
The Journal For IBM Workstation Users
�

ZU4AUGU993

uI
-

I I

.. � 5

ISO I ,a.

1,

�

-

\\

� �
- (A

�._\

�S\S

��0 ���.
SSSS\ S0

�5� ,.S� S
�

Sc � - � it

S.
-\

S *�
- --S

�f.. --c
5--�- -5.-

$.� :

� -�

,/

:
�

0

* ZvLJOs

.,

-- (\jIii �

S -

-

.

-q i:-O�

I

AUGUST 1993 VOLUME 2 NUMBER 8

The Journal For IBM Workstation Users

RSLMgazne
COVER STORY

Switching�Everybody�s Doing It 38
At least in some form. To switch or not to switch isn�t the

question for hub vendors, but how it�s done is a big
concern for users.

Intelligent Hubs 46
A buyer�s guide to the functions and features of
intelligent hubs offered by 28 vendors.

FEATURES

DEPARTMENTS Using ISDN and On-demand Bridging 52
Or how to live on Fiji and still mahe a living.

Editorial 4

Reader Feedback 16 NE\VS

New Products 55 IBM�s All-purpose OS 6
Also includes: AIX Flavors, IBM�s Object Objec
tives, Banyan Busy Planting Vines, Systeml36

Migration

COLUMNS

Q&AIX 14
Communications made easy with the latest version of
Kermit.

Systems Wrangler 18
The Wrangler answers some questions from readers.

Datagrams 24
How to register for internet connectivity.

AiXtensions 28
It�s a quiz! Question 1: How is IBM going to tie its many

RS/6000 architectures together?

POSIX 32
The first column in a new series on POSIX

programming.

columns illustrated by GREG CLAR(E

cover photograph '1993 TOM CROKEjV)SUAL IMAGE INC.

R.S/Mttort t ffd tOM Corp. pinball machine courtesy of NEW ENGLAND COIN-OP DISTRIBUTING INC.

p. 28

95/Magazine (ISSN 13610030) is pubhshed nronthty by Computer Pub/bRing Group lnt. 1330 Beacon Sr
-

BroOkline, MA 02146 Telephone (617) 7397001 Second-class Postage Rates paid at eoston, MA. and at addit onal mading ofhceu Posted ander
Canadian 1PM #0235831 ThIs publIcatIon lb free to qualified subscribers as determined by the publisarer SubscriptIon roles are S60 per year In the United States, and $95 (satlace mall) and $150 (aIrmail) outsIde the Uniteal States, Subscription requests can

be cent to Circulation pepadmeet. R5/Ma3azlne, 330 Beacon Sr. Brookline, MA 0214601 electroeicatly mailed ro circlaeepen corn. POSTMASTER. please send all address changes to RSiMagoarne. CIrculation Depaetmeut. 1330 Beacon St., Brooklrne. MA
02146. Please allow 68 weeks for chonge 05 address. Include yoar old address as welt as new�encloslny. if possible, an address label from a recent Issue, All tlghtb resetned ' Coeynght 1993, Computer PublIshIng Group nc tOo pan of (Iris pablrcatron may
B, transmitted or reproduced in any arm by any means wnthaat permission in writing rem the puUisher Material for pubtlcatian should be sent to the attentIon of Anne Knowles at the above address or electron catly malted to aaoo-aieeeeon c0m

letters sent to the pabllcation become the prooerty of the publication and are assamed to be Intended or publication and may be used so Art Information henRi n Is helleved to be accurate 10 the best Of our abilIty,

RS/Magazine AUGUST 1993 3

RStMjiz&
publisher

S. HENRY SACKS

editorial director

DOUGLAS PRYOR

editor

ANNE KNOWLES

managing editor

LISA GUISBOND

art director

JOHN �A�. KELLEYJR.

senior editor

JANE MAJKIEWICZ

technical editor

BARRY SHEIN

researclt editor

MAUREEN MCKEON

assistant managing editor

MARY ANNE WEEKS MAYO

marheting manager

SUSAN R. SACKS

associate art director

HANNA DYER

designer
LEE A. BARTELL

pioclsction director

Rid-lARD M. ABAID

production manager

DEBORAH BEDLOW

circulation director

DEBORAH MOORE

circulation assistant

PATRICK T. COLEMAN

adnii,i istrcttisc assistant

TINA JACKSON

EDITORIAL ADVISORY BOARD

Phylecia Brandlcy
National Center for Atmospheric Research

W. Brcnnan Carley
I nstitset

Gordon Dickens

Dickens Data Systems

John Dunkle

WorkGroup Technologies

Ken Faubel

CenterLine Software Inc.

Jeanette Horan

Open Software Foundation

Richard Kachelmeycr
Network Systems Corp.

Christopher Locke

CIMLINC Inc.

EDITORIAL OFFICES

1330 BEACON STREET

BROOKLINE, MA 02146

(617) 739-7001

email: aknowles@experc .com

BPA International Business Publication

Membership Applied for December 1992

Printed in USA

Editorial

IBM�s Commercial

Legacy

I
BM�s historic influence in the commercial

market bodes well for the future of its

RS/6000 line. It couldn�t bode badly,

though IBM�s clout isn�t quite what it used to

be. According to IBM, sales of RS/6000s

destined for commercial applications are

growing 30% to 35% annually and will soon surpass technical sales, if that

hasn�t happened already. The future of IBM�s competitors�i.e., Sun and

HP�lies in the $10 billion-plus commercial UNIX market as well,

especially in their collective quest for a piece of the bigger PC pie. (For

more on IBM�s plans to support AIX and PC operating systems on a single
platform, see RS/News, �IBM�s All-purpose OS�).

IBM�s commercial division recently did a dog-and-pony show to outline

its plans and product line to the press. The group�s disclosures included

plans to bring out multiple versions of AIX for different platforms and

applications (see RS/News, �AIX Flavors�), plans for its hardware line that

will span notebooks to message-passing parallel processors with hundreds

of processors (see AlXtensions for discussion on some of the larger

systems) and the announcement of a smaller but dedicated �;ales force

selling the RS/6000.

IBM, for example, is in the process of commercializing the SP1 parallel

system with beefed-up 110, the CICS transaction-processing monitor and a

version of AIX that has MVS attributes. Big Blue certainly understands the

data-center environment and data-server concept better than its rivals. Yet

the company still seems to suffer from another legacy that does not bode

well for its future�excessive layers of decision making.
Also, in enterprisewide networks, hubs are playing an increasingly

important role, especially as their intelligence and functionality grow. This

month�s cover story, written by Senior Editor Jane Majkiewicz, explains
the different switching technologies used by most hub vendors. The

buyer�s guide, compiled by Research Editor Maureen McKeon, lists

intelligent hubs offered by 28 manufacturers. (If IBM didn�t make the list,

it�s not our fault. Their many decision makers didn�t meet the deadline.)

This month, we also introduce a new column by our 118N duo. This time

around, Jefireys Copeland & Haemer are tackling
POSIX programming, from the outside in.

JJ1

4 RS/Magazine AUGUST 1993

POSIX

From the Outside In

by Jeffreys Copeland and Haemer

T
his month, we start a series Why POSIX?

on POSIX programming. This Over the past few years, vendors

first column is called �From and users have been moving toward

the Outside In� because we plan to standards-based computing. The

approach POSIX.1 from an unortho- phrase most heard has been �open
dox direction: Well start with shell- systems,� which, after all the mar-

level commands, which we assume keting hype, has

you know, and try to infer what must become as empty �
be in POSIX.1�the programming in- as the word �best

terfaces to the operating system�to seller� in the pub-
make the commands work. We lishing business or

�blockbuster� m

a UNIX system. If you�re reading this try. The impetus

magazine, that�s probably AIX, which behind open sys

is fine since AIX on the RS/6000 was tems is that,

designed to be POSIX-conforming. though hardware

This column will provide an over- is cheap and get-

view: In a sort of question-and- ting cheaper, soft-

answer forum, we�ll discuss what�s in ware�building,
POSIX.1 and how it fits into the maintaining and

world of standards. In later columns, learning to use software�is expensive
we�ll tackle the details. Along the and getting even more expensive.

way, we�ll digress a lot to talk about We can�t afford to throw it out, so

portability, style, design and whatev- we have to pay to port it.

er else takes our fancy but always The big breakthrough in porting
come back to POSIX.l, the lynchpin was UNIX, the first real, portable
of UNIX systems programming. The operating system. Invented by Ken

columns are based on one of Canary Thompson in 1967, UNIX was run-

Software�s courses on POSIX pro- ning on CPUs as disparate as the

gramming. 8088 and the Cray 1 by the mid

Jeffrey Copeland (jef@us .

shi
.
con�) lives in Austin, TX, where he is project manager for SHL

Systcnihouse 1-Ic rcccntly acted as software conuhani for the administrators of the 1993 Hugo
Awards. His technical intereSts include internationalizat ion arid typesetting.
Jeffrey S. Haemer (j sh@cana� . corn) is tin independent consultant based in Boulder, CO. He

works, writeS curs! speaks on th interrelated topics of open systems, standards, software portability
arid porting, anti internationalization. Dr. Haenner has been a featured speaker at Usenix, UniForunt

arid Expo Kuwait.

32 RS/Magazine AUGUST 7993

POSIX

1980s. Dennis Ritchie�s C, written so quickly grew to enjoy nearly univer- won�t help you port your C code to it,

that he could create UNIX, had sal industry support. With almost but a carefully written shell script

spread even farther. unheard-of speed, POSIX produced should work just as welt on your 286

Porting system software from one ANSIIIEEE Standard 1003.1 in 1988 above the clouds in coach class as it

UNIX to another was easy�well, not and its revision, ISO Standard IS does on your RS/6000 al home.

exactly easy, but not appreciably 9945-1, in 1990.

more difficult than porting a That�s just the beginning. There are How did POSIX

FORTRAN application from one yen- now nearly two dozen POSIX stan- come into being?
dor�s compiler to another. As Steve dards projects that range from stan- This is almost the �why is the sky

johnson pointed out about the dards for other pieces of the operat- blue?� question for the month, and

portable C compiler back when ing system, such as the shell and the answer is almost as long-winded.
UNIX Version 6 was the only game shell-level commands, to system-lev- (Side note to our kids: rhe sky is

in town: Each time you port a piece el APIs for other languages, such as blue because of scattering, which

of software, it takes causes the air to act like a

roughly half the effort of prism. For more details,

the last port. read section 32-5 of The

The key UNIX question 1 Feynman Lectures on

became how to cut port-
irnost any OS can C0fl Physics, Volume 1, before

ing costs. A piece of the you go to bed tonight.)
answer to this problem in

,

form to POSIX standards. One good approach to

the software industry has the answer 5 to explore

always been �standards�: the twisty maze of little

Figure out what everyone standards bodies. We�ve

agrees on, standardize the syntax and Ada. In our articles, we�ll confine our- already mentioned UniForum, an

semantics of that core and move on. selves to the original POSIX.1 stan- organization that traditionally helps

Language standards, such as FOR- dard because we don�t want -to bite off identify areas ripe for standardiza

TRAN-66, FORTRAN-77, more than we can chew. Except, of tion. Such recommendations are

FORTRAN -90 and an endless succes- course, when we feel like it. made to approved standards-making
sion of COBOL standards, provide organizations, such as ANSI�s X3 corn-

familiar examples of this. But a stan- So, is POSIX UNIX? mittee and the IEEE. These organiza
darcl for an operating system? No, it�s not. POSIX is an acronym tions don�t actually make standards

The first group to seize this new for a family of standards whose full themselves, but delegate the job to

idea and actually do something with title is Portable Operating System subcommittees populated by volun

it was UniForum (then /usr/group), Interface. (Actually, it isn�t an acro- teer technical experts. In this case, the

which created a �standard� based on nym, since IX doesn�t stand for inter- IEEE gave the job to th Portable

AT&T�s UNIX System Ill. And just as face. POSIX is a name invented by Applications Standards Committee

programming-language standards Richard Stallrnan of the Free Soft- (PASC), and its subcommittees,

avoid specifying compiler-implemen- ware Foundation.) In principle, 1003.1, 10032, 1003.3, 1003.3.1,

tation details, the /usr/group stan- almost any operating system can 1003.3.2... The numbers are arbitrary
dard didn�t try to standardize UNIX conform to POSIX standards. For and roughly chronological. So far as

internals, it specified interfaces: the example, the current off-the-shelf we know, the numbers have to be

section 2 and 3 calls of traditional release of DEC�s VMS provides the rational, even if the committees don�t;

UNIX nianuals. POSIX.1 system call interfaces, otherwise, the supercomputing group

Although it had no official stand- We say �almost� because it isn�t could have been lOO3it. They proba

ing�/usr/group not being an accredit- always possible to conform. You just bly even have to be nonnegative; there

ed standards-making body�the can�t £ork() on MS-DOS. This is our is a 1003.0, perhaps in testament to

/usr/group standard was quickly lead-in to the point that the various UNIX�s ties to C, but no 1003.-i.

adopted by the IEEE as a base docu- standards in the POSIX suite are mod- In the next tier of the bleachers, we

ment for a real, operating-system- eled on UNIX hut they need not come have the American National Standards

standards project. Moved along by bundled as a package. Mortice-Kern Institute (ANSI) and tFe International

pressure from the National Bureau of Systems provides a nearly complete Standards Organization (ISO), which

Standards, powered by the U. S. gov- set of POSIX.2 utilities (the shell and approve standards and make them...

ernment�s enormous computer pur- shell-level commands) for MS-DOS. well, standards. In the box seats are

chases, the POSIX standards project Installing these on your DOS laptop groups such as X/Opert and the

RS/Magazu,e AUGUST 1993 33

National Institute of Standards and

Technology (NIST), which select

standards to adopt and promote.

Finally, out on the proverbial level

playing field, we have vendors and

consortia, such as UNIX Internation

al and the Open Software Foundation

(OSF), which take the forests worth

of confetti, er, paper that comes out

of the stands and standards, and turn

them into real products.
Alternately, since the knee bone�s

connected to the�unh!�

thigh bone, we can retra

verse some of these bodies

from the bottom up.

POSIX.1 was created by
volunteers acting under

the authority of IEEE�s

PASC. PASC is one of the

standards committees of

the IEEE Computer Soci

ety that creates electrical

and electronics standards

for the United States covering every

thing from Ethernets to three-phase

power. The IEEE gets its authority
from ANSI, which standardizes every

thing from screw threads to motorcy
cle helmets. (Take a look at the little

sticker on the next pair of sunglasses

you buy to see what ANSI standard

they conform to.) ANSI approves U.S.

standards under the authority dele

gated to them by ISO to make U.S.

national standards. ISO, originally
chartered by the United Nations, can

promote national standards submit

ted by its member bodies, such as

ANSI, British Standards Institute

(BSI), Association Française de Nor

malisation (AFNOR) and others, to

international standards. The DIN

number on your film boxes is from

the German standards instiwte�

Deutsches Institut für Normaliza

tion�which also has standards for

trash cans. We wonder if the Mac

icon conforms.

Out of this multilevel hierarchy of

organizations involved in getting a

standard created, POSIX has ended

up being the central standard for

operating systems.

POSIX

Well, what�s in POSIX.1?

Good question. Mostly, POSIX.1

contains function-call interfaces

Think of it as the man pages for tra

ditional system interfaces, such as

read () and chdir , made uniform

and unambiguous, and translated

into standards-ese. There�s more in

the standard�header flies, data types,

symbolic constants and such�but

most of these are things that the

standard needs to define in order to

let implementors and application
programmers�the customers of the

standard�provide and use the inter

faces. For example, it doesn�t make

sense to define open () or read (I

without also defining the data types

they use for arguments, the data type

they return and the headers that con

tain these declarations and the func

tion prototypes.
Another good question is, �Well,

what�s not in POSIX.1?� We�ve men

tioned some things already, but

here�s a more complete list.

Other language bindings aren�t.

What are language bindings? That�s

what we use to call particular func

tions from particular languages.
POSIX.1 currently only provides C
calls for functions. POSIX.5 and

POSIX.9 are the corresponding func

tions for Ada and FORTRAN. For

example, POSIX. l�s pipe () is

POSIX.9�s SUBROUTINE PXFPIPE().

Things that aren�t interfaces aren�t.

The POSIX.1 standard says nothing
about hardware, such as byte order

or keyboard labels, nor about inter

nal implementation details like the

internals of a directory or how the

file system is laid our. Such omis

sions let us implement POSIX on top
of completely alien operating sys

tems, such as CTOS or Windows NT.

Commands aren�t. They�re in

POSIX.2. In fact, a whole series of in

terfaces was omitted from POSIX.1

either because there was too little

consensus (system alministration),

or because the interfaces were

thought to be a sideshow that should

be delegated to more specialized

groups (real-time, super-

computing).
Files aren�t. Believe it or

not, there is no /tmp, no

/etc/pas.wd, no

/dev/null. Sometimes

there are access functions,

such as getpwent ()
,
that

return the information in

such files, but individual

filenames are absent from

the standard. Remember,

POSIX isn�t UNIX, and non-UNIX im

plementations may have different

names for these ideas. Contrast this

with, for example, the SVID, which

specifies that most temporary files

should be placed in /isr/trrrp. Our

Berkeley Software Design Inc. (BSDI)

machine doesn�t even have a

/usrl trip.

