate for correct structure without
having Lo worry about that structure all the time.

Literate programming allows us to work on the problem
in both top-down and bottom-up, or sometimes even mid-
dle-out, order, as neeced. We've found that often our pro-
grams are more logically thought out, and the control flow
is better structured.

In Knuth's original WEB system, in which TgX and most
of its friends are written, TgX is the formatting engine, and
Pascal is the programming language. However, there's no
reason not to make other pairings. Knuth reports on a lit-
erate programming environment, built by Harold Thimble-
by at the University of York, which uses troff. Using TgX
and C, C. Silvio Levy built a tool called CWEB, to which
Knuth has made some additions and modifications. There
are tools combining other pairs of formatter and program-
ming languages. These are in the pointers of the “Further
Reading” section, at the end of this article.

For the moment, we will use CWEB [or our examples.
There are several reasons for this. In general, C is more
portable than Pascal, so we like it better. All our previous
columns have assumed knowledge ol C. Pascal is not a
standard language on the RS/6000, and we don't have a
compiler handy. Most important, our Pascal is rusty.

So how does CWEB work? A program is written in
CWEB, and includes both C text and TEgX text (see List-
ing 1).

The CWEB source is processed by a program called
ctangle to extract the C code. This is not the equiva-
lent of a simple sed operation. We can present the pro-
gram in the CWEB source in a completely different
order than the one we wish to present to the compiler,
as we've discussed.

Once we've processed the CWEB source through ctan-
gle, we can compile the resulting code normaily. Similar-
ly, we can process the CWEB source through the cweave

program and end up with TEX source containing both the
program text and the explanatory text we’ve written to
make it a literate program. Processed through TgX, this
file can be made a pretty document. An example of cweave
output is shown in the next section. Note, however, that
the cweave output, which would normally be typeset by
TEgX, was converted by hand into input appropriate for
this magazine’s typesetting soltware. Unfortunately, this
means that much of the program text’s nice typesetting is
lost. (1f you're interested, we’ll be happy to email you a
PostScript file of the TEX output from cweave and the C
source file from ctangle. Send requests Lo onc of our
email addresses.)

An Example of CWEB

1. An example of fgrep written in CW=B. Here, we
provide a very simplistic version of the UNTX utility
fgrep. We will 1ake a command-line argument to find a
character string and will search for that character string
in the lines on standard input. If the string is found, the
line is written to standard output. Normally, we'd read
from an arbitrary list of files, but the point of this pro-
gram is to show you some of the techniques, not write a
complete filter.

2. A CWEB program consists of numbered sections and
named modules. The numbered sections contain (option-
al) descriptive text and code. The sections with boldfaced
names appear in the (optional) table of contents. The
modules are pointers to code, which are expanded in the
sections.

A basic filter consists of a pretty standard structure.
CWEB allows us to outline it now, and in a process of
step-wise refinement, fll it in later. We previde each mod-
ule with a name, which has text later. This section con-
tains an unnamed module. Unnamed modules are strung
together sequentially to form the main body of the code.

28 RS/Magazine JANUARY 1995

Licerate Programming

<Header files 3>
<Global variables 5>
<Main program 4>

3. We begin with the obvious two header files. Note that
we are providing text to an earlier module name, and that
the modules are cross-referenced to section numbers.

<Header files 3> =

#include <stdlib.h>

#include <stdio.h>

(See also section 12.)

(This code is used in section 2.)

4. We also need to start laying out the main program in
order to sketch it in the control flow. Again, we are using
the step-wise refinement technique that Dijkstra first dis-
cussed.

Note that once we've given a module its full name, we
need to use only the minimum recognizable prefix, fol-
lowed by an ellipsis, to name it again. This section begins
to define the module “<Main program>,” but the text in
our source below actually uses the name “<Main...>;”
cweave does the appropriate expansion to print the [ull
name, seen below.

Our modules don’t need to neatly define groups of state-
ments. See the “while” statement below for an example.

<Main program 4> 7~

main(ac, av)

nt ac;

char **av;

{
<isolate search string 6>
while (<we have read a line 8>)

<search for the string 10>

exit(0);

J

(This code is used in section 2.)

5. We have just skipped over vast amounts of detail.
What kind of data structures are we using? How are we
reading the next line?

Let’s start with some variables.

<Global variables 5> =
char *search; /* the search string itself */
char buffer[BUFSIZ] /* the input buffer */
(This code is used in section 2.)
6. This means that we now have to strip the search
string from the command line, and put it in search.

<isolate search string 6> =
if(ac £ 1) <usage message 7>

else if(strlen(*++av)) <usage message 7>
else {
search = *av;
ac--;
}

(This code is used in section 4.)