Users aren�t. Not even the ubiqui
tous UNIX user, root. POSIX refers

instead to userswith �appropriate

privilege.� We used to think this

meant users who had gone to a New

England prep school, but it actually
means the superuser without coming

right out and saying it. Again, POSIX

isn�t UNIX. On VMS this user is

called SYSTEM instead of root. This

circumlocution also lets vendors pro

duce an Orange-Book secure version

of POSIX, with UNIX�s traditional

root privilege split up among differ

ent IDs so that permission to back up

the password file need not imply per

mission to peruse it.

Version-specific features aren�t.

Sometimes this is ok.3y, as anyone

who has complained about or praised
AiX-specifIc features can agree. Some-

ut of this multilevel heir

archy, POSIX has ended up

being the central standard for

operating systems.

34 RS/Magazine AUGUST 1993

POSIX

times it�s an annoying and out-of-date applications could be in either Stan- ply a number of functions, data

compromise. Symbolic links, for ex- dard C or �Common-Usage C,� but types, header files and limits defined

ample, are still absent from POSIX.1. common-usage implementations and by Standard C.

applications were constrained in But there�s more interconnections.

What are these interfaces ways that would ease a future migra- Because Standard C was designed to

you keep talking about? tion. For example, even common- be implemented on a wide variety of

Traditional UNIX separates the idea usage C implementations had to sup- non-UNIX platforms, like MS-DOS

of system calls�such as read () or

seek () ,which you have to ask the

operating system to do�from library
calls�such as gecchar () and

f seek U, which you can implement .
� lA?t)OUI� te1flhi1zi_T1l

in user-level code using the more

primitive system calls. POSIX doesn�t DO MORE
reasons. On one hand, we program-

t)icin
bother with this distinction, for two

mers usually don�t care whether it�s

implemented in the kernel or not. On

the other, one system�s library routine (, �� -;�I one
may be another�s system call. More-

over what�s a system call can change

dup I) and dup2 I) started out as sys- Q \ I (� thtng. atover time. Routines like creat U,

tern calls. Today, creat I) is more

a timelikely to be a library function that

calls the new, three-argument open I),

Iand dup (I and dup2 I) are probably with...just user-level routines that call

fcntl()

Rather than stumbling over the

cumbersome phrase �library routine

or system call,� POSIX just calls

them all �interfaces.�

How does Standard C MultiView Mascot
come into this?

How indeed? Well, at first it Does using a terminal slow your Without changing your application, add

work down? the benefits of windowing to increase
couldn�t, for the most pedestrian of

productivity and reduce frustration.

reasons: Even though the POSIX. 1 Make your terminal behave like a PC by
work started after the Standard C using Multi View Mascot to deliver the To find out how you can do more with

benefits of windowing. MultiView Mascot simply call JSB todaywork, it finished first. Can�t very well
and watch your productivity soar.

refer to a standard that doesn�t exist Adding Multi View Mascot lets you

yet, can you? accomplish more with your existing

By the time the second, and inter-
applications, simply by letting your

I terminal do more than one thing at a time.

national, POSIX incarnation rolled

around in 1990, there was a perfectly With Multi View Mascot you can: NOW SUPPORTS

� Run multiple applications at once WALPHAW1NDOW�TERMINALS
good C standard, but not everyone � Switch rapidly between them
had switched over to it, so the 1990 � Cut & Paste information from one

standard still couldn�t really afford to application to another

tie itself to Standard C. Still, it was
Call: 1 -800-359-3408

clear to most folks that Standard C

was the way to go where possible, so
JSI3 CORPORATION. IIS.Sc,,u, �� ��52!?5��

POSIX. 1 made an odd, but sensible, V.II.CIi1rrn., 93966. US/).TIpho,4 140)1143)13800 (408)438 83(4)

E,rnp: JSR CORPORATION. Cw,hrc H,,,r,. Ca,lc M,cO4IicId. Chhir.

compromise: Implementations and SKI I (�tIE. IigInd Tchpho,,c- 44 (0)625.13.1618 Fuc,,n,ile 44 (0)625433948 All Tradema,ks Recognize,!

Circle No. 15 on Inquiry Card

RSlMagazine AUGUST 1993 35

POSIX

Table
be raised to �level the playing field,�
and remove any unf.ir advantage of C

1003.0 POSIX guide
over, say, Mesa. The Jeffs are, we

1003.1 System services interlace
admit, American engineers

1003.2 Shell and tools
Second, the rapid acceptance of Stan-

1003.3 Test methods
dard C made it increasingly anachro

1003.4 Real-time (includes threads)
nisuc to provide for a common-usage

1003.5 Ada bindings
10 6 S binding.

The U. S. Governments

10037 1 Print administration
POSIX Federal Information Procure-

1003:7:2 Software administration
ment Standard (FIPS) 5-2, already

1003.8 Transparent file access requires the Standard C option, and

1003.9 FORTRAN bindings
the next version of POSIX. 1 will prob

1003.10 Supercomputing AEP ably lack the common-usage option.

1003.11 Transaction processing
We speculate that POSIX.1 may

1003.12 Protocol-independent interface have even accelerated the dispersal

1003.13 Real-time AEP and acceptance of Standard C.

1003.14 Multiprocessing Enough of Standard C had to be

1003.15 Supercomputing batch available on platforms that only pro-

1003.16 C binding for .1 LIS vided common-usage capabilities to

1003.17 Name space/directory services (X.500) lower the activation energy and pro-

1003.18 POSIX environment profile vide a full-blown implementation.
1003.19 FORTRAN-90 binding to .11003.20, Ada binding to .4

1201.1 Windowing tool kit If POSIX.1 is the central

1201.2 Drivability standard, what are the

1224 Object management (ASN.1) outlying ones?

1224.1 X.400 API The Table tothe left contains a sam-

1238.0 OSI API connection management pie snapshot of PAS(: activities.

1238.1 FTAM API We�ve been making tables hikc this

for years and they typically go out-

and VMS, many traditional UNIX in- mittees, and are available as ANSI! of-date between the Lime we make

terfaces, such as open LI, link I) and IEEE Standards 1003.5 (Ada), and them and the time we use them. We

read LI, were omitted and some new 1003.9 (FORTRAN). Other language give up. This table isn�t meant to be

interfaces, such as rename , weren�t bindings are in the works, and there correct in detail, but it should give

specific about their behavior on oper- has even been a controversial effort you a feeling for the kinds of things
ating-system-specific structures, such over the past few years to create a PASC is up to. As a tule, 1003.n

as directories. POSIX.1 had to plug programming-language-independent groups are meant to specify an oper

these holes, but in ways that didn�t version of POSIX.1 that arbitrary ating system, while other-numbered

break Standard C. Reading the stan- programming-language communities groups are meant to specify inter

clard with this problem in mind could use to turn out thin, language- faces that may be found in a POS1X

sometimes helps it make more sense. specific bindings with little effort. environment, but may be useful else-

Meanwhile, events undercut some of (The controversy has revolved where as well. The distinction is

the foundations of this reasoning. around whether such a language-inde- arguably iffy.
First, so many vendors clambered pendent specification (LIS) is worth Naturally, there are also relevant

on the POSIX bandwagon so quickly the effort�whether the resources used �standards� outside of PASC. Some,

that the Ada and FORTRAN commu- in producing an LIS are offset by the like IEEE 802.3, are important, but

nities saw there would be real benefit gains it might produce. If you think of completely independent of POSIX.

to creating their own bindings to standards as a tax on the industry, the Some, however, have a closer rela

POSIX systems. If all operating sys- question is whether to raise taxes. tionship to our queen of software

tenis were going to supply functions American engineers tend to think standards. First among these are

such as link () and getpwd (I, why they shouldn�t be raised without clear- standards pointed at by POSIX. ISO

shouldn�t FORTRAN programmers cut and widespread advantages to 9899, the C standard, is an obvious

have a standard interface to them, broadl sectors of the industry. Stan- example. You can fird a list of such

too? These standards were created dards bureaucrats and European acacl- standards in the POlX.1 standard

quickly and ably by PASC subcorn- enlics tend to think that they shotilcl itself.

36 AS/Magazine AUGUST 1993

Incidentally, if you don�t have a

copy of the POSIX standard handy,
order one. It�s a working program

mer�s reference tool and you need

one around. Order it from

IEEE Standards Office

P.O. Box 1331

445 Hoes Lane

Piscataway, Nj 08855-1331

(603) 881-0480

Equally tightly tied-in are specifica
tions that point at POSIX. Chief

among these is the government�s
FIPS 151-2. This says what the U.S.

government can and can�t buy. Basi

cally, if you want to sell a multiuser

machine to Uncle Sam, your operat

ing system has to provide POSIX. 1.

The last time the government was

this serious about software standards

was when it said that they would buy
no more machines that you had to

program in assembly language or

machine code; if you wanted to sell

From the experts
in network management:

Data Comm
I�tI.I.�Iu.uuI.�I�uuI

foru$/ness,/n�c.

Modems, multiplexers,
DSIJ/CSU�s everything for your

data communications application.

POSIX

to them, you had to supply a compil
er for the then-new, high-level lan

guage, COBOL.

X/Open�s XPG and USL�s SVID are

also important specifications that

require POSIX.1.

What�s conforniant?
What�s compliant?
One more pair of buzzwords.

Often, people use �conformant� and

�compliant� interchangeably. Is this

right?
Let�s turn to \Vebster�s. First, �com

pliant�:

corn ph� ant adj. complying or tend

ing to comply; yielding; submissive.

�SYN. see obedient.

Next �conformant�: Oops. There

isn�t any such word. Oh good. It al

ways sounded like jargon to us. How

about plain, old �conform� and its

present participle �conforming�?
Well, synonyms for �conform� are

�adapt� and �agree.� On. the surface,

�comply� has a far more mandatory
sense than �conform�: one conforms

to convention if one wishes, but

complies with dictates from the

authorities�or else.

The historical uses of the two

words in the world of standards

reflects this difference. People speak
of conforming to standards, a volun

tary act of good software citizenship,
but complying with the FIPS, for

which there is a test suite and a

penalty for non-compliance.
That said, there is no current, offi

cial distinction between these words.

Still, we find the traditional usages

helpful, and we�ll try to stick to them

in our columns.

What now?

Well, we�re out of space and time.

(There�s a general relativity joke in

there, but we�ll skip it. Next month

we�ll be back to talk about rules for

headers and identifiers A

NOW FOR RS/6000

AFFORDABLE,
FULL-FEATURED SUPPORT

FOR YOUR REMOTE
TERMINALS AND PRINTERS

Call for free multiplexer information.

BUY � SELL � LEASE

NEW AND RECONDITIONED IBM

RS/6000
RT16150

Authorized

SERI ES/i Distriutor Product

Integrator

SYSTEM 36

ASI400 CALL:

(800) 888-2000

BUS/NESS SYSTEMS
Wieie/8MfityIsSecandNotuce.

18377 5ech Blvd. 3u,I9 323

Hun/inp/on 8eac/ (c�I,/orn,o 92648

(714)8478486 � FAX (714)8473149

IBM st a registered trademart, of IrrternationaJ BuS,neS,i Machines Coporat,on.

Data Comm
�.�iI.I..iu.liu.i.iIi

foi�5srness, /nc

DataComm for Business, Inc.

807 Pioneer

Champaign, IL 61820

/
.

.---.

Toll-free: (800) 637-1127

In Illinois: (217) 352-3207 � Fax (217) 352-035()

Circle No. 8 on Inquiry Card

RS/Magazirte AUGUST 1993

Circle No. 10 on Inquiry Card

37

POSIX

Headers, Identifiers

and Writing Programs
by Jeffreys Copeland and Haemer

A
s discussed last time, were �diversity among� in different

planning to explore the breeds of UNIX. Sometimes the way

POSIX standards from a pro- POSIX works around this is the way

grammer�s point of view. This means you would: A constant is defined for

we�ll begin with the way commands the appropriate limits, which are

work and deduce what the underly- then painlessly
ing features of the system must be changed when

like. Last month, we explored some the program is ;sO

of the details of how POSIX came to recompiled on a

be, such as the ins and outs of stan- new system.
dards committees. This month let�s We begin by
start with a little structure in the sys- defining some

tern, rather than outside it, and pro- additional head

ceed to some programs. er files, such as

<dirent.h>,
�

Header Files and Identifiers which contains �6
Over the years, we�ve come to take the structures

some things in the UNIX system for for a directory

granted. File names are always a entry, and the
� -

maximum of 14 characters long.. .or declarations of ________

are they? And directory entries are the routines to

always in the same format... except read and write them. We also define

when they aren�t or when file names <unistd.h> containing the function

are more than 14 bytes. Of course, prototypes for all the UNIX.. .er,

we can really count on user IDs POSIX functions. While we�re at it,

always being 16 bits long.., except we�ve listed all the new include files

that we can�t. So a lot of things are (see Table 1).

now defined in POSIX that weren�t These new header files, and some

defined in the past and led to a lot of additions to the old ones, give us a

Jeffrey Copeland (jeff@aus.sii .com) lives in Austin, TX, where he is project managerforSHL
Syslemltouse. He recently acted as software consultant for the administrators of the 1993 Hugo
Awards His technical interests include internationalization and typesetting.
Jeffrey S. Haemer (jsh@canary .com) is an independent consultant based in Booklet, CO. He

works, writes and speaks on thc interrelated topics of open systems, stcinclards, software portability
cind porting, and interitationaliatio,t Dr. l-iaenter has been a featured speaker at Usenix, UniForunt

and Expo Kuwait.

30 RS/Magazine SEPTEMBER 7993

POSIX

variety of useful new data types. Just as a sizeof (too) in

ANSI C now returns a size_t instead of an int, a process

id is no longer restricted to 16 bits, since it is now con

tained in a pid_t type. Similarly, size_t as defined in

ANSI C does well for specifying positions within a file,

but read () needs to return a -1 on the end of a file.

ThereFore, POSIX defines a type ssize_t, which readL

returns, and which can take all the same values as size_t

as well as -1. (This is an example of a standards hack.)

We also have a complete set of new macro and symbolic
constant names that make our life a lot easier. Instead of

writing

lseek(fd, OL, 0);

Table 1. POSIX Header Files

to go to the beginning of the file, we write

lseek(fd, (of f_t) 0, SEEK_SET);

where of f_ is a new type that holds a file oJfset, or file

size (and would be returned by, say, iseek), and

SEEK_SET is a symbolic constant that tells iseek () to

begin at the beginning of the file.

Earlier, we talked about the number of bytes in a file

name. How do you tell what the maximum file-name

length is on your system? There are a number of con

stants defining system limits. _NAME_NAX will tell you

how big your file name can be, so that if you define an

array char f name NAME_MAX], you�ll be assured of having

<dirent.h>

<fcntl.h>

<grp.h>
<pwd.h>

<sys/stat. h>

<sys/times.h>

<sys/types.h>

<sys/utsname.h>
<sys/wait. h>

<tar.h>

<termios.h>

<unistd.h>

<utime.h>

structures and definitions for directory entries

file control information

group structures

password file structures

stat block for files

tms structure returned by times()
POSIX special type definitions

uname structures

information for wait() interface

definitions for tar archives

terminal I/O definitions

standard POSIX definitions and prototypes
access and modification times for files from utime()

Table 2. Some POSIX Constants

Name

CHAR_BIT

INLMAX

CHAR_MAX

CHAR_MIN

LONG_MAX

NAME_MAX

_POSIX_ARG.....MAX

...POSIX_CHILD.....MAX

_POSIX_LINK_MAX

_POSIX_MAX_CANON

_POSIX_MAX_INPUT

_POSIXNAME_MAX

...POSIX_OPEN_MAX

_POSIX_PATH_MAX

_POSIX_PIPE_BUF

...POSIX.....SSIZE_MAX

...POSIX.....TZNAM E_MAX

AIX Limit

8

2147483647

255

0

2147483647

4096

6

8

255

255

14

16

255

512

32767

3

bits in a char

largest integer

largest value of a byte
smallest value of a byte

largest long integer
file name size

of bytes in command line arguments
of child processes

of file links

bytes in a terminal input line

bytes in terminal input queue
bytes per file name

open files per process

bytes per path name
size of a pipe buffer

file size

bytes in a time zone name

For AIX, _NAME_MAX is only available from pathconfo.

RS/Magazine SEPTEMBER 1993 31

POSIX

enough room. Some of the POSIX limits
Listing 1

are in Table 2, along with their values

on AIX. In general, a limit FOD is the #defme _POSIX_SOtJRCE

system maximum, but the limit
inc1ude <sys/limits.h>

_PCSIX_FOO is the POSIX-prescribed
#include <stdio.h>

minimum maximum, or the minimum
*include <unistd.h>

value the system limit can have. In oth

er words, the smallest value that

NAME_MAX can take is _POSIX_NAME_MAX
main ()

or 14, so you will never find a system

with a maximum file name size of less
prmn (�_POSIX_NANE_MAX = %d\ri�, _POSIX_NANE_?4AX)

than 14 bytes. For portability, you want
prinf (�_PC_MAME_MAX = %d\n�, _PC_NAME_MAX)

to set your file name buffers to at least
printf(pathconf (\� \�, _PC_NAME_MAX) = %d\n�,

14, but you�ll be better off using
pathconf(� �, _PC_NAME_MAX));

#ifdef NAME MAX
sysconf() orpathconf() to get system

�

limits dynamically. We�ll discuss these
priritf (NANEJ4AX = %d\n�, NAME_MAX)

two interfaces later.
*else

What about names? Can these new
print f (�NAME._MAX not defl.ned\n�);

#eridif
POSIX typedefs and defined constants

completely clutter up the name space?
How can I be sure I�m not going to use

a variable name in my program that�s already used? I _PCSIX_NAME_MAX = 14

POSIX reserves only a small set of carefully defined sym- _PC...NAME_MAX = 14

bols: pathconf(� .�, _PC._NANE_MAX) = 255

� all external identifiers that begin with an underscore NAME_MAX not defined

� all identifiers beginning with an underscore followed by I
a capital alphabetic character As we�ve discussed before, _POSIX_NAME_MAX is the

� all identifiers ending in _t smallest maximum file name size, or 14 bytes as defined

� when we include a header file, we

reserve all external identifiers placed in

the header by Standard C or POSIX.1
Listing 2

� also when we include a header file, we

reserve all names containing a special #deflne _POSIX_$OURCE

prefix orsuffix,suchasd_whenwe #include <stdio.h> /* for fprintf() *1

include<dirent.h>orLC_,n_andp_ *include <stdlib.h> /* for EXIT_*, exit() I

when we include <locale.h>. #include <sys/types.h> 1* for stat.h *1

The most important symbol to be #include <sys/stat.h> I for creatQ, S_It */

defined is _PCSIX_SOURCE, which uses

the symbols we�ve defined and actually *deflne S_IRW \

requires you to avoid redefining the SIRUSR I S_IWtJSR I S_IRGRP I SIWGRP I S_IROTH I S_IWOTH

identifiers in the classes we named

above. Furthermore, defining main(int argc, char *argljj])

_POSIX_SOURCE requires only a speci
fled list of identifiers to be defined in if (argc = 2)

each header. In other words, if you turn fprintf(stderr, �usage: %s filename\n�, argO]);

on _POSIX_SOURCE, then the names exit (EXIT_FAILURE);

defined in the header files are mandated

by the standard. if creat(argv1], S_IRW) = = �1)

So what does this all mean where the fprintf (stderr, �creat failed\n�)

programming pencil meets the scratch exit (EXIT_FAILURE);

pad? Let�s look at some sample pro

grams. exit (EXIT_SUCCESS);

What does the program in Listing 1

do? Let�s start by looking at its output:

32 RS/Nlagazine SEPTEMBER 1993

POSIX

in <limits .h>. So the output of the first printf I) (C_IRGRP, C_IWGRP) and other read and write permis
should be clear. sions. In other words, create the file with rw- rw-rw per-

The routine pathconf I) provides information about the missions.

system configuration for the file system named in the first When we invoke the program on AIX, we get:

argument. What information you request is specified in

the second argument. $ is -1 foo

The _PC_NAME_MAX is a symbolic constant that corre- is: 0653-341 The file foo does not exist.

sponds to an entry in the table of system limits. (It is $.
/touch foo

mere coincidence that the value of the constant on AIX is $ is -1 foo

the same as the POSIX minimum maximum.) Once we -rw-rw-rw- 1 jeff staff 0 Jul 12 16:58 foo

call pathcorif U, we find that the longest file name we

can have (on the file system where I ran the program) is But if we had a file already, we�d have a different result:

255 bytes, which is very long indeed. (Why is the path
name an argument? Because I may have a file system $ date >foo

remote mounted from a platform where the file name $ is -l foe

maximum is different. Or I may have different file system -rw-rw-rw- 1 jeff staff 29 Jul 12 17:00 foo

types mounted on my computer. In either case, I can $
.
/touch foo

have multiple answers to the question on the same $ is -l faa

system.) �rw�rw�rw� 1 jeff staff 0 Jul 12 17:00 foo

Note that AIX doesn�t define a value of _NANE_MAX but

requires you to request the maximum file size using What happened to the contents? creat () always trun

pathconf U. cates the file when it opens it. That�s a real problem
Let�s try another example. because the other thing touch is supposed tc do is update

the access time of a file that already exists, not erase it. So

The touch Command we need to check if the file exists. If it does, we need to

Generally, when we want to create an empty file, we use open the file. If it doesn�t, we can use the same code we

the POSIX.2 command touch. How does it work? used earlier.

We could open the file for reading, but the open would

fail since the file doesn�t exist. Instead, we use the POSIX The stat Interface

interface creat ii in the program in Listing 2. How do we tell if the file exists? We use the stat U

Some points to note: First, we�ve turned on interface, stat takes two arguments�a file name and a

_POSTX_SOURCE so only the POSIX definitions are going pointer to a stri.ict stat into which is returned informa

to be included from the header files. Second, we�re calling tion about the file. What information? Well, take a look

three separate interfaces: fprintf ()
,
which is defined in at the structure in Listing 3.

Standard C; creat ()
,

which is

defined in POSIX; and exit U,

which returns to the operating

system. Listing 3

We are acting like good program
struct stat

mers, by using header files for the

defined constants and function pro-
mode t st mode; / File mode *1

totypes, including a usage message
� �

(though we don�t do anything fancy
iflO_t st_mo; / File serial number /

about argument parsing), and
dev_t st_dev; 7* ID of device containing a dtrectory*/

checking the return status from the
/ entry for this file. *7

POSIX function. We also exit the
short st_nlink; / Number of links /

program with different values
uid_t st_uid; / User ID of the file�s owner �I

depending on the success of our
gid_t st_gid; / Group ID of the file�s group *1

operation
off_t st_size; / File size in kites *1

What does the constant s_TRW rep-
time_t st_atime; / Time of last access /

resent? It is composed of the flag
time_t st_mtime; / Time of last data modification /

values for opening the file with user
time_t st_ctime; / Time of last file status change *1

read (c_IRUSR), user write

(C_IWUSR
, group read and write

RS/Magozfne SEPTEMBER 1993 33

POSIX

Notice this definition makes liberal use of the new types buf.st_uid, buf.st_gid, buf.st_size,

we talked about earlier. But be warned: If you look in buf.st_mtime, rgv1])

<sys/stat.h> on AIX, you�re going to find alot more exit (EXIT_SUCCESS);

information because the stat block is used by multiple
interfaces, which have different requirements. We�ve only
shown the entries we care about now. There are three things to note in this program:

Since stat. is used to retrieve the information for an � We take only one file name as an argument.

is .-i command, the best way to show it in action is to � If we can�t access the file, we call perror (), which

write a small version of is, as follows: prints the text corresponding to the last error. Note that

we must call perror () directly after the error occurs.

#cleflne _POsIX_SOURCE � All the values we printed are unsigned.
#inciude <stdio.h> / for fprintf, perror() *7 So what�s the output?
#inciude <stdiib.h> / for EXIT_*, exjt() *1

#inciude <sys/types.h> / for stat.h *1 $./is foo

inciude <sys/stat.h> 1* for stat() *1 192582 33188 1 208 1 25 742530941 foo

rnain(int argc, char argv])

This output isn�t as informative as we might like, or

struct. stat buf; even what we�ve come to expect from the standard is

if (argc 2) C command. So in the next 30 days, consider the following:
fprintf(stderr, �usage: %s fiiename\n�, rgv0]); � How do we get the mode, uid, gid and time into a more

exit (EXIT_FAILURE); useful form?

� What is the purpose of the fields st_day, st_at ime and

if stat(argv1], &buf) == -1) { st_ctime?

error(argv1]) ; � Why isn�t the file name in the stat stnicture?

exit (EXIT_FAILURE) ; � What does this have to do with setting the access time

of the file we were talking about when we introduced

priritf(� %u %u %u %u %u\t%u %u %s\ri�, the stat() interface?

buf.st_ino, buf.st_mode, buf.st_nlink, Until next month... A

Reader Feedback

To help RS/Magazine serve you better, please take a few minutes to close the feedback

loop by circling the appropriate numbers on the Reader Service card located elsewhere in

this magazine. Rate the following column and feature topics in this issue.

INTEREST LEVEL

High Medium Low

Features:

Managing Chaos 170 171 172

IT Hygiene: Clean Layering 173 174 175

Trying on Two X Terminals for Size 176 177 178

Columns:

Q&AIX�Updates and imake 179 180 181

Systems Wrangler�A Wrangler�s Bookshelf 182 183 184

Datagrams�Still More News 185 186 187

AiXtensions�AIX Alternate Authentication 188 189 190

POSIX�Headers, Identifiers and Writing Programs 191 192 193

34 RS/Magazine SEPTEMBER 1993

POSIX

In Which We Write In

by Jeifreys Copeland
and Haemer

J
f you�re just joining us, this is the

third column in a series that

attacks POSIX from an uncon-

I

ventional angle. Our goal is to help �

you teach yourself the POSIX system

interfaces by thinking about what

calls have to exist in order to build

the commands you routinely use.

Last time, we introduced the stat ()

call to write a simple version of is.

Let�s take a look at that program

again:

ltdefine _POSIX_SOURCE

#include <stdio.h> / for fprintf(), perror() /

#inciude <stdiib.h> 1* for EXIT_*, exit)) *1

fiinciude <sys/types.h> / for stat.h I

l(include <syslstat.h> / for stat() /

main(int argc, char argv1)

struct stat buf;

if (argc !=2){

fprintf(stderr, �usage: %s filenarne\n�
,
rgvO]);

exit (EXIT_FAILURE);

if stat(argvi ,
= = -1)

error(argvi]);
exit (EXIT_FAILURE);

printf(%u %u %u %u %u\t %u %u %s\n

buf st_mo, buf st_mode, buf st_niink,

buf.st_uid, buf.st_gid, buf.st_size,

buf.st_mtime, rgvi]);
exit (EXIT_SUCCESS);

Jeffrey Copeland (je f@ous
.

shi
.
cDrn) lives in Austin, TX, where he manages projects for SHL

Systemhousc He recently acted as software consultant for the administrators of the 1993 Hugo
Awards. His technical interests include internationalization and typesetting.
Jeffrey S. Haenter (j sh@can� corn) is an independent consultant hosed in Boulder, CO. He

works, writes and speaks on the interrelated topfrs of open systems, standards, software portal�ility
and port ng, and in tern at ionalizctt ion

-

Dr. Hctcrner has been a feat ii red speaker at Usen ix, Un i Forum

and Expo Kuwait.

34 RS/Magazine OCTOBER 1993

When we compile and run it, we get:

$./a.out foo

192582 33188 1 208 1 25 742530941 foo

The output shows that the stat structure (see below)

contains virtually all the information about a file that you

can get out of is, even if it�s in a cryptic form. In UNIX

implementations, all this information is stored in an

i-node, one mode per file. In one sense, the modes are

the files: They contain all the file attributes, plus a point
er to the file data. The scat () call is just a convenient

way to bundle the attribute information in a tidy package
for the programmer.

� How do we get the mode, uid, gid and time

into a more useful form?
The mode is easy; it just takes a little transla

tion code. Think of the mode as an octal

number, instead of as an unsigned decimal,

and it becomes clearer: 33188 becomes

100644. A peek at sys/scat .h tells us that

the leading 1 in 100644 means we are looking
at a regular file, but the macros and symbolic
constants defined in sections 5.6.1.1 and

5.6.1.2 of the POSIX.1 standard relieve us

from having to memorize this and let us test it

with the S_ISREG () macro. Similarly, we can

check to see if the file is a directory with the

macro S_ISDIRC .

The last three octal digits, 644, represent

the familiar access permission for the owner,

group and world. Again, sys/s tat .
h defines

some useful constants for us, shown in the

adjacent table. In a rewrite of our first cut at

is, we�d use them to translate 100644 into a more famil

iar form: �rw-r- -r- -.

Other special routines let us translate the remaining
three numbers in our crude is into more useful forms.

The user and group names can be had from the uid and

gid values with the routines getgrgid () and

getpwuid . The first takes a gid and returns a group

structure as defined in <grp.h> (see Listing 1). Similarly,
getpwuid () takes a uid as an argument and returns a

passwd structure, from <pwd.h> (see Listing 2.).

The time can be converted to a familiar form with the

standard C routine localtime ()
,
which provides us with

a structure containing (among other things) month, day,

year and clock time. Alternately, harking back to our

columns on internationalization, we

could use the internationalized strf

time () function from standard C,

which both converts and formats the

date in a single function call and can

even print the month as a name in

your local language.
We encourage you to try using some

of these facilities to improve our sim

ple-minded version of is.

� What would we use the fields
st_ctime and at_atimefor?
The st_ct me represents the �time of

last status change�: On UNIX, this is

just the mode modification time.

st_ctime changes not only when we

modify the file itself, but when we

POSIX

struct stat

mode_c st_mode;

iflO_t St_mo;

dev_t st_dev;

niink_t st_niink;

uid_t st_uid;

gid_t st_gid;

off_t st_size;

time_t st_atime;

tine_t st_mt irne;

time_t st_ct me;

/* File mode */

/ mode number /

7* ID of device containing *1

/ a directory entry for this file */

/ Number of links /

/ User ID of the file�s owner*/

7* Group ID of the files group *1

/ File size in bytes /

/ Time of last access /

/ Time of last data modification /

7* Time of last file status change /

7* Times measured in seconds since *

/ 00:00:00 GMT, Jan. 1, 1970 /

We also left you with a series of questions. You�ve had a change information in the equivalent of the mode�that is,

month to think about them, so let�s review them, any time we change something we get back from the stat

structure. For example, when we do a chmod or chown,

Permissions and POSIX

TradItional

POSIX name UNIX value Description

S_IRWXU 0700 Permission mask for the owner

S_IRUSR 0400 Owner read

S_IWUSR 0200 Owner write

S_IXUSR 0100 Owner execute or directory search

SIRWXG 0070 Permission mask for the file group

S_IRGRP 0040 Group read

S_IWGRP 0020 Group write

S_IXGRP 0010 Group execute or dire:tory search

S_IRWXO 0007 Permission mask for others

S_IROTH 0004 Other read

S_IWOTH 0002 Other write

S_IXOTH 0001 Other execute or direc:tory search

AS/Magazine OCTOBER 1993 35

Listing I

struct group C

char *
gr_nasne;

gi&t gr_gid;

char **
grjlames;

Listing 2

struct passwd

char *pw name

uidt pw_uid;

gid_t pw_gid;

char *pw dir�

char shell

POSIX

/* group name /

1* group id /

/ list of group member names f

J user name *1

/ user id /

/ primary group id for this user *1

/* initial working directory I

/ user startup shell J

the st_ctime changes. You can get the

ctirne out of is, too, with an is �ic. Put

another way, is -1 tells you the last time

you changed the data in 1 file, while is -

ic tells you the last time you changed its

attributes. Besides keeping track of the

last time you changed a file or its attribut

es, a POSIX system also keeps track of the

last time you fetched data from it. The

st.atime is the time of the last file

access.

Try this experiment:

$ is -lu /etc/passwd

$ cat tetc/passwd

$ is -lu /etc/passwd

Listing 3

*define _POSIXSOURCE

#iriclude <stdio.h>

#inciude <stdiib.h>

#inciude <sys/types .h>

#include <sys/stat.h>

#inciude <string.h> / for

4linciude <sys/iimits.h> I for

exterri char *basename(char *);

main(int argc, char argvlj)

char ewflie_POSIX..3ATHj4PX);

struct stat buf;

if large 3)

err._quit(�usage: %s fuel fiie2�, argv{0J);

strcpy(newflie, argvl2));

if ((stat(argv2), &but) -1)

&& SISDIR(buf.stmode)) C

strcat(newflie, �I�);

strcat(newfile, basename(argvll]));

if (iink(argvtl), newfle) -ii

err_sys(� link failed);

exit (0)

char *sename(char *)

This little-known feature can be aston

ishingly useful. If you have an application
that isn�t working and you want to know if

it�s actually reading the input data file,

using is �lu is a lot faster than scattering

debugging code around your opens and

reads. Sadly, the -c flag gives you the

ctinie, but the -a flag for].s was already in

use, so you get the atime with the -u flag.
Think of it as the useful� flag.
Why isn�t thefile name in the Stat structure?

Because the mode doesn�t contain a file

name. All (nodes are kept in an array, anal

ogous to the DOS FAT tabe, for those of

you coming from DOS. If we go back to

the earlier statement that each mode repre.

sents a File, the file�s mode number�the

index into this array�is its only real name.

We�ll soon show you this in more detail.

The file names we generally use are, as we

shall see, just convenient labels, stored in

directories, that point at modes. The same

file can actually have different names in

different directories or even more than one

name in a single directory.
� Vv�hat does this have to do with setting the

access time of a file, which led us to the

stat () interface?
Not much, but it does illustrate some

themes that will recur in these columns:

1. UNIX commands are just programs
� any system calls they use, you can use,

too. The very existence of the touch com

mand lets us infer that the operating sys

tem stores access time information some

where and there must be calls that let us

�

get at the information.

strieno) *7

_POSIX_PAT�rjv1AX *1

char *pC;

for (Pc = s + strlen)s); *pc � �7�; pc--)

if (pc = s)

return(s);

return(pc + 1);

36 RS(Magazine OCTOSER 1993

2. For most objects and attributes in the system, there

are separate calls to get and set information. The creat I)

we used in touch and the stat (I we used in is are

examples of a pattern.
3. Once we�ve figured out that something exists, looking

at other shell-level commands can deepen our under

standing. touch shows that file modification times were

stored somewhere. Looking at some of the more obscure

flags from is shows us that three times are stored, not

just one.

4. Getting there, as they used to say in travel commer

cials, can be half the fun. We�ve come all this way and

still can�t set file modification times except by creating or

truncating them. We�ll return to setting the access time in

a few weeks, but first we�ll lay more groundwork by
digressing into other things.