7. Notice that we've ignored the messy business of an
error message in the last section and can taks it up at our
leisure. The encouraging news is that because the error
processing may well be more complicated than the main-
line code, we won't feel bad about writing ar error rou-
tine. Too often, if the error condition requires more code
than the correct branch of the if, we just pretend the
error will never happen.

<usage message 7> ==

{
fprintf(stderr,"Usage: %s string\n", *av);
exit(1);

}

(This code is used in section 6.)

8. The next module we need reads lines in the while
loop above. We pass this off to a function we will define
later. This function needs to return true if there’s a line,
and false if we've reached the last line of the input.

We could just use fgets() here, but we want to allow
for later expansion to an arbitrary list of files. As a result,
we usc an intermediate routine instead.

<we have read a line 8> =
get_next_line(buffer)
(This code is used in section 4.)

9. We provide another unnamed module, which con-
tains the text of get_next_line().

get_next_line(buffer)
char *buffer;
{
if(fgets(buffer BUFSIZ,stdin) == NULL)
return O;
else
return 1;

10. How do we search [or the string? Let’s populate this
module with a stmple if.

<search for the string 10> ==
if(find_string(buffer,search))
printf(" s" buffer);
(This code is used in section 4.)

RS/Magazine JANUARY 1995 29

Literate Prograrﬁming

11. What string search algorithm to use? We could
choose any algorithm from Chapter 5 of The Art of Com-
puter Programming. Instead, let's do something really sim-
ple-minded with the standard C string-handling routines.

find_string(b,s)

char *b, *s;

{
char *initial;
for(initial=b; initial; initial++)
{

initial = strchr(initial,*s);

if(initial NULL)
return 0;
if(strnemp(initial,s,strlen(s)) = 0)
return 1;
}
return 0;

}

12. However, il we're going to use the string routines,
we really need to declare them:

<Header files 3> + =
#include <string.h>

13. At the end of the TEgX file generated by cweave, we
get two useful indexes. The first index includes vari-
ables and the section numbers in which they appeared
(underlined entries are sections where the variable is
declared). The second index is an alphabetical list of the
module names and the sections where they are defined
and used.

ac, 4, 6.

av, 4,6, 7.

b, 11.

buffer, 5, 8, 9, 10.
BUFSIZ, 5, 9.

exit, 4, 7.

false, 8.

fgets, 8, 9.
find_string, 10, 11.
fprintf, 7.
get_next_line, 8, 9.
initial, 11.

main, 4.

printf, 10.

s, 11.

search, 5, 6, 10.
stderr, 7.

stdin, 9.

strchr, 11.

strlen, 6, 11.

strncmp, 11.
true, 8.

<Global variables 5> (Used in section 2.)
<Header files 3, 12> (Used in section 2.)
<Main program 4> (Used in section 2)
<isolate search string 6> (Used in section 4.)
<search for the string 10> (Used in section 4.)
<usage message 7> (Used in section 6.)

<we have read a line 8> (Used in section 4.)

An important thing to notice in our example above is
that we presented the program as it came to us, some-
times top-down, sometimes inside-out, sometimes back-
tracking to add a variable or an include file, but the
ctangle processor untangled it all and put the pieces
into the correct order for the compiler.

In CWEB, because C is a little strict about newlines, the
text to be compiled is pretty readable. However, in the
original Pascal-based WEB, the code output from tangle
became what's known as the “Pascal brick”: The code is
filled to 70 columns, with no line breaks for convenient
reading. This is intentional. Humans are supposed to read
the WEB code or the printed output of weave, not the
extracted Pascal code. The compiler, particularly a Pascal
compiler, doesn't care how the code is formatted.

We are reminded here of a colleague who was teaching
a course in Pascal to some students at a German indus-
trial concern that will remain nameless. He asked the
students to write a pretty printing program to format
their code. Several of them returned the next day with
programs to fill-and-justify the source.

Further Reading, More to Come

The fountain of all knowledge is the Internet. Consult
the newsgroup comp.programming.literate for ongo-
ing discussions about it. Of particular interest are two
tools called noweb and nuweb, which allow literate pro-
gramming without imposing large overhead.

In addition to Knuth'’s original paper in The Computer
Journal, two of Jon Bentley’s “Programming Pearls”
columns were devoted to literate programming, with exam-
ples provided by Knuth (Communications of the ACM, Vol.
29, May 1986, pp. 264-369, and June 1986, pp. 471-483).

The original WEB tools are described in detail, with
programs, in Stanford Computer Science Technical
Report 980 (September 1983). They are zvailable on the
Net from the Comprehensive TEX Archive Network
(CTAN) sites: ftp.dante.de, ftp.tex.ac. uk,
pip.shsu.edu. The Levy-Knuth CWEB is available on
the Net in the same places.