The In program
stat () gets a lot of attributes at once. Our discussion

of t_acm] time shows that setting them is a more

piecemeal affair. Let�s continue our discussion with the

link count, st_nlink. As you know, the ln command

allows you to give a file more than one name. What

many people don�t appreciate (but you do now since

you know what is and isn�t stored in the stat structure)

is that all these names are equivalent�a file�s only �real

name� is its mode number, which you can get with

is -1. That said, basic system calls like open() expect
the same symbolic names we use. So how do we tag a

file with a symbolic name? One way is during file cre

ation. A second way, used by in, is with the system call

ink()

Listing 3 shows a cut-down version of in that illustrates

the point. We use it like this.

$ touch too

$ mkdir foo.d

$./a.out f oo fooi

$./a.out too foo.d

$ is �i foo*

-r-ri-r-- 3 jsh other 0 Aug 24 i4:27 too

-rw-rw-r-- 3 jsh other 0 Aug 24 i4:27 fool

foo.d:

rotai 0

-rw-r,g-r-- 3 jsh other 0 Aug 24 i4:27 foo

Briefly, it does a quick check for proper usage, has

a little code for one special case (in æiensme

directory) and then invokes iink. The code is

meant to be read, and we encourage you to do so, but

we�ll point out a few things:
1. iink() requires two filenames. Like the command

in, the call gives the file in the first argument the new

name in the second.

2. Wherever possible, we�ve used symbolic constants

and macros supplied by POSIX itself. One example of this

is the array ewfileJ, which holds the new name being
attached to the file. Instead of giving it an arbitrary size

specific to the program (and the programmer), we set it

to _POSIXPATH_MAX, which is the size of the longest
completely portable pathname. The actual maximum

path length can vary with the file system, so a more

robust version might use pathconf H. Similarly, we test

whether the second argument is a directory using the

POSIX macro SISDIR H.

3. Note how the includes have begun to proliferate.
POSIX and Standard C are both very clear about what�s

declared where, which is good, but the lists of include

files in our programs will get larger and lar;er. Some

times, we may just show the code and omit the

includes.

4. The err_sys () and err..quit H routines are not

standard. In general, having a handful of roc tines that

print uniformly formatted error messages and then either

quit or continue both simplifies your code and ensures

that you handle errors consistently. You may already
have your own. We�ve lifted ours from Richard Stevens�

excellent book Advanced Programming in the UNIX Envi

ronrnent (Addison-Wesley Publishing Co., 1992, ISBN 0-

201-5617-7).

Until Next Month...

The Th program has gotten us thinking about file

names. Next month, we�ll plunge further into this subject

by writing rrtv. In the interim, we�d like to leave you with

a few points to ponder, as is our wont. Some of these you

can test by typing in the code we�ve given yoi and trying
it out yourself. That�s one reason we try to keep our code

samples simple.
� We�ve done some simple error checking. V�hat sort oi

error checking should a more robust version have? How

would you implement err_* () routines?

� What if rgviJ is a directory? What should happen?
� What if the constructed filenames are too long?
� Even executables can have st_niink > 1.

$ is -ii Ibm/in Ibm/mv /bin/cp

70 -rwxrwxr-x 3 bin bin 9346 Sep ii 1993 /bin/cp

70 -rwxrwxr--x 3 bin bin 9346 Sep 11 1993 Ibm/in

70 -rxrwxr-x 3 bin bin 9346 Sep ii i993 Ibm/mv

When do you want to use this trick, when do you want to

avoid it, and if they�re really all the same program, why
do they behave differently? A

POSIX

RS/Magazine OCTO8ER 1993 37

POSIX

In Which We Move

and Remove Files

by Jefireys Copeland and Haemer

which we rec

ognize as

almost identi

cal to the

UNIX com

rnand set with

Jeffrey Copelanci (jef f@us
. .

ccm) lives in Austin, TX, whcrc he manages projects for SI-IL

Systenihousc. I-Ic reccnt ly acted as soft wclrc consultant for the administrators of the 1 993 Hugo
Awarcls His technical interests includc internationalization and typesetting.
Jeffrey S. Haemer (jsh@canary .com) is an independent consultant based iii Boulder, CO. Hc

works, writes and Speaks on the ,tte retatt�d topiCs of open Systems, staiidaids, software portability
aitcl porting, and :iternationahmzal iomi 0r Haenter has been a featured spcahcr at Usenix, Us iFortmni

cmzid Expo Kuwait.

W
elcome back for the

fourth in our series on

POSIX. if you�ve just
come in, we�re examining the 1003

standard from a different direction:

by deducing information about the

system interfaces

in the applica
tions program

ming interface of

1003.1 from

information we

already know

about the com

mand interface

of 1003.2,

the same: They�re just links to the

same exact executable file. Why is

this the case? And in what circum

stances is this trick useful for pro-

grains of your own? Let�s answer

those questions last, after we explore
the nn and my commands.

Removing a File

Let�s start with the POS1X cm com

mand. How do we remove a file?

Well, POSIX provides us with an

unlink)) interface to remove a link

to a file. For example, consider the

following program:

#def.ine _POSIX_SOIJRCE

include <stdio.h>

#include <stdlib.h>

main(int argc, char argvH

if (argc 2)

err_quit.(�usage: %s file�, ar�O1);

if unhink(argvl]) -1)

err_sys (�unlink failed�);

exit(O);

If we compile it, then run it:

which we are familiar.

Last time, we talked about the in

program and ended up with a ver

sion that works when the target is

either another file or a directory. We
finished the installment with the

observation that, on some systems,

the programs cp, in and my arc all

32 RS/Magazmiie NOVEMBER 1993

macros.mm posix�2.mm posix-4.rnm

posix-i.m posix-3.mm

POSIX

$./a.out posix�4.mm

S is

macros.mm posix-2.mm

posix-l.rmi posix-3.mm

Unfortunately, now we have to start writing this article

again.

Moving a File

That�s removing a file; what does it mean to move a file?

Well, on UNIX (or AIX), moving a file is a superset of the

DOS rename command. We provide two filenames, and

the first file is replaced by the second. For example:

$ is

macros .mm

posix-i .mm

$ my macros.mm foo.bar

posix-2.mm posix-4.rnm

posix-3 mm

But, unlike DOS� rename (which one of us is being
forced to use a lot lately, much to his frustration), mv

allows you to move a filc elsewhere, viz.,

$ mkdir x

macros. mm

You can also move a File to a different name in a differ

ent directory by doing something like:

We need to note that the file itself isn�t changed by this

program. We didn�t change the mode at all, just the name

of the file. An interesting point is that thi5. program now

does both in and mv: If we invoke it as anything other

than mv, it doesn�t do the unlink. Notice that we used last

month�s basename ()
,
err_quit)) and err_sys () rou

tines all over again. Also notice that both the err rou

tines, which print an error message and exit, help us

avoid really messy program structure. (err_quit prints
its argument and exits; err_sys also prints the system�s
errno value.) For example, if they only printed error mes

sages, we would end up with code like this:

if (argc 3)

err_quit Vusage: %s fuel file2
, a:vOJ);

else C

/*

$ is

posix-2 .rnmn

posix-3 .m

posix-4 .fl)mfl

S my macros.mm /tmp/foobar

$ is /Cmp

_ndxch bedaaidm foobar mf0228.tmp

(Notice that you don�t end up with an annoying Invalid

filename or file not found message whm you try this.)

From our version of in last month, can you guess how

my actually works? Go ahead and think about it; we�ll

grab a beer while you do. (Both Austin and Boulder, by
the way, have several excellent microbreweries. The one

we favor in Austin has a neat tour, but the ones in l3oul-

der serve lunch.)

All set? As you no doubt figured out, it�s pretty simple:
You create a link to the new name and then use unlink()

to remove the old name, like this:

main(int argc, char argv])

char ewfiie_POSIX_PATH_WkX};

struct star buf;

if (argc 3)

err_quit (�usage: %s fuel file2
. rgvO]);

strcpy(newfiie. rgv2]);

if ((stat(argvl2], &buf) �1)

&& S_ISDIR(buf.st_mode)) C

strcat(newfile, �/�);

strcat(newfile, asename(argvlH;

if iink(argvi] ,
newfiie) == -1)

err_sys(�iink);

if (strcmp(hasename(argvIO]), mv) == 0)

if unhink(argvi]) == -1)

err_.sys(�unhink�);

exit (0)

$ is

foo bar

posix-l .mm

posix-4 .mnm

x

$ is �R

macros.mm posix-2.mm

posix�i.mnm posix-3.mm

$ my macros.m x

S 1s -R

posix-i.mm posix-3.mrn x

posix-2.rnrn posix-4.mm

34 RS/Magazne NOVEMBER 1993

POSIX

Figure 1

$ is �ii

total 140

6174

386

8989

390

9854

397

399

403

406

407

-rw-r-r

-rw-r�r�

- r - x r - xr - x

-rw-r-r�

-rw-r-r

-rw-r-r-

-r-r-r

-r--r-r

- rw- r- r�

-rwxr-xr-x

1 jeff other 1898 Sep 11 23:00 coding-notes
1 jeff other 417 Sep ii 23:00 invoice

1 jeff other 1805 Sep 11 23:00 macros.mrr

1 jeff other 555 Sep 11 23:00 makefile

1 jeff other 1715 Sep ii 23:00 p3-corr
1 jeff other 21745 Sep 11 23:00 posix-1.rrm
1 jeff other 13934 Sep 11 23:00 posix-2.ia
1 jeff other 13453 Sep 11 23:00 posix-3.rnm
1 jeff oiher 7431 Sep 11 23:00 posix-4.nLm
1 jeff other 745 Sep 11 23:00 strip

00000 00000 00000 00000 00000 00000

00000 00000 00000 00000 00000 00000

26980 26478 28205 29807 29541 00000

d i n g - n o t e s

28534 25449 00101 00000 00000 00000

v o i C a

29283 29551 27950 00109 00000 00000

C r o S
.

m m

25963 26982 25964 00000 00000 00000

k e f 1 1 e

25389 29295 00114 00000 00000 00000

- C 0 r r

26995 11640 11825 28013 00000 00000

S i x - 1
.

m m

26995 11640 11826 28013 00000 00000

s i x - 2
.

m m

26995 11640 11827 28013 00000 00000

s i x - 3 rn m

26995 1.640 11828 28013 00000 00000

S i x - 4 m m

26994 00112 00000 00000 00000 00000

r i

$ od -cd

0000000 06155 00046

013 030

0000020 06323 11822

263 030

0000040 06174 28515

036030 c 0

0000060 00386 28265

202001 1 n

0000100 08989 24941

035 * m a

0000120 00390 24941

206001 m a

0000140 09854 13168

- & p 3

0000160 00397 28528

215001 p o

0000200 00399 28528

217001 p o

0000220 00403 28528

223 001 p o

0000240 00406 28528

226001 p o

0000260 00407 29811

227 001 s t p

0000300

(Did we just do a dump of the directory? Yes. It�s just a file. Notice the numbers: they�re the modes.)

$ rm coding-notes

$ od -cd

0000000 06155 00046 00000 00000 00000 00000 00000 00000

013 030

0000020 06323 11822 00000 00000 00000 00000 00000 00000

263 030

0000040 00000 28515 26980 26478 28205 29807 29541 00000

c 0 d i n g - ri o t. e s

0000060 00386 28265 28534 25449 00101 00000 00000 00000

202001 i n v o I c e

0000100 08989 24941 29283 29551 27950 00109 00000 00000

035 # m a c r o s
.

n m

0000120 00390 24941 25963 26982 25964 00000 00000 00000

206001 m a k e f i 1 e

0000140 09854 13168 25389 29295 00114 00000 00000 00000

& p 3 - c o r r

0000160 00397 28528 26995 11640 11825 28013 00000 00000

215001 p o s i x - 1
.

m m

0000200 00399 28528 26995 11640 11826 28013 00000 00000

217001 p a s i x � 2
.

m rn

0000220 00403 28528 26995 11640 11827 28013 00000 00000

223 001 p 0 S i x - 3 m m

0000240 00406 28528 26995 11640 11828 28013 00000 00000

226001 p o s i x - 4
. m m

0000260 00407 29811 26994 00112 00000 00000 00000 00000

227001 s t r I p

0000300

RS/Magaine NOVEMBER 7993 35

if (link(argvli], newfile) == -IL)

err_sys(link);

else if (strcmp(basename(argv{0]), �mv�) == 0)

if urilink(argviI) == 1)

err_sys(�unhink�);

}

else

exit (0)

else

exit (0)

exit (1)

Such error-routine interfaces aren�t in any of the standards,

but it�s useful to have a set of your own and straightfor
ward to create them. As we noted last time, we�re using the

ones from Richard Stevens� Advanced Programming in the

UNIX Environment because we like their design. Besides,

they�re well-thought-out and already debugged. Why rein

vent the wheel? Now, the inevitable points to pon

der about the preceding code:

� What happens if the file already exists? The

link fails, and the program aborts.

� If unlink () only removes a name, where�s it

removing the name from? The directory. Our

link() /unlink () combination adds a directory entry or

the new name and then deletes the directory entry for the

old one. As we said before, we never touch the contents

of the lile. We update the st_ct me of the file�s mode,

and the st_ct me and st_mt inc of the directories con

taining the names.

� Well, then what�s in a directory? Patience, we�ll come

to that soon, but we�ve still got an outstanding question
from last month.

In order to answer the outstanding question, we need

to make an observation first: Why does the following
happen?

$ cat /etc/passwd >a

$ is -l a

-rw-r--r-- 1 jeff staff 1671 Sep 10 10:54 a

S ./mvab #our own version of

$ is -l a b

ls: 0653-341 The file a does not exist.

-rw-r--r-- 1 jeff staff 1671 Sep 10 10:54 b

$ pwd

/user/jeff/posix

$./rnvhltmp

sys_err: link

The purple-and-yellow book (POSIX.1) tells us that

link I) can result in the error EXDEV, when the location

given by the new name and the existing file are on differ

ent file systems, and the implementation doesn�t support
links between file systems. Most existing UNIX

systems�including AIX�have this implementation restric

tion. When we tried to create the link from

/user/jeff/posix/b to /tmp/b, we were crossing a file

system boundary, and the link failed.

F-low do we get around this? Our implementation of my is

pretty useless if we can�t move files across file systems. If

we are on a different file system, we have to open the new

file, copy the contents of the old file to the new file, and

then unlink the old file. So my ends up having almost all of

co in it. And, as we�ve noticed, ln is a sub.et of the code in

my. So why not just build all three of them as the same

program, and then have slightly different execution behav

ior based on the name of the file? That, gentle reader, is

why the following is the case on some UNIX systems.

$ is �ii Ibm/in Ibm/mv /bin/cp

70 -rwxrwxr-x 3 bin bin 9346 Sep 1]. 990

70 �rwxrwxr�x 3 bin bin 9346 Sep ii 1990

70 �rwxrwxr�x 3 bin bin 9346 Sep ii 1990

This trick simplifies code maintenance, but you should

avoid using it unless the amount of code overlap is really
large�otherwise, you�re just packing a lot of independent,
unrelated functions into a single executable. (Those of

you old enough to have used CP/M will remember pip,

which we still suspect could have made our microcom

puters dispense root beer if only we could have found the

right options.)

Directories

As we�ve probably mentioned before, on a UNIX system

a file is a file is a file. This means that we can treat any

file the same. For example, in Figure 1 we delete the file,

and the mode changes to zero.

Thoughts for Next Time

Next time, we�ll explore directories more thoroughly. In

preparation, we�ll close with a few things for you to try

yourself and a few things for you to scr:3tch your head

about late at night when you can�t sleep.
� What happens if I create a new file in thc directory

shown above? En what order will the erLtries of that direc

tory print if 1 do art is?

� If unlink)) only removes a directory listing and

doesn�t do away with a file, how do we get rid of it?

� Why is there a lost-- found directory in each file sys

tem, and why is it so big? (Iry is -ld /lost+ found and

contrast the size with that of an empty directory that you

create yourself.) How might you write ls? A

POSIX

/bin/cp

Ibm! ln

Ibm/mv

36 RS/Magazine NOVEMBER 1993

POSIX

In Which We

Explore Directories
by Jefireys Copeland and Haemer

J
n our last column, we began dis

cussing directory structure. This

time, we�ll begin by exploring
POSIX directories in more detail.

We�ll move on to rewriting our toy

is program from several columns

ago. We�ll Finish by discussing file

modes, thereby setting up a discus

sion of the files next month.

To review from last time, we

observed that a directory is just a

File. If we do an octal dump of a

directory on AIX, we Find it contains

a number of entries of 16 bytes
each. The first two bytes appear to

be hieroglyphics; the last 14 are the

first bytes of the file name. For

example:

$ od -cd

0000320 360 350 p o s i x � 4 m to

61672 28783 29545 30765 13358 28013 00000 00000

0000400

As we discovered, the two bytes of when we delete the file from the

hieroglyphics are actually the mode directory. This leads us to the ques

number. tions we left you with last time:

$ is -1 posix-4.mrn

61672 �r--�r--r�-- 1 jeff staff 13661 Sep 13 13:49 posix-L;.mm

Jeffrey Copeland (tet f(aus. shi .com) lives in Austin, TX. wltcrc he nanctges projects for SHL

Systctnhousc. He recently acted as softwarc consultant for the adtninistrators of the 1993 Hugo
Awards. His technical interests include nternattonalization and typesetting.
Jeffrey S. Hciemcr (jsh@canrj cOrn) is an nclependenc consultant based In Boulder, CO. i-Ic

works, writes and speaks �ii cite interrelated topics of open systems, standards. softwarc portability
and porting, and iiiterncccional;zcctio,c, Dr. Haenier has been a featured speaker at Usenix, UniFortcni

and Expo Kuwait.

In a full-page demonstration, we

found that the mode number is reset

to zero on some POSIX systems

36 RS/Magazine DECEMBER 1993

� What happens if! create a new file in the directory
where we�ve deleted afile?
When we create a fIle, it�s inserted into the first avail

able space in the directory. If we�ve deleted a file, it

replaces the entry with the zero mode. If we have no

empty spots available, it is added onto the end.

� In what order will the entries of that directory print if I

POSIX

do an is?

They magically appear in alphabetical order. (How does

that happen? Hint: See qsort in the C Standard.)

If unlink() only removes a directory listing and

doesn�t actually do away with a file, how do we get rid

of it?

If there are additional links to the file, nothing happens
to the data itself. When the link count in the mode goes

to zero, the system frees the blocks, and they become

available for use by another file.

� Why is there a iost.+ found directory in each file system,
and why is it so big?
Traditionally, UNIX doesn�t write its files in real time.

Sometimes, there are files on the disk that have not yet

been attached to directories. There are files that have

been deleted from directories but haven�t been purged
from the disk. When the system crashes, we need to do

an integrity check of the file system to catch the files in

these in-between states. This is the purpose of the pro

gram fsck. The lost+found directory is the catch-all for

these loose files. Why is it so big? Because when the sys

tem is starting up in single-user mode, fsck is operating
on the raw device and doesn�t deal with the directory
through polite system calls. We make its life easier by
giving it a premade directory with empty slots into which

it places loose files it finds; since it can�t increase in size,

we need to supply it beforehand with a number of empty
slots. In the dark ages, when a file system was created,

the system manager did something like:

cd /newfilesystem

mkdir lost+found

cd iost+found

foriinl234 56789...

do

for j in 12 34 5 6789

do

touch ij

done

rm
*

which left the file system big enough to hold a lot of files.

Two things to notice about this trick: Since directories

never shrink in size, lost + found can always hold at

least the number of files it was set up for. Also, fsck is

only looking for a place to put the directory entry�the file

already exists, and already has its space on disk.

How might you write is?

The obvious way of doing an fopen () on the file �.�,

reading information from it in 16-byte chunks, sorting it

by file name, and printing it out would work. But it�s

wrong. How do you know that the format of the directory
entry will be the same on the next POSIX-compatible sys

tem you work on? POSIX tells us nothing about the for

mat of the directory entries. It is only tradition that has

them laid out as in our examples. Indeed, on AIX, the

�mode number� in the directory does riot necessarily
even correspond to the mode number reported by
scat(), or shown in an is -ii.

The Real is Program
Fortunately, POSIX provides us with some handy rou

tines for getting at directories, and, of course, a data

structure for handling information from them. We can

begin by looking at the POSIX header file <dirent
.
h>.

The POSIX standard tells us that we have a DIR, which is

analogous to the stdio FILE type for directories, and a

struct dirent. containing at least the array char

_name] ,which is no more than NNE_MAX+i bytes long.
AIX is a little more generous with its information: We

also get the mode number (&.ino) and the length of the

file name (d_narnelen) in dirent. In a fully POSIX

portable program you would get this information by call

ing stat I) with the file name.

To access the directory structures, we have four conve

nient routines:

� opendir () takes the name of the directory and returns

a pointer to a DIR,

� dirent () returns a pointer to the nect dirent,

� closedir () closes the open directory, and

� rewinddir () allows us to restart at the beginning of

the directory we�re reading.
For example, we can list the files in the current directo

ry with the following program:

include <sys/types .h>

include <dirent
.

*include <stdio.h>

main()

DIR *djr.p;

struct dirent *dp;

if((dirp = opendir(�.� I) = NULL

err_quit.(�opendir failed�);

while((dp = readdir(dirp)) NULL

puts I dp->d_name);

closedir(dirp);

exit(0 1;

which provides output like

38 RS/Magazine DECEMBER 1993

osIx

�

File Modes

�
That leads us neatly to the question of file modes. \�Vhen

rnacros.mrn you do an is -1, you get some information about the file

makeflie attributes, viz.,

poSix-i.tin
-r-r--r-- i jeff staff 6824 Oct 07 i6:04 posix-5.mi

posix-2.rnrn

RCS How do they get set? How do we modify them? As

foo.c we�ve discussed before, POSIX defines symbolic constants

posix-3 .rnrn for each of the traditional UNIX protection bits. For

posix-4 .rnm example, S_IXGRP represents the execute permission bit

posix-5 .mm for group, and S_IWUSR is the user write bit. We already
foo know about the chmoa command.

Not quite the is you�re used to, is it? Several $ touch bar

things to notice: First both the current directo-
$ is -i bar

-rw-r--r-- 1 jeff staff 0 Oct 07 23:il bar
ry (.) and its parent (. .) are listed in the out

$ 777 bar

put. You�d expect this, since you�re used to see
$ is -i bar

ing the way UNIX directories are linked
-rwxrwxrwx 1 jeff staff 0 Oct 07 23:11 bar

together, when you use is -a. Second, the $ c1mod 3 bar

entries are not in any apparent order. Third, $ is -i bar

how would we do a listing of a different direc- wx i jeff staff 0 Oct 07 23:11 bar

tory? Lastly, we are only seeing the file names.

How would we do an is -i? The first problem is solved As you might surmise, there�s an underlying interface to

with a simple change: do the dirty work. We�ll use that interface, conveniently
named chmod , to build a version of the command:

while((do = readdir(dirp)) NULL

.f(dp->d_name ,

�

,) inc1ude <stdio.h>

puts(dp->d_name); linc1ude <stdiib.h>

#include �<sys/types .h>

The remaining three problems we will leave as an exer- #inciude <sys/stat .h>

cisc for the reader. Note that we already did a large part mt ode_hit121 =

of solving the last problem in an earlier column. S_IXOTH, S_IWOTH, S_IROTH,

Reader Feedback
To help RS/Magazine serve you better, please take a few minutes to close the feedback loop by
circling the appropriate numbers on the Reader Service card located elsewhere in this magazine. Rate

the following column and feature topics in this issue.

INTEREST LEVEL

Features: High Medium Low

Network Management as Team Sport 170 171 172

Software Soup 173 174 175

The Cadillac of Clusters 176 177 178

Columns:
Q&AIX�Performance Monitoring 179 180 181

Systems Wrangler�Look What They�ve
DonetoNFS 182 183 184

Datagrams�Back to the Future 185 186 187

AlXtensions�Paint by Numbers,
the RS/6000 Way 188 189 190

POSIX�ln Which We Explore Directories 191 192 193

RS/Magazine DECEMBE. 1993 39

POSIX

S_IXGRP, SIWGRP, S_IRGRP, strtol automatically takes the 640 as an octal since we

S_IXUSR, S_IWUSR, S_IRUSR, use a base argument of 8.

0, S_ISGID, S_IStJID, What would the code do if we invoked the program as

I,
chmod 0777qz foo

main(int argc, char *arqvtfl I-low can you fix it to catch the error?

� We�re also allowed to use command arguments in a

mode_t mode = 0; newer form, such as

inc r�.;
chmod g+xs,u-r,o=r foo

inc i;

Flow much more difficult would it be to parse these?

if ((argc 3) I isdigit *argv])) And how would you go about it? Is it enough of a hint to

err_quit (�usage: %s octal-mode file, note that the POSIX.2 standard provides a BNF grammar

rgv0]); for the command line to chrnod?

a = trtoi(argvl], NULL, 8);

for (1=0; i<12; i+÷ If We Can Change Permissions,
if (a & (i<<i)) How About Ownership?

mode = mode mode_bit Ii]; You would think that we should be able to modify all of

if chmod(argv2] ,
mode) = = -U the file attributes we see when we do an is -1. We can.

err_sys (�chmod failed�); For example:
exit(0);

$ touch bar

Sis�ibar

Things You Should -rw-rw-rw- 1 jeff staff 0 Oct 07 23:26 bar

Notice About This Program
$ chown 0 bar

$ls-lbar
File permissions are type mode_t not type mt

-rw-rw-rw- 1 root staff 0 Oct 07 23: 26 bar

any more. At the same time, we now use the
$ rin -f bar

symbolic constants to refer to the mode bits, not $ touch bar

the familiar UNIX numeric modes, such as 0644. $ chown bin bar

In other words, under POSIX, the mode bits are $ is -i bar

not guaranteed to map neatly to octal constants. -rw-rw-rw- i bin staff 0 Oct 07 23 :26 bar

In POSIX.2, we can still accept the old argu

ments, such as As you can probably guess by now, th chown program

uses an underlying chown I) interface. We can build it
chmod 644 foohar

into a program like so:

but this is considered obsolete. Why? Because we may be

implementing POSIX commands on a system that doesn�t #inciude <pwd.h> / for getpwuid /

support file permissions in quite the same way as the 1*
.
ocher includes /

original Kernighan patent for UNIX mode bits specified.
In this case, neither the symbolic constants (such as main(int argc, char argv))

S_IRWXU), nor the numeric values we�d use on the com

mand line (such as 0711), would match the underlying struct stat buf;

operating system. uid_t uid;

� Two programming tips are notable here: First, by struct passwcl *pwd;

using a table lookup, we made our code a great deal easi- char *cp;

er. (We�ve spent some of our days lately trying to fix a if (argc = 3)

100,000-line program that consistently uses switch state- err_quit (�usage: %s uid file
, rgv 01);

ments instead of tables. This makes the code a great deal if (stat argv2] ,
&huf(= = -1)

more difficult to understand, and at least six times bulki- err_sys (�stat failed�

er.) Second, using strtol (to convert the command- for(cp = argvll] ; * && isdigit (*cp) ; cp++(

line argument to a long is exactly the right thing. In par

ticular, by invoking the program as if (cp = =

uid = (uid_t) tol(argvi]);

chmod 640 foobar else C

40 RS/Magazne DECEMBER 1Q93

POSIX

if ((pwd = etpwnam(argvl)) I = NULL) ago, shortly after the Internet Worm disaster, one of us

err_quit (�unknown user id %s�, did the quick experiment of testing the passwords on all

rgvl] I; the UNIX machines he could get to on the local-area net

uid = pwd->pw_uid; at the company where he worked. He only used a dictio

nary attack. The only passwords he successfuUy broke

if chown(argv2] ,
uid, buf st_gid) = = -1) this way belonged to corporate ofFicers. IF he had been

err_sys (�chown failed�) less scrupulous, he would have given himself a large raise

exit (0) and retired. The moral of the story is that easily guessed
passwords really arc a danger, if not from an external

intruder, from the cracker across the hail.) We�re just
For reference, getpwnam () returns a password structure: about out of space, so we�ll leave you (as usual) with a

few points to consider in the next month:
struct passwd

� Why don�t we declare the uid and gid to be mt
char *pwnalne; 7* User name /

instead of having special types uid_t. and gid_t ?
uid_t pw_uid; 7* User ID number /

� Life would certainly be easier if we had the inverse of
gid_t pw_gid; 7* Group ID number *7

stat ()
, say:

char *pw dir /* Initial Working Directory */

char *pw shell; 7* Initial User Program */
setstat(char *filename, statbuf *bIf

I;

We can have other fields in passwd in addition to the Why doesn�t it exist?

POSIX-niandated minimum set. For example, char � Since the chown (I interface sets both owner and the

*pwoasswd might contain the actual text of the hashed group, should we just make chgrp a link to chown like we

password. The text of the password is probably not avail- described for ni, cp and ln?

able on systems where there is a file /etclshadow to con- Next month we�ll explore file types, file contents and

tam the actual password data. (An aside: Several years file time stamps. Until then! A

I�1T1II1kTII1I1:
WE BUY, SELL & RENT

CLEAN U CABLE CLUTTER

R5/6000 �AND REDUCE YOUR
WITH THE NEW DCB UNIMux

Eliminate that snarl of wires to your standard multiplexer.

PARTS � FEATURES With the DCB UNImux, you can make all your local

connections with a single cable to a SCSI inl:erface

UPGRADES � ci�s and reduce the number of slots used.

System 36 Conversions
Replace this

� AutoCad Available for RS/6000

__

cable mess:
HO

New & Used IN STOCK

Complete Technical Center, Installation,

:

Stock Parts & Features for RISC. With the

UNImux solution

COIIPUTERfi

IiRRKETPLiRCE For AIX, HP-UX, SCO, DEC and SUN.

DataComm
�I�II.U�II.uII1�IuI8OO 858-1144 ExL 95
for iie, /itc.

A Publicly Traded Company NASDAQ: Manufacturers of modems, multiplexes,
4 as everything for your data communications application.

��I--FL-,�

807 Pioneer, Champaign, IL 61820

205 East 5th St., Corona, CA 91719 Toll-free: (800) 637-1127
TEL (909) 735-2102 � FAX (909) 735-5717

lull

Circle No. 3 on Inquiry Card Circle No. 5 on Inquiry Card

RS/Magaine DECEMBER 1993 41

POSIX

In Which We Discuss

File Attributes
by Jetireys Copeland and Haemer

J
n case you�re just joining us, this

column is for you if you�re a C

programmer who�s interested in

the POSIX.1 system interfaces. -�

Rather than run through a dry list of
A

system calls, we�ve chosen to ask

what system calls need to exist in

order to support the day-to-day corn

mands we use from the command

line. Instead of touring the standard,

our not-very-hidden goal is to get

you to the point where you can tour N
the standard yourself. Our general
approach has to been to make each

column a sandwich: a discussion of

some common commands and their aren�t UNIX�real UNIX systems, like

underlying system facilities, laid AIX, store such attributes in modes.

between a set of leading questions Some questions that we trotted out

and the answers to the questions we during those explorations, and our

raised in the preceding column. We answers:

like that, so we�ll stick with it. First, � Why don�t we declare the uid to be

last month�s questions. an mt instead of having the special
type uid_t?

When Last We Well, how big is an int? On an

Left our Story... RS/6000, INT_MAX is 2,147,483,647.

Last month, we were exploring the Seems like that would be big
file attributes provided by stat ()

. enough, eh? Perhaps not. First, it�s

Even though POSIX steers well clear smaller than the world population
of implementation details�there are (which is now above 5 billion). Sec

POSIX-conforming systems that ond, not every user is a person. Once

Jeffrey Copeland (jetf@aus.shl.com) lives in Austin, TX, where he manages projects for SHL

Systenihou.cc. Hc recently acted as software consultant for the administrators of the 1993 Hugo
,4wazds. His tcchziical ilitere.cts include nternat Iization and typesetting.
Jeffrey S. Haenier (j shgcana� .

corn) is an independent consultant based in boulder, Co. He

works, writc.c and speaks on the interrelated topiis of open systems, standards, software portability
aitd porting, and internationalization. Dr. Haeiner has been a featured speaker at t.Jse,tix, Un Forum

and Expo Kuwait.

34 AS/Magazine JANUARY 7994

POSIX

we admit the possibility that every the operating system subsequently Once again, POSIX provides sym
device in the world that speaks to a lets you do with the data. Because bolic constants and macros to do

computer might want one or more UNIX lacks such pervasive, OS-level what used to be done with bit-lid

unique uids, an mt looks smaller file-typing, most programs can be dung. Read, write and execute per

and smaller. Alternatively, we might file-type independent�cat: can cat missions are determined with the

want uid_t to be smaller than an any file�with an enormous, attendant masks s_ICRwx)*; setuid and setgid
jot. Many traditional UNIX imple- simplification of development, use behavior are detected with S_ISUID

mentations, like ULTRIX, use a short and maintenance. That said, and S_ISGID; the modes themselves

int�15 or 16 bits�to hold a uid_t. although UNiX data files are all just are tested with a suite of s_Isk ()

And though space grows cheaper all byte streams, UNiX really does have macros. All operate on the stjnode

the time, it�s never free; we have even a few file types. Figure 1 illustrates field of the stat structure that we

used UNIX implementations on this with some simple directory discussed in an earlier column. Let�s

which ints are smaller than 32 bits, listings, pause for a moment to note some

Computing changes quickly, but The left-hand character in a long general programming points:
standards are crafted to be stable and (is �1) listing says whether the file is � We start with the general case

slow to change. (As the Romans used a regular file (-), a directory (d), a (char ermstri0l � ?rwxrwxrwx�;)

to say: �Ars longa, machine-architec- character special file (c), a block spe- and loop through an array of masks,

ture-generation-time brevis.�) With cial file (h), or a fifo (p). Additional- blanking out anything that doesn�t fit.

this in mind, POSIX generally takes ly, some files are executable, as This saves us from having to write a

the approach of giving quantities of shown by the character x in the per- very large set of nested ifs.

unknown size their own types. missions flags. (Setuid programs or � Notice that a stat () failure

Life would certainly be easier if we setgicl programs show an s instead of doesn�t cause the program to exit.

had the inverse of stat Yi. an x in the appropriate position.) We make this point because we�ve

Why doesn�t it exist? Note that mkfifo is the same as old seen blanket statements, in print,

mknodfilenarne p. It creates a that a program should always abort
setstat (char *fiienarne, statbuf *buf)

file in the file system that when a system call fails.