Next month, we’ll begin by discussing portability issues
and then move on to a full example of a useful tool in
CWEB. Stay tuned. A

30 RS/Magazine JANUARY 1995

Literate Programming

A Real Example, Part 1

by Jeffreys Copeland and Haemer

f you were with us last time,

you must have read our intro-

duction to literate program-
ming, a discipline originally devel-
oped by Donald Knuth. We
described the technique and provid-
ed a toy example using the cCwes
tool. As promised, we're back this
month with a larger example.

One of our references from last
month was from Jon Bentley’s “Pro-
gramming Pearls” column in Com-
munications of the ACM. In his June
1986 column, Bentley posed a prob-
lem to Knuth, for which Knuth
wrote a solution in literate Pascal.
Bentley then pointed out that
because Knuth was proposing a new
literary form, it should be reviewed
as such, and asked Doug Mcllroy to
do so. Suffice it to say that the liter-
ary effort did not wow the critics.

Our intention in this and next
month’s columns is to replay that bit
of history. We've chosen a useful
problem, and one of us (J. Copeland)
will write a literate program to solve

it. Afterwards, the other
of us (J. Haemer) will
review the solution.
Like last month, the
program was retypeset
from its original ver-
sion. If you'd like to see
the original, drop us an
email note, and we'll be
glad to send you a Post-
Script file to produce it.

A Bit of History

“Ted, are you more fluent in English
or French?”

“troff.”
—conversation between Chris Kostan-
ick and Ted Dolotta, circa 1984.

As we've discussed in our previous
series, the history of troff is long
and interesting. This ubiquitous
UNIX utility began as a tool for dri-
ving the C/A/T phototypesetter, a
huge mechanical monster that Wang
Labs stopped manufacturing more
than a decade ago.

Jeffrey Copeland (copeland@alumni.caltech.edu) is a member of the technical staff at
QMS’s languages group, in Boulder, CO. His recent adventures include internationalizing a large sales
and manufacturing system and providing software services to the administrators of the 1993 and 1994
Hugo awards. His research interests include internationalization, typesetting, cats and children.

Jeffrey S. Haemer (jsh@canary.com) is an independent consultant based in Bouldcr, CO. He
works, writes and speals on the interrelated topics of open systems, standards, software portability
and parting, and internationalization. Dr. Haemer has been a featured speaker at Usenix, UniForum

and Expo Kuwat.

32

RS/Magazine FEBRUARY 1995

Literate Programming

Also, the tools built for and around troff have grown
over the years. First were the preprocessors, like eqn and
tbl. Later, there were tools to “transmogrify” the bits des-
tined for the C/A/T into bits that could be read by Versatec
plotters or other devices. One of our favorites allowed you
1o preview a very rough approximation of your final type-
setter output on a Tektronix 4014 graphics terminal. The
transmogrification business developed into quite a cottage
industry, until folks realized that the typesetting engine
should output a device-independent form of typesetting
instructions rather than bits tied to a particular device, and
then post-process that intermediate form into device codes
fora CVA/T, or Autologic typesetter or Imagen laser printer.

Beginning in 1981, Interactive Systems Corp. developed
INroff, from a clean base,
then spent a great deal of
time and effort trying 10
make it bug-for-bug compati-
ble with troff.

Meanwhile, in the late
1970s, Brian Kernighan had
developed a typesetter-inde-
pendent troff, known as
ditroff, based on the origi-
nal C/A/T sources. When
ditroff was released in 1982
(accompanied by the much-
cited Bell Labs Technical
Report 97) Kernighan'’s
sources became the reference
version that nearly everyone
else adopted.

An internationalized version of ditroff is distributed on
the RS/6000 as part of AlX. The Free Software Foundation
provides James Clark’s grof £, a version [ree of AT&T
license restrictions, which is distributed with systems
shipped by BSD1.

One of troff’s failings is in page makeup. It is a wonder-
ful galley system—that is, it is very good at setting characters
into slugs (printer talk for lines of type) and getting those
lines justified. But it is very bad at ensuring that groups of
lines make pleasant paragraphs and that those paragraphs
are well-composed into pages. (Until recently, page make-
up was done from galleys, by trained pasteup people.)

Here are some of the most important page-layout tricks:

* Avoid widows (a header alone, or single lines from
the beginning ol a paragraph, at the bottom of a page).

* Avoid orphans (the last line of a paragraph alone at
the beginning of a page).

* In general, the pages in a document should be the
same length.

* In particular, facing pages should be made the same
overall length, by adding extra leading between paragraphs
if necessary.

nteractive Systems Corp.

developed INroff, from a
clean base, then spent a
great deal of time and effort
trying to make it bug-for-

bug compatible with troff.

» Figures and display equations will need tc “float,” or
move from their original position in the galleys, but should
not appear very far away from their original references.