Here, we hide behind that most operates just like a pipe; data come � All multiway switches should

technical of answers: �We don�t out in the same order they�re put in, have a �can�t happen� case. We steal

know.� We raise the question neither and reading data from a fifo also this good advice from Softwarc Tools,

to advertise our ignorance nor to removes the data, by Kernighan and Plauger, (Addison-

argue the rationality of the design of You should be able to infer by now Wesley Publishing Co., 1976, ISBN

the interfaces, but to highlight an that POSIX lets you get at file-type O-201-03669-X), a must-read book

important point: POSIX isn�t sup- information and display it. if it for the UNIX/C programmer even

posed to design �better� versions of didn�t, how could anyone have writ- though its code is superfluous on

what�s out there, it is supposed to ten is? Watch what happens in UNiX systems and isn�t in C. By hay-

standardize existing practice. Existing Listing 1. ing one in ours, we make our code

practice gets all the file attributes with

a single call, stat (
,

but sets them

individually, with calls like chown Y. Figure 1

� Since the chown () interface sets
$ is �i /etc/passwd

both owner andthe group, should we
-r-�r--r-- i root sys 1017 Aug 20 09:08 /etc/passwd

just make the commands chgrp and $ is -ia /dev

chown links to the sane command? cirwxrwxr-x 7 root sys 2736 Sep 16 1991 /dev

On some systems, they are. $ is -i /dev/consoie

crw�-w--w- 4 root other 5, 0 Aug 25 i7:0 /dev/consoie

Onwards and Upwards S is -i /dev/hdOl

It is sometimes said that UNIX has brw 1 root sys 0, 3 Mar 28 1990 /dev/hdOl

no file types. The distinction being
S fllkrlfo /tnip/FIFO

$ is -1 /trnp/FIFOmade is that older operating systems
prw�rw-r--- 1 sh other 0 Aug 26 11:02 /trnp/FIFO

often provide a wealth of file types
$ is �1 Ibm/mail

for storing data. On such systems,
-rwxr-sr-x 2 bin mail 44416 Feb 2 1990 Ibm/mail

applications programmers must $ is -1 /bin/df

choose the type of file to store their
-rwsr-xr-x 2 root bin 10536 Feb 21 1990 Ibin/df

data in, and such choices affect what

36 RS/Magazuno JANUARY 1994

POSIX

portable to systems that have more your machine. mt mode 10] =

file types than those required by Speaking of guarding against later 0,

POSIX.l-1990. Like what? Take a developments, always use a comma S_IRUSR, SIWUSR, SIXUSR,

look at sys/stat.h, search for after the last element of an array mi- S_IRGRP, S_IWGRP, S_IXGRP,

S_ISFIFO, and see what else is on tializer. S_TROTH, SIWOTH, S_IXOTH,

Listing 1
This lets you update the code more

#deflrie _POSIX_SOURCE

inciude <sys/types.h>
easily when you port to a system

with more modes than the required#include <sys/stat.h> inc odel0] = {

0, POSIX set.

S_IRUSR, S_IWUSR, S_IXIJSR,

S_IRGRP, S_IWGRP, S_IXGRP, Time

SIROTH, S_IWOTH, S_IXOTH, �Time, time, time, is on my side,
Oh yes it is.�

char ermstri0I �?rwxrwxrwx�; �M.JaggerandK. Richards

main(int argc, char argv])
Or, in our case, �Oh yes they are.�

It will not have escaped the notice of
whiie(--argc)

doperrns (*++argv) ;
the discerning reader that is -i gives

exit (0) ; one time, but the stat structure con

tains three. What the heck are these

doperms (char *filenajfle) other times? Some experiments are

useful here. After a peek at the is

struct stat buf;
man page, which reveals that we can

mt i;
probe the three times with ls -1

char permslio];
(st_rntime), is -ui (sc_atime), and

if (stat (filename, &huf) = -1) is -ci (st_ctime), we try some

err_ret (�%s�, filename); manipulations in Listing 2.

return; When the file is first cieated, by the

first touch, all three times are the

strcpy (perms, perrnstr); same. The next two experiments, with
for (i=1; 1<10; i++) touch-mandtouch-a,showthatthe

if (! (buf.st_mode & odei]))
three quantities can be manipulated

ermsi]

if ((S_IXUSR & buf.sc_mode)
independently. The last two experi

&& (5_ISUID & buf.st_mode))
ments show that, although modifying

perms 3] = �s�;
the contents of the file changes all

if ((S_IXGRP & but. st_mode) three quantities, just looking at the

&& (S_ISGID & buf.st_mode)) file changes the st_atiine field (the
erms6] = S ; �a� stands for �access�) Indeed, is -

if (S_ISDIR(huf . st_mode)) ul is an old programmer�s trick (and
erms0] =

one of us, on the verge of a birthday,
else if (S_ISCHR(buf . st_mode)

feels particularly old this evening).
erms0J = �C�;

Remember the last time you were
else if (S_ISBLK(buf.st_mode))

developing or porting a program and
perms(0] = b;

else if (S_ISREG(buf.st_mode)) you went in to put printt() calls

erms0] =
��

; around the open, in trustration, to

else if (S_ISFIFO(buf . st_mode)) see whether you were even reading
perms 0] �� the input data file? As you can now

else
see, an is -ul inputfile is a lot casi

err_msgY�Non-standard file type %s�,
er. We use the mnemonic �-u for �use-

filename);
ful.� The sc_ct irne flag changes

princf(�%s , perms);
whenever the contents of the stat

structure change (yes, this is circular,

RSlMagazine JANUARY 1994 37

POSIX

and no, there�s no positive feedback here are also noteworthy. The first is t1B_CUR_iAX. Quick�which is which?

loop). This last time stamp is less that we use globals to record flag set-

often useful for the programmer, but tings. If you find a -z flag during Will She Be Rescued

still worth knowing. OK, the times argument parsing, chances are very, in the Nick of Time?

are separate and comprehensible, and very good that the code will immedi- Tune in next morLth and find out.

an application can find each with a ately set the global variable �zflag�. While you�re waiting for the next

stat () call. How can an application The second is that the code first installment in our serial, think about

modify them? With utime ()
. Listing processes flags, which are marked by a few things that we�ve raised in this

3 shows an example�a more sophisti- a leading �-�, and then loops through one.

cated version of the touch command the remaining arguments assuming � If we typedef time_t to be a

we wrote in an earlier column. they�re uilenames. signed, 32-bit quantity, when will

Some noteworthy POSEX points � We�ve defined a no-argument time end?

about this program: macro, USAGE (). We could have � When should commands take

utime () lets programmers set defined it without parentheses, as multiple filenames as arguments? No

st_mtime and st_atime; st_ctime is filenames as argu

set as a byproduct because utime () #defirie USAGE \ ments?

modifies the ide. (POSIX doesn�t errquit(�usage: touch -am] file�, rgv0])
� The POSIX.2

say mode, but that�s how to think touch command

about it.) but we find the parens helpful. One I has the following one-line synopsis
� time () returns seconds since �the of the following macros is a symbolic

epoch� (January 1, 1970). It�s constant and one is a macro evaluat- usage: touch -&mc] -r fuel -t

depressing to realize that we were ed at run time: MB_CHAR_MAX, CC]YY]Mt�ffDDhhnffn .SS]] file

born before time began. As usual,

POSIX clelines a new data type for
Listing 2

times, timer, to guard against the

inevitability that any standard C data $ is too

type we might choose would eventu-
foo: No such file or directory

ally be wrong. (Dave Taenzer often $ touch too

$ is -l too; is -ul too; is �ci too
reminds us that even 50-50 odds are

-rw-rw-r-- 1 jsh other 0 Aug 25 i5:39 too
10-to-i againstyou.)

-rw-rw-r-- 1 jsh other 0 Aug 25 15:39 too
� access(filenanie, 0) asks whether

-rw-rw-r-- 1 jsh other 0 Aug 25 15:39 foo

a file exists. In general, access () lets $ sleep 60

you ask about your real access per- $ touch -m too

missions to a file. This call is particu- $ is -i too; is -ui too; is -ci foo

larly useful in setuid programs, �rw�-r-- 1 jsh other 0 Aug 25 i5:4i too

where you might be running as root -rw-rv-r-- 1 jsh other 0 Aug 25 15:39 too

but want to ask about what you
-r1-rd-r-- i sh other 0 Aug 25 15:41 foo

could do to the file if you weren�t. As $ sleep 60

a special case, a second argument of
$ touch -a too

$ is -i foo; is -ui foo; is -ci too
0 just asks, �Does the file exist?� We

-rw-rw-r-- 1 jsh other 0 Aug 25 15:41 foo
could do a stat call, but we rather i

-rw-rw�r-� 1 jsh other 0 Aug 25 15:42 foo
like this special case, and it seemed

-ri-rw-r-- i jsii other 0 Aug 25 15:42 foo

like a good excuse to use it.. $ sleep 60

In acklinon, there are a few general $ echo �hello, world� > too; touch foo

programming points worth making: $ is -l too; ls �ui too; is -ci foo

�We�ve restricted maini to argu- -r��rw-r-- 1 jsh other 0 Aug 25 15:43 too

ment handling. Everything else is a wrwr-- 1 sh ocher 0 Aug 25 15:43 too

function call. Not only does one of us
� cw-rw-r-- i j sh other 0 Aug 25 15:43 foo

(J SI-I) frequently use this as a conven-
S sleep 60

$ cat too > /dev/nuil
tion, it�s one that he didn�t invent. In

$ is -i foo; is -ui too; is -ci foo
other words, you may see others use

-rw-rw-r-- 1 jsh other 0 Aug 25 15:43 too
it, so we present it as a public Service.

-rw-rw-r-- i jsh other 0 Aug 25 15:44 foo
A couple of other common organi- -r-r--r-- 1 jsh other 0 Aug 25 15:43 too

zational conventions that we use

38 RS/Magazine JANUARY 1994

POSIX

Listing 3

*define _POSIX_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <sysltypes.h>

include <sys/stat .h>

#include <time.h>

#include <utime .h>

define USAGE()

err_quit(�usage: touch -am file�, rgvO])

define S_IRW

S_IRUSR S_IWUSR I S_IRGRP I S_IWGRP I S_IROTH S_IWOTH

mt mflag, aflag;

rnain(int argc, char *argvt])

char *cp;

while (--argc && (**++arg-v ==

for (cp (*argv)÷l; *p �; cp++)

if (*cp == �a�) +÷aflag;

else if (*cp = = �rn) ++rnflag;

else USAGE));

if (argc < 1)

USAGE

if (!aflag && Imfiag)

++aflag, +÷mflag;

while (argc--)

settirne(*argv++)

exit (0)

settime (char *filename)

struct utirnbuf times;

struct stat buf;

if ((access(filename, 0) = = -1)

&& (creat(filenarne, S_IRW) == -1))

err_sys (�creat failed�);

if (stat(filename, &buf) == �1)

err_sys (�stat failed�)

1* now the defaults /

times.actirne = buf.st_atime;

times.mocltime = buf.st_mtirne;

if (aflag)

times.actime = tirne(NULL);

if (rnflag)

ti.mes.modtime time(NULL);

if (utirne(filenarne, ×) -1)

err_sys (�utime failed�);

ANN0VNdNq
The CICS� ata!og
1001 ways to get

your CICSTM

If you use CICS, or plan to, you

need this comprehensive cata

log. Why? - Because it is the

one place to find Who�s Who

and What�s What in CICS.

Applications, tools, platforms,

system integrators, system pro

grammers and analysts, appli
cations developers and all the

latest CICS related software and

services.

To get your CICS

CALL NOW

1-800-GET-CICS

(1-800-438-2427)

Available December, 1993 - $50

Major Credit Cards Accepted

The -c option means �don�t create

the file if it doesn�t exist.� 1-low

would you implement that?

� The -r filename option to time

means �use the time values of this

file.� How would you implement that?

� The �e argument is a time to use

for the ut irne () command. How

would you turn that into seconds

since the Epoch?
We didn�t quite make it to file con

tents this time, as we promised, but

we�ll get there next month! We

think. A

If you are a CICS Applications
Developer or Service Provider and

you�re not in the catalog
Call, Write or Fax us now.

The Standish Group
International, Inc.

295 White�s Path

S. Yarmouth, MA 02664

(508) 760-1800 Fax (508) 760-1830

cics and IBM arc radznr.,rK,, and rcgislcrcd tradcn,arks of

In,crna,i,,nal Businc.s Mach,ncs

Circle No. 19 on Inquiry Card

AS/Magazine JANUARY 1994 39

POSIX

In Which We Discuss

File Contents (Finally)
by Jetireys Copeland and Haemer

W
elcome back. This is the

seventh in our series of

columns about the

POSIX.1 system interfaces. Instead

of approaching this as a list of sys

tem calls, we�ve been working from

our knowledge of the POSIX.2.-that

is, UNIX�commands. By working
backwards from the commands, we

can derive information about what

features the interface to the operat

ing system must provide for the

commands to act as they do. The

goal is, instead of giving you a guid
ed tour of the standard, to get you to

the point where you can tour the

standard yourself.
In general, we�ve been serving

columns modeled on sandwiches.

We end with a series of points to

consider for next time (rye), have a

body of current discussion and

examples (peanut butter), and begin
with solutions to last column�s

gedanhenexperinienten (another slice

of rye). We�re trying to season the

mix (pickles) with some observa

tions about good programming prac

tice. In that spirit, let�s start with last

month�s questions.

Revisiting File Attributes
� If we typedef t irne_ to be a

signed, 32-bit quantity, when will time

end?

If time begins at midnight on

Thursday, iJanuary, 1970,

2,147,483,647 seconds later is Tues

day, 19 January, 2038, at 3:14:07

am. (Note to NASA: Double-check

the declarations in <time.h> before

Jeffrey Copeiand (effQaus.shi.com or copelond@alurnni.caleech.edu) lives in

Austin, TX, where he manages projects for SHL Syste;nhouse. He recently acted as software consul

Cant for the adni mist rotors of the 1993 HUgO Awards. His technical interests include i,ticrnattonahza�

Oil (md ty7CSE�t t 1g.

Jeffrey S. Hacmer (ohcanary .
corn) is an independent consultant based in Doulder, CO. He

worlts, writc.c and speaks on the mnterwlatcd topics of open systems, standards, software portability
and porting. (mci internal ionrtl i zat ion. Dr. f�laeiner has been a feats red speaker at Uscn ix, Un iForunt

and Expo Kuwait.

34 RS/Magzine FEBRUARY 1994

POSIX

starting that three-year flight to Listing 1

Mars in 2035.) Adding another

bit, that is, making time an
$ grep Jeff *

.rnm

unsigned 32-bit quantity, posix-l.mm:.AU �Jeffreys Copeland & Haerner�����

extends time until Sunday,7 posix-l.rnm:The Jeffs are, we admit, American engineers.)

February, 2106 (happy 121st posix-l.mm:Jeff Copeland (jeff@aus.shl.com) lives in Austin, Texas,

birthday, Allie) at6:28�l4am. posix2.m:.AU �Jeffreys Copeland. & Haemer�����

UNIX is not the only system

for which this is a problem: On 4 January, 1975, time introduced in an earlier column.

ended for users of DEC PDP-10 computers after only 11 � The �r fliename option to time means �use thc time

years. The solution was to co-opt three unused bits in the values of this file.� How would you implement that?

status word already containing the date. On 9 January, Again, stat () provides the operative trick. Instead of

1986, more problems surfaced when the second of the setting the time to the current one, use utirne () to set the

three new bits came into use. Lesson: Encapsulate your fIle times to those returned by a stat () of fiJ.enane.

data structures and don�t � The -t argument is a time

use undocumented or to use for the utime() corn-

reserved space. niand. How would you turn

When should commands esson: Encapsulate your
that into second:; since the

take multiple filenames as Epoch?
arguments? no filenames as Slightly trickier. We parse

arguments?
data structures and dont

cc]yy]MI1Dnhi-.Ssl

Let�s begin to answer that into a cm structure, and then

question with more ques- use undocumented or reserved use the Standard C routine

tions. What commands rnktjme ()
,

which takes a cm,

must process only a single and emits a time_t.

file? Wherr does it make space. But how does rnktirne() do

sense to read only from its work? A long calculation

standard input? with the count of days since

Think about csplit for a moment. This command 1/1/1970 is involved, multiplication by 60*60*24, and

processes a file based on a series of regular expressions then addition of hour, minutes and seconds since mid

and line counts on its command line, It would have con- night is called for. The day-count calculation is the hard

fusing semantics if it processed more than one file: Is est. In general, when a date calculation is involved (and

there a special expression for �somewhere in the next between us, we�ve written too many time sheet and calen

file�? How do I tell when I�ve begun the next file? dar systems), we like to refer to the formula:; and coni

On the other hand, I want to process multiple files it-i mon Lisp code in Dershowitz and Reingold�:; paper �Cal-

cases where the file boundaries don�t make a difference, endrical Calculations,� Software: Practice and Experience,
for example, cat. In some of these cases, I want to mark 20 (9), September 1990, pp. 899-928. (Aside for the

the file boundaries as in Listing 1. month: Why are Easter and Passover either n the same

How about commands that read only from standard week or nearly a month apart? If you look at how the

input and don�t take command-line arguments? These are dates for these movable feasts are calculated, it becomes

harder to justify, though they certainly exist (see, e.g., clear.)

col (1)). We�re tempted to say that any command that

takes input on the standard input should also accept Finally, File Contents

input from a named file. Can you offer a counterexam- We�ve been talking about talking about file contents�

ple? Our email addresses can be found at the end of this that is, details of reading and writing�for three columns.

article. Now, we finally make good on the promise. As we�ll see,

� The POSIX.2 touch command has the following synopsis: this will give us an excuse to study some details of

POSIX. 1 implementation.
usage: touch -amc -r filenamel-t CC]YY]tMDDhhrm .SSI] file

... Consider the handy cat command:

The �c option means �don�t create the file if it doesn�t $ is -1 /unix

exist.� How would you implement that? -rwxr�r� 3 root other 749172 Aug 28 1991

Easy: One possible solution is to exit if a stat () of the /anix

file returns -1. Another is to use the access () call we $ cat /unix > /dev/null

RS/Magazine FEBRUARY 1994 35

POSIX

Listing 2 Calculating the Effect of Buffer Sizes

time#include <stdio.h> buffer I

#include <fcntl.h> size h ea1
-

1

main(int argc, char *arg]) 2 1:38.23 0:14.03 1:a6.97

16 I 0:12.09 I 0:01.56 0:09.82
FILE *fp;

128 0:01.54 0:00.14 0:01.33
if (argc = = 1)

256 0:00.76 0:00.07 0:00.67
docat(stdin);

else
1024 0:00.22 I 0:00.02 0:00.20

2048 0:00.13 0:00.02 0:00.11

jf ((fp fp(*++, �r�)) = = 3072
0:00.10 0:00.03 0:09.07

while (�argc > 0)

err_ret Vcan�t open %s�, *argv);
4096 0:00.09 0:00.03 0:00.05

else 5120 0:00.07 0:00.02 0:00.04

docat(fp); 6144 0:00.07 0:00.02 0:00.04

fclose(fp); 7168 0:00.06 0:00.00 0:00.06

8192 0:00.06 0:00.01 0:00.05

9216 0:00.06 I 0:00.01 0:00.04

exit(0); 10240 0:00.06 0:00.01 0:00.04

docat(FILE *fp)
We�ll write two quick, cat-like programs and try some

mt C;
experiments (see Listings 2 and 3).

What about their relative speeds? We�ve already identi

while ((c = getc(fp)) EOF)
fieda handy 750-KB file:

putchar(c); $ Ibm/time cati /unix > Idev/riual

real 4.1

user 0.0

sys 0.9

Listing 3 $ Ibm/time cat2 /uriix > /dev/null

#include <fcritl.h> real 7:44.9

user 22.8

main(int argc, char *argv(]) sys 6:14.5

Why is the second version so much slower? After all, in
i. fd;

classic UNIX, the stdio library is implemented on top of
if (argc = = 1)

docat (0)
the read and write system calls. Why should the library

else routine be faster?

while (�argc > 0) { The issue is buffers. stdio provides buffered input and

if ((fd = open(*++argv, O_RDDNLY)) �1) { output and reads a full buffer into memory at a time. On

docat (fd) a real UNIX system, the version that uses the naked

close (fd) ; read () call has to do physical I/O for each character

read. Worse, it has to do a seek () to return to the correct

else place in the file for each character.

err_ret (�can�t open %s�, *argv) Our colleague, Dave Taen.zer, first showed us this with a

program like our third version of cat in Listing 4.

exit (0) We run this by specifying a buffer length and a file, for
docat(int fd)

example:

char buf; $ cat3 1024 /unix

size_t fl;

while (read(fd, &buf, 1) 0)
(Note that we�ve defined a default ifa size isn�t spec)

write(1, &buf, 1);
lIed.) This program shows us the dramatic effects of vary

ing the buffer size (see �Calculating the Effect of Buffer

Sizes�).

36 RSfMagazine FEBRUARY 7994

POSIX

For a one-byte buffer, this version of cat is glacial in

speed. Notice that we have a curve that drops almost

exponentially, and then flattens off as the buffer size gets

larger. We ran this on AIX: Notice that the curve flattens

off at 4,096 bytes�exactly the value of BUFSIZ in

<stdio.h>.

Take-Home Lessons

There are a couple of lessons here:

First, on an implementation where system calls and

Listing 4

#include <fcntl

#iric1ude <ctype.h>

#define DEFBtJFSIZ 1024

main(int argc, char **argv)

mt fd;

mt bufsize;

mt files = 0;

bufsize = DEFBUFSIZ; / set the default size /

while (�argc > 0)

if I (fd open(*++argv, O_RNLY)) -1)

docat(fd,bufsize);

close(fd)

files++;

else if(isdigit(**argv)

bufsize = atoi(*argv);

else

err_ret(�can�t open %s�, *ar);

I if we haven�t seen files yet,

process the standard input *1

if) !files

docat(0, bufsize);

exit (0);

docat(int fd, mt bufsize)

char *buf;

size_t n;

if) (buf = malloc (bufsize)) = = NULL

err_ret(�can�t allocate %d buffer�, bufsize);

while ((n = read(fd, but, bufsize)) > 0

write(1, buf, n); / remember that fd 1 is stdout /

free(buf);

return) 0);

library routines are distinct�and POSIX.1 leaves that as

an implementation detail, referring to any member of the

API as an �interface��system calls are not necessarily
faster than library calls. As we�ve seen in this case, that�s

because of the buffering of the reads. You�re certainly
likely to force a context switch while waiting for physical
110 to complete�and as we all discover as we get older,
context switches get expensive.
We would be remiss if we didn�t also derive some useful

progamming lessons from these examples. Note that all

three versions of cat are pretty much the

same program. We have to do a bit less jig

genng of files and flags when we use stdio,

which is one of the reasons to use the library
in preference to the system calls.

Notice that we�ve been careful to always
close our files. In principle, any we�ve left

open get closed on exit, but there are often

limits on how many files we can have open

simultaneously�in stdio.h how big is the

array of FILE structures?

Another important point is that getchar (I

returns an int, not a char. See our earlier

RS/Magazine series on internationalization if

you need more convincing on this point.
Notice that real time does not equal user

time plus system time. in general, the figure
of merit is user plus system time; real time is

the elapsed�wall clock�time, which is depen
dent on external factors, such as system load.

As another implementation detail,

/dev/null is not the best way to test 110 per

formance. On some systems, the kernel rec

ognizes when a write is taking place to

/dev/null and ignores the operation.

Back of the Envelope Calculations

We can�t finish up without leaving you with

a few points to ponder for a month:

� How would you implement getchar 0?

� How would you implement ungetc (I?

� Some implementations of stdio only
allow one character to be pushed back by
ungetc C). Does yours?

� What�s a good maximum pushback? Can

you make it infinite?

� Now that we�ve told you you�re better off

always using the standard 110 library, when
would you want to ignore our advice?

� We�ve made extensive use of the time

command this month. I-low does it know

how much time was taken and how it was

spent?
Until next time... A

AS/Magazine FEBRUARY 1994 37

POSIX

In Which We

Discover Processes
by Jeffreys Copeland and Haemer

H
ello again for another in our

�

series about the POSIX.1 1
system interfaces. This , I

-�S
month we II be reviewing what we 1

ing knowledge about the required

system calls to provide the necessary

services. In general, we�ve been

packaging information between

exercises for the reader, so let�s start,

as usual, with answers to last

month�s questions. fragment in Figure 1 illustrates the

point.
File Contents, Redux A better implementation would

How would you irnplc�rneiii operate on top of read() instead of

getchar 0? fgets ()
,
so that different standard

If you were paying attention last 110 calls could be more safely inter-

month, using the read () system mixed�however, remembering our

call to get one character at a time is lessons from last month, an imple
not going to work. An obvious mentation using read 0 would need

buffered solution would set up a to always read a full buffer, that is,

static buffer of BUESIZ, read one BUFSIZ, at a time.

buffer at a time, and step th rough � 1-tow would you implement
that buffer returning characters j unget:c () ?

until the end of that buffer, and Some implementations of stdio

then reading another. The code allow only one character to be

Jeffrey Copeland oeft@au5.sh1.com or cope1andQaurnni.ca1tech.edu) hit�s in Austin,

TX, whcre he Inanclges projccts for S1-1!. Sysic�inhousc. Hc recently acted as softwaic consultant for the

adrninistrator (lie 1993 Hugo Awards. His technical interests include iitcrnaiionalization and

typesetting.

Jeffrey S. Haciner (j shcan ry .corn) is an independent conuItant basest in Boulder, CO. He

works, writes and seaks On tlic interrehttcd (0pI cf ope,i systems, standards, software portalsility
ansI port ins, cincl internationalia, ion. Dr. !�laeiner has been a featured spealwt at U.senix, tin iForuni

sind EXpO Ku irdlit

38 RS/Magazine MARCH 7994

Figure 1

#include <stdio.h>

static char ufBUFSIZ];

static char *bp;

static mt bcount = -1;

mt getchar()

if(bcount < 0

bcount = fgets(

if(bcount <= 0

return EOF;

bp buf;

bcount

return *bp++;

}

POSIX

pushed back by ungetc (). Does yours? Most often, in

our experience, ungetc 0 has been implemented as a sin

gle-character holding area, local to the module contain

ing getchar 0. For example:

static mt ungetbut = EOF;

inc ungetc(mt ch

urigethuf = ch;

return ch

mt i;

i = ungetbuf;

ungechuf = EOF;

return i;

A better implementation would involve a flag, in case we

wanted to push back an EOF character. Why not imple
ment this by just pushing back the buffer pointer? Because

we may want to push back a character that we hadn�t read.

Why not allow more than one character of pushhack by
using the react buffer to push those characters into? After

all, we�ve already read them. Let�s answer that with another

question: What happens if we want to push back some

thing when we just happen to have react a new buffer?

i�low would we push back before our buffer pointer?
VVhat�s a good maximui pushbctck? Can ott make it

infinite?
There is an argument to be made for a single-character

pushback stack: We always know how big it is, and we

have to take care to write our programs to not overflow

it. If the pushback buffer is implementation dependent,
we can write a program that depends on a different push-
back buffer size and quickly get ourselves in trouble. But

if we want more than one character of pushback, a buffer

full is probably a good compromise. We could make the

buffer size infinite, or nearly so, by pushing the charac

ters back into a F1FO, or pipe, or even by opening a file

and storing them on disk.

Now that we�ve told you you�re better off always using
tile standard I/O library, when would you want to ignore our

advice?

When you need to use unbuffered 110. When is that?

Well, for openers, if you�re implementing a standard I/O

replacement. (One of us made the mistake of building a

stdio replacement on top of stdio once: The perfor
mance was abysmal.) If you need to deal with a character

special device, such as a raw communications line, you

have to deal in system calls, instead of buffers. The most

important case, though, is when you�re building a kernel.

An important side point: Because scdio calls exisi as part
of POSIX, the functionality of stdio exists on a lot of

non-UNIX systems. For example, most C compilers on

DOS have stdio, without the benefit of a UNIX kernel.

� We�ve made extensive use of the time command this

month. How does It know how much time was taken and

how it was spent?
You might be surprised to know that there�s a POSIX.1

interface that returns the system and user time expended
by a process. Then again, if you�ve been paying attention,

you�re probably not surprised at all there is to learn about

the times () call. It returns a structure containing the

number of clock ticks used so far by this process for user

and system time, and the number of clock ticks used by
the children of this process that have terminated. Clock

ticks are defined in terms of seconds in <time. h. From

there, and with the discussion of process creation in this

column, we leave it as an exercise for the reader to imple
ment the time command.

The File System
Let�s quickly review the file system: The vast bulk of

what we rely on the operating system for is dealing with

files. We read them; we write them; we find out when

they were last modified. We want the operating system to

control access to files for us.

We�ve talked about interfaces to tell us about files, such

as stat () and access ()
.

We have interfaces to help us

reset file information, such as chmod () and utime (I

We�ve used the set of file creation routines.: open () and

creat (. We can also destroy files with remove () and

unlinkL). We know how to handle special files, such as

directories, with mkdir I)
,
opendir () and friends.

buf, BUFSIZ, stdin);

mt gecchar()

if(ungecbuf != EOF

(continue as in the last code fragment)

40 RS/Magazine MARCH 1994

POSIX

Figure2 spec about the data structures in the kernel, for

example, disk layout, or modes, or

#define POSIX SOURCE
� superbiocks.

#include <stdio.h>

#include <sys/types .h>
POSIX.1 doesn t talk about symbolic links.

They were not sufficiently widespread standard

main(void) practice when the POSIX effort started.

POSIX.1 doesn�t talk about mount points or

pid_t pn; the mount () system call. Those are left as

char * type; implementation dependencies.

printf(�initially: pid = %d, ppid = %d\n�, �1

Fiie Systems + Processes =

getpid(), getppid(H;
if ((pn = fork))) == -1) Operating Systems

err_sys (�can�t fork�) ;
With a tip of the hat to Niklaus Wirth, we

type = pn ? �parent� : �child�; begin to discuss processes. Consider the pro

printf(�%s (fork returns %d) :� gram in Figure 2.

= %d, ppid = %d\n�, What�s a fork()? Are there spoon() and

type, pn, getpid() , getppid()]cnife() interfaces, too? (No.)
exit (0)

The fork)) creates a process: It duplicates
the process space, and both the old program

Let�s look at the output: (the parent) and the new program (the child)

$ a. out continue running from immediately after the

initially: pid = 26411, ppid = 26410 fork)) call. The new program retainsall the

child (fork returns 0): pid = 26412, ppid = 26411 file pointers, and environment of the original.
parent (fork returns 26412): pid 26411, ppid = 26410 Howdoesthe programknowwhetherit�s the

parent or the child? fork () returns 0 to the

Now that, we know what file system things we have in child, and the process id of the new process to the parent.

POSIX.1, what are we missing in the specification? So when our program executes, the first print:f)) exe

POSIX doesn�t talk about specific files. For example, cutes once, and the second printf () prints once for each

there is nothing in the spec about the format of core process.

files. We don�t need to have a /tmp directory, or (What if the fork fails? It returns -1. Why might the call

/dev/null device. As we�ve discussed before, we don�t fail? If there�s a limit on the number of processes the sys

even need to store our user information in the traditional tern can have running simultaneously. IF the new process

/etc/passwd; all we need to be able to do is retrieve that is going to take too much memory�for example, it would

user information with getpwnam ()
.

cause us to run out of swap space.)
POSIX doesn�t lay out uids or groups. For example, we Let�s try a more complicated example, using two views

don�t need to have a user id 0 for root, or the daernon (see Figure 3). Assume that the ps commands are run

group. ning on another terminal, and we�ll take a look at the

POSIX doesn�t tell us how the kernel has to work. As processes running on the console as we try to log in.

we�ve pointed out before, we make no assumptions in How come the processes all have the same process id,

POSIX. 1 about which interfaces are system calls, and even though they�re running different programs? Because

which are library routines. We don�t have anything in the we don�t do a fork)).

Figure 3

Console Login: $ ps -f -t console

UID PID PPID C STIME TTY TINE COMMAND

root 19953 1 0 16:30:03 console 0:00 /etc/getty console console

Console Login: jsh $ ps -f -t console

Password: tilD PID PPID C STIME TTY TIME COMMAND

root 19953 1 0 16:30:03 console 0:00 login jsh

Console Login: jsh $ ps -f -t console

Password: UID PID PPID C STINE �IT� TIME COMMAND

1* successful login *1 jsh 19953 1 2 16:30:03 console 0:03 �bash

RS/Magazine MARCH 1994 41

#include <stdio.h>

#include <stdlib.h>

#include <sys/limits.h>

main(void)

char ine_POSIX_MAX_CANON];

printf(�Console Login: �);

fgets(line, _POSIX_MAX_CANON, stdin);

execl(�./login�, �login�, line, NULL);

err_sys (�exec failed);

exit (EXIT_FAILURE);

POSIX

Notice that the program reading the user name at the

login prompt is different from the program that reads the

password, and that program (login) actually begins a sep

arate program: the shell. These hints should give us some

vague idea of what execi () does. It replaces the current

image with a new executable. There are about 57 varieties�

well, actually only six�of exec 0: execl, execv, execle,

execlp, execve, execvp. Versions ending in 1 take a NULL-

terminated argument list; the versions ending in v take an

array of arguments; p means to use the search path for the

executable; e versions provide an argument for the envi

ronment array. In all versions, the second argument is the

value the process receives as rgv0]. OK, so now that we

know that the execl (. .) in the above example runs a

new program, let�s look at that program.

#include <sttho.h>

include �zstdlib.h>

#include <sys/limits.h>

include <pwd.h>

#include <string.h>

static struct passwd *pwd;

main(int argc, char *argvJ)

mt i;

char lognamel_POSIX_MAX_CANONJ;

char *getpass0, *password;

strcpy(logname, rgvl]);

for(i=0; ; i++) / infinite loop /

*(lognane ÷ strlen(lognarne) -)) =

pwd = getpwnam(logname);

password = getpass(�Password: �);

login(logname, password); 7* won�t return /

if Ci >4)

break;

princf(�login: �);

fgets(lognarne, _POSIXJIAX_CANON, stdin);

sleep (20)

err_quit (�Too many login failures�);

exit (0)

Notice that the sleep () interface just suspends opera

tion for some number of seconds. Also, notice that we�ve

used fgets () to read the logriame, not gets). The for

mer routine is safer: We just need to remember that

fgets () returns a string containing the line-terminating
newline. (Remember that the Internet worm half a dozen

years ago was transmitted by causing a gets C) to read

into memory past the end of the buffer allocated�.fgecs (C

never reads more than the given number of characters.)