One of TEX’s notable features is that it makes a great
deal of effort to do good page makeup. Both Michael
Plass’ work developing TgX's paragraph-building algo-
rithm and Frank M. Liang’s work on TgX's hyphenation
algorithm resulted in doctorates.

During the original era of C/A/T-only outpu, in the late
1970s, our polyglot friend Kostanick and colleague Dolotta
developed a post-processor at AT&T Bell Labs that took
C/A/T output bits and did some page makeup. The
processes vertically justified facing pages and rearranged
slugs as necessary to prevent widows and orphans. It need-
ed to have some kriowledge of
the page’s design, in order to
prevent destruction of headers
and footers. As a result, you
needed to tune and rebuild it for
each new page laycut. It was not
a general-purpose tool.

Later, Kernighan and Chris
Van Wyk developed the pj pro-
gram, in order to justify
ditroff output. Uafortunately,
pj was created on the erroneous
assumption that troff finds
good page breaks and just needs
a little help with justification.
They followed this with a gener-
al-purpose page makeup pro-
gram pn, which they describe in “Page Makeup by Postpro-
cessing Text Formatter Output,” (Computing Systems, {2}
(Spring 1989], pp. 103-132).

We realized over the course of last summer that we need-
ed just this program. We were producing too many one-
and two-page troff documents that needed jiggering and
adjusting and reformatting to get their pages to look nice.
As is often the way with life, it's not until the snow started
falling in the Front Range of the Rockies that we had time
to sit down and write our version of pm.

The Problem: A Short Set of Rules

Our pages are made up of several kinds of slugs:

* A slug containing text (which Kernighan and Van
Wyk call a vbox, in homage to TgX);

* sp slugs, which contain space;

* ne slugs of parameter h, which force a page break if
there is not h vertical space left on the page.

Adjacent sp slugs are combined to contain the maximum
of their heights; when an sp slug is output, its size may be
increased to allow vertical justification. Text slugs are
grouped, with tags between them, and come in two flavors:
breakable and unbreakable. An unbreakable group-a page

RS/Magazine FEBRUARY 1995 33

Licerace Programming

header block, for instance~cannot be split across a page
boundary. Breakable groups—for example, a paragraph-
have a parameter k, which tells us how many lines must
stay together if we break the group. Page title groups, pt,
are a special case: We gather them as they appear and out-
put one per composed page. If we have some groups left
over when the document is complete, they populate the bit
bucket. If we have too few, we use the last one again.

Note that we have postulated a problem that is slightly
smaller than the one Kernighan and Van Wyk solved. We
don't allow floating groups, and we ignore the problems
of footnote blocks, so we are only dealing with streams of
slugs and not with floats. Furthermore, we ignore the
multicolumn problem and only work on making up
pages of single columns.

How do we process the groups? How do we get tags
into them? Read on.

sn set the point sizeton

fn set the font ton

cx print character x

Cxyz print special character named xyz

ttext print text with each character at its natural
width (used only by groff)

Hn go to absolute horizontal position n

Vn go to absolute vertical position n

hn move n units horizontally

vn move n units vertically

nnc move nn right, print character c;
nn must be two digits

Dt..\n draw a graphic of type ¢

nba end of line: b space before, a space after

w paddable word space

pn begin new page n; set V to 0

x..An device control

Device-independent troff produces strictly ASCII out-
put. (Not true for the internationalized version on AlX~-it
produces output strictly in the codeset of the target print-
er.) There are a number of directives, as seen in the fol-
lowing table. Output is parsable by a post-processor.

Note in particular the device control directive x.... We can
provide arbitary device controls with the ditroff directive
\X"...’. Each tag and group marker takes the form ol a
device control and is generated by a \x’ ...’ ina macro.

The Page Makeup Algorithm: An Overview
At the highest level, we are adopting Kernighan and
Van Wyk’s “algorithm 1" in its entirety. To wit:

<algorithm one > =
<while slugs remain to be output > {
<fill currpage with enough eligible slugs >
<compose currpage into a page >

if (<this is not the last page >)
<justify currpage to height pageht >
<output the next pt group and currpage >

Notice how we adopted the algorithm bodily from
Kernighan and Van WyKk’s article, and that CWEB allows us
to presently ignore issues of data structure and keywords
like main. This also means that we have completely
ignored the difficult details of data structures for now.

Kernighan and Van Wyk use a series of queues to popu-
late the current trial page with slugs. Slugs are read into a
queue called Input and tagged with a serinl number. They
are identified as to type and routed into either Bqueue,
containing breakable streams, or Uqueue, containing
unbreakable streams of slugs. Slugs flow from Input to
Bqueue or Uqueue and are processed onto the trial curr-
page immediately; this means that only one of Bqueue or
Uqueue is populated at a time. Also, when Bqueue is pop-
ulated, it only contains the minimum number of slugs to
honor the parameter k, which tells us the minimum num-
ber of slugs from the group that can appear on any page,
and which slugs are attached to each breakable group.

You may observe that since only one quieue is occupied
at a time, this is exactly the same as read:ng one slug at a
time from the main input stream. This is true. However,
we set up the queuc management now, because it will be
easier~here’s one of our famous exercises for the reader—
to add handling for floating blocks of slugs later.

Lets expand the first step of algorithm one, given the
preceding discussion of queues.

We always want to add as many unbreakable groups as
we can to the page before we begin to add text from break-
able streams. However, when we reach a second page title
group, we stop adding slugs to the page from Uqueue.

Similarly, since Bqueue is populated with the minimum
number of slugs we can add without causing a widow or
orphan, we either add all its contents or recycle them for
the next try.

<fill currpage with enough eligible slugs » —
<unblock all queues >
<while there is a queue neither empty nor blocked>
{
<while Uqueue is available >
{
<try to add head of Uqucue to currpage >
)
<try to add all of Bqueue to currpage >
if (<Bqueuc did not fit>) {
<empty Bqueue back to Input>
<block Input>

}

34 RS/Magazine FEBRUARY 1995

Literate Programming

This begs an important question: how to “try to add...”
some or all of a queue to currpage, since we must check
the height of the trial page at each addition.

<do a trial add > =

<add the trial item to the end of currpage >

if(<height of trial page is greater than pageht >) {
<remove the trial item from currpage >
<recycle trial item to the input queue >
<block the input queue >
<return failure status >

!

else {
<return success status >

}

Notice that checking the height of the trial page is com-
plicated. First, we need to preserve the “natural” height
of paddable spaces. We will do this by having two heights
for each paddable space slug with each slug’s given and
expanded height; after each trial, we will reset the
expanded height to the given height. Also, we cannot
blindly increase all the paddable space on the page. Every
trial page would succeed after the first paddable space
was added, but they would have too much white space.

Kernighan and Van Wyk discuss three shortcuts to
compute the height of the trial page. The goal is to avoid
performing a complete calculation of the trial page’s
height, which includes justifying the page, for each slug
we add. Each of these shortcuts has some failings for
their larger problem, which involves floating items, but
any of them would work in our postulated vniverse,
which only includes running text.

For simplicity, we adopt the same shortcut Kernighan
and Van Wyk reported, which adds slugs while the sum of
the natural heights of slugs on the page is less than pageht,
and then adds slugs only if a trial justificatior: ensures that
the page doesn't overflow. So, we can add another step:

<height of trial page is greater than pageht > ==
(sum_of_heights() > pageht) | (trial_justification() > pageht)

Here We Take a 30-Day Break

That's about all we have time for this month. We've suc-
ceeded in outlining the problem of page justification. How-
ever, we've neatly ignored nearly all the issues of imple-
mentation and data structure. We'll return next month
with some remaining details of the algorithm and some
conclusions about it, and our on-the-spot exercise in liter-
ary criticism. A

Tomorrow and Beyond....

IBM® RS/6000" and iclp

Complete System Integration
- Hardware
- Software
- Connectivity
- RAID

Call for unparalleled service

International
\ Data
Products

X Minnesota
Florida - California

L ~ 800.846.7254

1BM is a registered trademark of International Business Machines Corporation

Circie No. 16 on Inquiry Card

SALES * RENTALS
CONVERSIONS * INTEGRATIONS

RS/6000

RT/6150

SERIES/1
SYSTEM/36
AS/400

IBM

Authorized

Osinbutor Product

Integrator

CALL:
(800) 888-2000

= .
{/‘2 Dempsey
- BUSIVESS SYSTEAS

Whrere IBMEX 0Ny fs SeC. oo NoTure.

18377 Beoch Biva, Surte 323
Huntinglon 8each, California 92648
{714) 847.8486 o FAX: (714) 847-3149

BMis s of Bush C:

Circle No. 11 on Inquiry Card

RS/Magazine FEBRUARY 1995 35

Literate programming

Literate Programming:
An Example, Part 2

by Jeffreys Copeland and Haemer

We Return from Our Break

11. We've had a month to mull
over the algorithm we began pre-
senting in February’s column. If
you were with us then, youwll
remember that we were working on
a troff [ilter to do page makeup as
a literate programming problem.
We've based this on Kernighan and
Van Wyl’s program pM, which they
describe in “Page Makeup by Post-
processing Text Formatter Qutput”
(Computing Systems, {2} (Spring
1989), pp. 103-132).

As before, this program has been
re-typeset from its original form; to
obtain the original, feel free to send
us email.

To complicate matters, we goofed.
We deleted the section numbers
when we submitted last month’s col-
umn. That's why this month’s seg-
ment starts with section 11. That’s
also why there are references to sec-
tion numbers that don’t appear in
this month’s column.

Without further delay, let’s jump
into the problem where we left ofl.

Data Structures

12. We have a number of data
structures we've ignored so far.
We're about to need them, so we
should decide how they will be
arranged.

13. We begin by defining the data
structure for the slug itself. We need
the type of slug (we define the possi-

Jeffrey Copeland (copeland@alumni.caltech.edu) is a member of the technical staff at
QMS's languages group, in Boulder, CO. His recent adventures include internationalizing a large salcs
and manufacturing system and providing software services to the admimstrators of the 1993 and 1994
Hugo awards. His research interests include internationalization, typesciting, cats and children.

Jeffrey S. Haemer (jsh@canary.com) is an independent consultant based in Boulder, CO. He
works, writes and speals on the interrelated topics of epen systems, standards, softwarce portability
and porting and internationalization. Dr. Haemer has been a featured speaker at Usenix, UniForum

and Expo Kuwait.

RS/ The Power PC Magazine: MARCH 1995

3

Literate Progmmming

bilities as manifest constants), the slug’s height (both its
natural height and trial expanded height), its parameters
and the actual troff output composing it. We add a
block_count, which tells us how many of these slugs
immediately preceeded this one.

#define SLUG_BS 1

/* breakable stream */
#define SLUG_US 2

/* unbreakable stream */
#define SLUG_PT 3 /* page title */
#deline SLUG_SP 4 /* space slug */
#deline SLUG_NE S /* need slug */

struct slug {
int type;
int natural_ht;
int trial_ht;
int k;
int block_count;
char *text;

14. We also need 1o define the queues of working slugs.
We'll implement these as arrays up to some size, and oper-
ate them as circular buffers. We'll also need a (lag to indi-
cate if the queuc s blocked. We define queues for break-
ablc and unbreakable streams and page title slugs, and the
main input queue. Let's define the actions of the queue
pointers now: ghead and qtail are equal if the queue is
empty, qtail points at the last slug entered into the queue
while ghead points at the last slug read from the queue.
This means that both pointers are pre-increment.

Onc more (possibly subtle) point: Notice that we define
a lookahead queue. We will populate this queue with
slugs we need to preview for some reason. These slugs
can’t be read directly into Input because Input is expected
1o contain the minimum number of slugs to be processed
at each stage. If Input did not perform this function, when
we recycled rejected slugs to it, the order of text on the
page would become garbled.

#dehne QSIZE 1024
struct queue |
struct slug *Q[QSIZE];
int ghead, qtail;
int blocked:
} Bqueue, Uqueue, PTqueue, Input, Lookahead;

15. Lastly we need to define a structure for the current
trial page. We could just definc it as another queue, but it

is a bit cleancer to implement a separate data structure.

struct currpage |

struct slug *sp [QSIZE];
int slugcount;
} currpage;

Utility Routines

16. Now that we've defined data structures, we need
some routines to manage them. We can write these as
freestanding functions.

Let’s declare all the routines that don’t return int here,
to make our lives easier later on.

struct slug *get_next_lookahead();
struct slug *get_slug();
struct slug *read_slug();

17. We begin by writing routines to get a slug from the
queue Input and to push rejected slugs back. In get_slug,
we grab all available slugs from the Input queue; otherwise,
we need to get one from Lookahead. We transfer some data
from the previous slug if it is of the same type. This pre-
vents us from needing global variables to keep track of
needs and record counts. We also need a general-purpose
enqueue routine to put slugs on a queue. In unget_slug, on
the other hand, we back up the Input queue by one entry.

struct slug * get_slug()
{

int wtype, n, k;

if Cempty(Input)) {

next(Input.qtail);

Qtail(Input) = get_next_lookahead();
}
/* get last type */
wtype = Input. QlInput.qhead]->type;
n = Qhead(Input)->block_count;
k = Qhead(Input)->k; /* point 1o next slug */
next(Input.ghead); /* transfer data from previous slug */
Qhead(Input)->block_count =
(wtype§Input.Q[Input.qhead]->type) ? ++n: 0;
Qhead(Input)->k =
(wtype§input.Q[Input.qhead]->type) 2 k : 0;
return(Qhead(Input));

enqueune(Q, s)
struct queue Q;
struct slug *s;

{

next(Q.qtail);
Qtail(Q) =s;
}

unget_slug()

32 RS/ The PowerPC Magazine

MARCH 1995

Licerate Programming

{
prev{Input.qhead);
!

18. To do the preceding operations, it helps to have
macros to do modulo arithmetic on the queue pointers.

#define next(x)
{
(x)++;
(x)%=QSIZE;
}
#define prev(x) (((x)=0) ? (x) = QSIZE :(x)--);
#define empty(q) (gq.qhead = q.qtail)
#define Qhead(q) (q.Qlq.qhead])
#define Qtail(q) (9.91q.qtail])

19. Next we introduce the routine to get a slug from
Input into the appropriate queue for the slug type.

process_next_slug_from_Input_queue()
{

int i;

struct slug *s;

s = get_slug();
switch(s->type) {
case SLUG_US:
do
{
enqueue(Uqueue, s);
J
while((s=get_slug())->type = SLUG_US);
unget_slug(s);
break;
case SLUG_PT:
enqueue(PTqueue, s);
break;
case SLUG_BS:
<special input processing for breakable stream slugs 20>;
break;
)
return 1;

J

20. Why do breakable streams need to be handled spe-
cially? Notice that we read all of the Us-type slugs we can
into the queue. This is hecause they need to be treated as
a block. (Kernighan and Van Wyk treat blocks of s slugs
as a single compound slug.) With BS slugs, it is not as
easy: We must read the minimum number consistent
with the parameter k, but no more.

As a result, we need 10 do some special handling for
Bqueue to make sure that there are at least k slugs in the

queue at each end of the paragraph.

<special input processing for breakable stream slugs 20>=
enqueue(Bquetie,s);

<prevent widows 21>

<prevent orphans 22>

This code is used in section 19.

21. Preventing widows and orphans is remarkably sim-
ple, in principle. At each end of a breakable stream, we
just ensure that there are k slugs in Bqueue.

<prevent widows 21>=
if(s->block_count=10) {
for(i=1;i<s->k;i++){
if((s = get_slug())->type#SLUG_BS) |
unget_slug(s);
break:

enqueue(Bqueue, s);
}
}

This code is used in section 20.

22. Preventing orphans is marginally harder. We need
to look ahead into the input stream to see how many BS
slugs remain ahead.

<prevent orphans 22>=
1 = BS_slugs_to_come();
if(i>0&& i<s->h){
while((s=get_slug())-> type = SLUG_BS)
enqueue(Bqueue,s);
unget_slug(s);
}

This code is used in section 20.

23. We also need a routine to populate the Lookahead
queue. Note that this routine is essentially a poor man’s
version of process_next_slug_from_Input_queue(). The
heart of this routine is the one that actually rzads slugs
from the troff input.

struct slug *get_next_lookahead()
{
if(empty(Lookahcad)) |
next(Lookahead.qhead);
Quail(Lookahead) = read_slug();
}
next(Lookahead qghead);
return (Qhead(Lookahead));

J

24. BS_slugs_to_come() is essentially a dirty trick on

RS/ The PowerPC Magazine

MARCH 1995 33

ﬂ..iterate Programming

the data structures. We need to count up the BS slugs in
the Input and Lookahead queues, and to read ahead until
we run out of them.
BS_slugs_to_come()
{

int count = 0;

int i, type,

<check Input 25>
<check Lookahead 26>
<read more, if needed 27>

!
25. We look in the Input queue first:

<check Input 25> =

for(i = Input.qhead, i< Input.qtail, v+) |
if((Input.Qli])->typexSLUG_BS) return count;
count++;

}

This code is used in section 24.
26. Similarly, we check Lookahead.

<check Lookahead 26> =

for(i = Lookahead.qhead; i < Lookahead.qtail; i++) |
if((Lookahead.Qli])->type # SLUG_BS) return count;
count++,

)

This code is used in section 24.

27. Lastly, we read as many more slugs as we need to
get to the end of the current string of Bs slugs.

<read more, if needed 27> =

do

{
next(Lookahead.qtail);
Qtail(Lookahead) = read_slug(),
if((type=(Qtail(Lookahead)->type)) = SLUG_BS)

count++;

}

while(type = SLUG_BS);

return count;

This code is used in section 24,

Composing the Page

28. We have already discussed the page makeup algo-
rithm in overview. The heart of that algorithm was out-
lined in last month’s column, and now that we have utili-
ty routines 1o work with, it is time to expand it.

29. We begin with the procedure for unblocking all
queues. Since we have a flag associated with each queue,
this is quite simple.

<unblock all queues 29 >=
Bqueue.blocked = Uqueue.blocked = Input.nlocked = 0;
This code is used in section 7.

30. We need to check if queues are available. 1f a
queue is not empty and not blocked, we can continue to
add slugs to the page. Il the ready queue is Input, we
must process its head before proceeding to the main
loop. We check using a convenient macro, which we
define fiest.

#define ready(q) ((~q.blocked) & (mempty(q)))
<while there is a queue that is neither empty

nor blocked 30> =
while(ready (Bqueue) || ready(Uqueue) ||

(ready(Input) && <get from Input 31>))

31. Next, we can process the Input queue.

<gel from Input 31}> =
process_next_slug_from_Input_queuc()
This code is used in section 30.

32. Now we get to a slightly more dilficult part. We will
expand the processing for Uqueue.

<while Uqueue is available> =
while(ready(Uqueue))
This code is used in section 7.

33. For the trial add, we follow the outlire of the code
in last month's issue. (This code-which was the module
do a trial add-is intended as an outline of the code for
processing both Uqueue and Bqueue, which we neglected
to mention when we wrote it down. We won't expand
that code further.) Remember that the “head” of Uqueue
is conceptually a compound slug, so we add all the slugs
that make up this unbreakable block. We <ave a pointer
to the place we started in Uqueue, so we can back out the
group of slugs if they don’t fit.

<try to add head of Uqueue to currpage 33>==

n=0;

while(~empty(Uqueue))

{
next(Uqueue.qhead);
currpage.sp[currpage.slugcount++] = Qhead(Uqueue);
N4+

!

if(<height of trial page is greater than pageht 9>) {
<recycle last n slugs back to Input 34>
Uqueue.blocked++,

!

This code is used in section 7.

34 RS/ The PowerPC Magazine

MARCH 1995

ﬂ_iterate programming

34. Recycling the compound slug to Input is roughly the | 36. We check if we've got too much for the trial page.
same loop as we use to put the text on currpage. We also

have to remove the slug [rom currpage. <Bqueue did not fit 36> =
<height of trial page is greater than pageht 9>

<recycle last n slugs back to Input 34> = This code is used in section 7.
currpage.slugcount -= n; ,
for(i=0;i<n;i++) 37. We may need to recycle those stugs back to Input.

enqueue (Input, For this we can use the same code we used for Uqueue.

currpage.sp
[currpage.slugcount + il); <empty Bqueue back to Input 37> =

This code is used in sections 33 and 37. <recycle last n slugs back to Input 34>

This code is used in section 7.
35. We perform a similar set of operations for putting

the contents of Bqueue onto the page, again using the 38. We can also simply dispose of blocking the Input
code in section 8 as a model. queue.
<try to add all of Bqueue to currpage 35> = <block Input 38> _

n=0; Input.blocked++;

while(-empty (Bqueue)) { This code is used in section 7.

next(Bqueue.ghead);
currpage.splcurrpage.slugcount++| = Qhead(Bqueue); 39. Justifying and Qutputting the Page

N4+, Now that we've got slugs on the page, we nced to have
J some utility routines to determine whether tke page is
This code is used in section 7. full, and to justify it il it is.

- - .

":‘gr.""
eIms

= A - i

e iy A

' JB> SN
] \ % /'»"‘ |

43 T — TR Ar 4 L__
SCO Operating —View DeskTop { MultiTech

] —
7 Systems “It’s |JSB MultiVie

Sys

] s, why not fly MultiTeg:h is more than high r_eliability modems for
it you're connecting PC's 10 UNIX system Y your mission critical applications. With an approach

L] ® * 1 . . .
BllS]]lESS Cl‘ltlcal. petween Windows and UNIX w:rr;{ﬁiati"“ Manster and toward wide area networking that includes

i {ormance terminal MultiTech's comprehensive line of modems,
? SCO i gt multiplexers, X.25, lease line and LAN intercommu-
It finting Ly — RS232, p - R29,
S ° e ce of connectivity RS Sﬂ 4

- i nication equipment, JBS can configure every WAN
SPECIAL OFFER: Purchase 2 or more SCO ,—7} * W‘de\s; ?g)%llSPX DECnet, NetBIOS, | requirement you may have. Call today for products
Operating Systems on one invoice T%%des FTP LPR & LPD utiilies ranging from economical ZCX modems to the MMV
from the JBS catalog. Fax a copy of . TCP/IP stack, adds Windows series of Muxes for Voice/D 3ta/Fax on one
your paid invoice and JBS will give 4 . FreeK 1 capability 10 existing stacks communication link
you 2 $50.00 AMEX Gift 0 S(;(z)cnﬁegurable & secure deskiop

Cheque. CALL MlllﬂM@

[' ° Offer valid through March 31, 1995 SZ 9 5 .00 Retail l for the latest pricing
Y v ——— -
#1929 at Distribution

' R) R P Ay —]
@.,Board %%ION ﬁm Z_: % [/ 'FORM'X Oal For Your FREE Catalog

: LINE wmeo@ stallion 0 1-?0?-\(873-(18649
™ loget Your FREE Catalog ™™ nipex veewx WYSE N0 ax In Your Order....
e e o TR R i et l| ' I\ S

j y

	Literate Programming.pdf
	Literate Programming
	1.Introduction to Literate Programming
	2.Real Example, Part 1
	3. Literate Programming- An Example, Part 2