What are we going to do if the login attempt fails? We�ll

let the new program handle that.

login(char *loquame, char *password)

char sheilnarrie 128];

char *basenane 0;

if (passmatch(logriame, password))

if (chdir(pwd->pw_dir) = = -1)

err_sys (�chdir�);

strcpy(shellname, �-�);

strcat (shelinanie, basename(pwd->pw_sheLlfl;

execl(pwd�>pw_shell, shellname, NULL);

err_sys(�exec failed�);

sleep (5)

err_msg (�Login incorrect�);

Note that chdir o changes the working directory. Also,

we invoke the shell with a �-� prepended: This is how a

shell tells it�s a login shell, when it examines its rgv0].

passmatch(char *Jognane char *passwd)

1*

encrypt entered password,

get encrypted password corresponding to login,

compare the two

if they�re equal, return(l)

*7

return(l);

passmatch (I is a little sketchy because POSIX. doesn�t

deal with security-related issues like password encryp

tion. This is a special case of the general POSIX approach
of not dealing with anything hard or controversial.

char *getpass(char *prompt)

42 RS/Magazine MARCH 1994

sta:ic char password _POSIX_tIAX_CANON];

printf(�Password: U);

fgets(password, _POSIX_MAX_CANON, stdin.);

return. (password);

POSIX

This echoes the password on the screen. Can we do better?

#include <termios.h>

char *getpass(char *prompt)

static char password _POSIX_MAX_CANON:;

struct terrnios ocerm, nterrrf;

cgecattr(O, &oterm);

nterm = oterm;

nterm.c_iflag &= �ECHO;

tcsetattr(O, TCSAFLUSH, &nterm);

printf(� Password: U)

fgets (password, _POSIX_MAX_CANON, stdin);

tcsetattr(O, TCSAFWSH, &oterm);

putchar(�);

return(password);

Points to note:

� tcgetattr() and tcsetattr() are new to POSIX.

They were invented because ioctl () was too big a grab
bag, including everything but control bits for the kitchen

sink.

� General style of use for these new routines is to store

away the old settings, modify a copy of the settings, do all

the necessary work, restore the original settings.
� stty is built on these two calls.

Questions to Leave You With

Since we�ve barely had time to begin discussing

processes, and fork () and exec Q, and have thrown

quite a bit of code at you, we leave you with only two

questions:
� What happens if we interrupt when echoing is turned

off? Have you ever done anything like this? How do you

lix it?

� UNIX (but not POSIX) supplies a gecpass () func

tion. What does it do that we don�t?

That�s all, folks. We�ll continue with processes next

month. A

Circle No. 14 on Inquiry Card

EL. CAMINOREAL
Spanish for �The Royal Highway�, it was followed by DEVOTED Franciscan Monks

traveling between the California missions, and was no more than a dusty path marked by the

shepherd�s staff and bell. In the English language, Websters defines REAL as �actually

existing, not fictitious or imaginary. GENUINE, true, fixed, immovable.� As one of

//
IBM�s top revenue producing industry remarketers for 1992 and 1993, REAL fits this

definition. We�ve DEVOTED our business to providing our CUSTOMERS with

the best hardware, software and technical support available. Whether you are a

customer or an AFFILIATE, you�ll get royal treatment from REAL. Call

today for MORE information on our Distribution & Financial Accounting

non-proprietary products we sell and SUPPORT on the AS/400 & RS/6000.

products, our LOTS services (Level One Technical Support), .s well as

(800) 359-3475

M o a �eg�bte�d tradema,k of he InIe,00t,00al B,,sineso Machines Co,po,atioo

�-- -I.
� .I
APPLICATION S LTD.

an El Camino company

RS/Magazine MARCH 7994 43

POSIX

In Which We Corral

Some Processes
by Jeffreys Copeland and Haemer

W
ell howdy, buckaroos.

See? Out West we really
do talk like that. (In the

interests of candor, we really only
talk like that when we�re played by
Roy Rogers and Gene Autry and are

writing columns or giving presenta
tions to customers or managers.
When we program, we mumble

�#$$@#%#% memory leaks� a lot

and are played by Clint Eastwood

and Lee Van Cleef.)

We�re back to tour some more

POSIX.1 system interfaces. Last

month, we moseyed on over to

processes from files. We�ll look at

processes some more. But first, a

word from our sponsor�last month�s

column.

Hello? Hello?

Last month, we showed a simple
minded implementation of the login
process: gety execs login, which

validates the password and then

execs a shell. While we were getting
the user�s password, we used

tcsetattr to turn off echoing,
then turned echoing back on again

after prompting for a password, and

storing away the answer. In UNIX

systems, this entire job is performed
by the gepass (3) function, which

returns the prompted-for password.
The sample we wrote differs from

the one typically supplied in a few

trivial ways and one important way.

The trivial ways? Our gecpass (I

sent its password prompt to srdout

and reads a response from stdin; the

manual page on our system says the

prompt should go to stderr and the

response read from /dev/ty. Also

Jeffrey Copeland (jetf@aus.shl.com or cope1anda1umni.ca1cech.edu) lives in

Austin, TX, where he manages projects for SHL Systembouse. He recently acted as software consul.

tant for the administrators of the 1993 Hugo Awards. His technical interests include internationaliza

tion and typesetting.
Jeffrey S. l-iaemer (j shca nary .com) is an independent consultant based in Boulder, CO. He

works, writes and speaks on the interrelated topics of open systems, standards, software portability
and porting, and internationalization. Dr. Hae,ner has been afeatured speaker at Usenix. UniForu,n

and Expo Kuwait.

30 AS/Magazine APRIL 1994

POSIX

from last month, our password buffer is declared to be

of size _Poslx_MAX_CANON. The man page says passwords
can be of length _PASSWORD_LEN. Not big changes, but

you get the idea. (We actually left in these differences

deliberately, in hopes that some of you would contrast

the code with the man pages and try out some changes.)

ListIng 1. FindIng Processes

The important way? Signal handling. Ii you�ve ever

bailed out of vi, or some other raw-mode application, in

an awkward way and left your terminal in a state where

typed characters won�t echo, you�ll know what we mean.

At first, when you get in this state, you try to type things,
get no response, and panic. Later, you discover that Aj

$ ps -AXj I

awk

pid=$2; ppid=$1

$1=pid; $2=� � ppid

for (1=3; i<1O; i++)

print $0

Output:

PID PPID Cormand

0 0 swapper

1 0 Isbinhinit -

2 0 pagedaemon

42 1 portmap

57 1 (biod)

58 1 (biod)

59 1 (biod)

60 1 (biod)

70 1 /usr/lib/sendmail �bd -q3Om

76 1 rpc.mountd �n

77 1 (nfsd)

80 77 (nfsd)

81 77 (nfsd)

82 77 (nfsd)

83 1 rpc.lockd

85 1 rpc.st.atd

88 1 ./erpcd

91 1 ./snrnpd

94 1 ./ntpd

97 1 update

100 1 crori

102 1 inetd

105 1 /usr/lib/lpd

2970 1 named

4860 1 SCREEN

5443 102 in.rlogind

18861 1 /usr/etc/syslogd

19983 102 in.rlogind

24939 1 -sendmail bell (seridmail)

24940 24939 mail �d bell

25511 102 in.rlogind

25980 1 /usr/local/bin/elm. real

26074 25980 sh -c /usrhlocal/bin/med /tm

26075 .26074 /usr/loc

27532 : 102 in.rlogind

28465 102 in.rlogind

28932 102 in.rlogind

28978 102 in.rlogind

29093 102 in.rlogind

29193 102 in.rlogind

29452 102 in.rlogind

29765 102 in.rlogind

12156 1 � std.9600 consc�le (gett;y)

27533 27532 -tcsh (tcsh)

9765 25512,
.

riogin csn

9766 9765 rlogin csn

25512 25511
.
�csh (csh)

28466 28465 �csh (csh)

28509 2846 layers

29766 29765 �csh (csh)

29776 29766 /usr/ucb/mail

29936 29776 vi /tmp/Re29776

29094 29093 �bash (bash)

29958 29094 ps -axj :

19984
.

19983 �tcsh (tcsh)

29453 29452 �csh (csh)

29462 29453 �� /bin/csh /usr/local/bin/menu

29466 29462
.

-/usr/local/bin/elm.real

29576 29466 sh �c /usr/localfbin/med /tm I

29577 2957 iisr/local/bin/per1 Iusr/loc

28933 2893.2� sh (csh)

29195 29193 ��csh (csh)

29937 29195 /usrlucb/mail baviland eric

5444 5443 -csh (csh)

28521 28509 .�bin/csh (csh)

29634 28521�� �Aisr/ucb/mail

29949 2963t ��.defurict>
I

29950 29634 <defunct>

28527 28509 -bin/csh (csh)

28569 28527 vi infscript

28531 28509
.

�bin/csh (csh)

28542 28531 vi changes.92082�7

4864 4860 �bin/csh (csh)

28979 28978 �csh (csh)

28995 28979 rn -m

32 AS/Magazine APRIL 1994

POSIX

works where Enter used to and that stty sane Aj makes CP/M�could do that much. Something more is at work: a

your terminal sane enough to let you get your affairs in fork () followed by an exec ()
,
which first clones a

order, log out and log back in again. What�s happened is process, then overlays one of those processes�typically,
that your raw-mode process exited�almost invariably the child�with a second program. This tvio-step birth of

because of a signal�before restoring the terminal to new program from an old one is how UNIX creates its

cooked mode with tcsetattr ()
.

In cooked mode, the process tree. How useful is this? Is creating a new process

terminal driver echoes the characters you type, and trans- rare and arcane, or commonplace? Let�s look at a real,
lates between the carriage returns you type on the key- running system: teal .csn.org, one of Colorado Super-
board (AM, or \r in C parlance), the newlines that you Net�s Sun systems. First, we�ll use a shell script to get a

specify in C programs (�s, or \n) and the newline-car- list of all processes (see Listing 1).

riage return pair that you see the cursor perform. In raw We note, in an aside, that the script we used to create

mode, the application handles all that work. Once you�ve this listing illustrates why standards are useful.

set the terminal into raw mode, most applications that teal
.
can. org is a BSD-based system. If your machine

expect to be running in cooked mode and are waiting for uses System V, you�ll have to use a completely different

a \n won�t hear one unless you type a Aj To fix this, you set of ps flags to get the data. Unfortunately, POSIX has

need to run Stty, which just parses and interprets its not yet standardized the ps command. In contrast, awk is

arguments and then calls tcsetattr () and friends. Natu- standardized so that part of the script is portable, as long
rally, you need to end the command with Aj since atty as your ps output is identical. Unfortunately, on a partic
won�t execute until after the shell sees your command, ular System V-based UNIX (we�ll use AIX for our exam-

which it won�t until you terminate the line with a \n. pie) you�ll need to use something like:

Real raw-mode applications protect themselves against
this problem by having signal handlers that restore the ps -fade I cut -c9-20, 47-

terminal modes before exiting. Our code doesn�t. We�ll awk { print $1 � � $2 � � $3 � I sed -n 1, lOp

talk about how to handle signals later in the series.

You say you�ve never had this problem? You haven�t (You need the cut command because both pa -1

been experimenting with your system enough. and pa -f on System V produce a variable number

of fields in the awk sense. For example, a start-time col

Processes umn is produced in either the form 18:21): 23, or if the

OK, so we can use the exec () family to make a chain of process was created more than 24 hours ago, Feb 07 (see

new processes. So what? Even DOS�heck, even Listing 2).

Listing 2. SynchronIzing Start Times

USER PID PPID C STIME I�Y TIME 01D

root 1 0 0 Feb 04 � 5:14 /etc/init

ricks 1970 1 0 10:10:34 hft/0 0:01 �ksh

root 2560 1 0 Feb 04 - 1:09 /etc/syncd 60

root 2993 6319 0 Feb 04 - 0:00 /usr/etc/biod 6

jeff 3272 35013 0 08:09:39 pts/13 0:01 riogin a1untni.ca1tech.eu

root 3330 1 0 Feb 04 - 0:00 /usr/lib/errdeinon

root 4478 1 0 Feb 04 - 0:00 /etc/srcmstr

root 4980 4478 0 15:45:17 - 5:09 /etc/Qdaemon

root 5263 4478 0 Feb 04 - 0:00 /usr/lpd/lpd

root 5587 1 0 Feb 04 � 0:00 /etc/uprintfd

root 5778 4478 0 Peb 04 - 0:00 /usr/lib/sendma:iJ -bd -30m

root 6028 4478 0 Feb 04 - 0:01 /etc/syslogd

root 6319 4478 0 Feb 04 � 0:00 /usr/etc/biod 6

root 6552 4478 0 Feb 04 - 0:00 /usr/etc/portrrlap

root 6811 4478 0 Feb 04 - 0:02 /etc/inetd

root 7117 1 0 Feb 04 - 1:23 /etc/cron

root 7378 4478 0 Feb 04 - 0:00 /etc/writesrv

root 7584 4478 0 Feb 04 - 0:15 Ietclrwhod

root 7843 4478 0 Feb 04 - 0:10 /usr/sbin/srmpd

34 RS/Magazina APRIL 1994

POSIX

Listing 3. only awkCan Riakea Tree. Similarly, the process wait information is missing from

-

the ps -1 output if the process is actually running. For-

tunately the column positions are fixed even if the field

42

57
�

count isn t We still use awk to mike the output conform

58 to the Sun example but strictly speiking we don t need

59 it We 11 use a second awk program to reprint the dan as a

- tree (see Listing 3)
76

. Here s that awk program in case you want to usc it on

your own system

$1.

-� Co #�/usr/bin/awk -f

lookup($1)

91, .
.-

lookup($2)

97
if ($1 = = $2)

100 next can t be your own parent
102..

,.

5443
if child$2] = = -1)

A41 chidc2] = $1
19983

�

..
,

1998
next

�

2551L }

: 25512 for (nextchild childt$2J; \

9766 ibnextchild] -1; \

2532 nextchild = ibnextchild])
27533

28465

28466 ibnextchild) = $1
28509

28521

29634

29949

29950
END

.28527 tprint(O, 0)
28569

� -

: 28531

28542

28932

2893
function tpririt (root, indent, i, n)

� 28978 . for (i=O; i<indent; i++)

28979..-t. �- I printf(�%5s�,

29093 1 printf(�%5s ,
root)

29094-*. for(n hildroot]; n = -1; n sihn])
.29958.

29193 � tprint (n, indent +1)

- }
-29937v

29452 �.-.. I
2945 function lookup(node)

29462 if (!seen node]) C

29576 eennode] = 1

29765

29577 sib(node] = �1

�

29766. ..

child lnode] = �l

�

�

.

29936

ios I
2970

� 4860 ..

- Both of these programs require �new awk,� the awk

18861

4864 ��

described in The Awk Programming Language and stan-

24939 ��-�� dardized by POSIX (Aho, Alfred V., Brian W. Kernighan,

25980

� and PeterJ. Weinberger, TheAwk Programming Language,

26074 -

1988, Addison-Wesley Publishing Co., ISBN 0-201-

26075 I 07981-X). In most of this series, when we say POSIX, we

2

12156
mean POSIX.1, the system interfaces. Commands, howev

- . -

er, are standardized in IEEE 1003.2-1993 (POSIX.2).

36 RSlMagazine APRIL 1994

POSIX

ANSI-C and POSIX.1 are tools to help you write portable
C programs. POSIX.2, in contrast, helps you write

portable shell scripts. Although the premise of this series

is that knowing the shell-level commands will help you

understand the system interfaces, the two standards do

not depend on each other. You can have a complete
POSIX.2 implementation without an underlying POSIX.1.

For example, Mortice-Kern Systems of Waterloo, Ontario,

sells a complete dot 2 tool kit, including a Morn shell,

make and awk, to run on either DOS or OS/2, neither of

which conforms to POSIX.1. On such systems, your C

programs may not work, but all your scripts are portable,
and at the shell level, the systems feel just like UNIX. It�s

just such software that allows us to use DOS on our lap-
tops without tearing our hair out�or sounding like Clint

Eastwood and Lee Van Cleef.

So what can we see in this tree?

First, process 0 (the swapper) is the root of the entire

tree. All other processes could be created by fork , but

someone had to create this process by hand. (�A goose

egg� is American slang for a zero, suggesting the solution

to the age-old riddle about which came first...) Process 1

(mit) comes next. Notice that almost everyone else is a

child of mit, but that mit is forked from swapper, not

Circle No. 7 on Inquiry Card

just exec�d. If that weren�t the case, the swapper wouldn�t

show up in the process tree, and it would stop running as

soon as mit started. Second, processes really do form a

nontrivial tree. From this, you can infer that the impor
tant questions for processes will be the same as those lbr

file systems:
� How do we create and delete nodes?

� What do nodes contain and how do we manipulate
their contents?

� What are the other properties of nodes and how do we

get and set them?

Until We Meet Again
Over the next few months, we�ll explore these questions

in some depth. Meanwhile, when you have a spare

moment, after you�ve hog-tied an ornery critter with

some old nine-track magnetic tape, or later, when you�re

sitting around the campfire brewing up a fresh pot ofJolt,
think about this:

� Who creates process 0?

� Why are most of the process numbers above so big?
� What�s a process that�s <defunct>?

� How small a typeface can the average person read?

And, until we meet again, Happy Trails. A

Circle No. 6 on Inquiry Card

WE BUY, SELL & RENT

R516000
PARTS � FEATURES

UPGRADES � CPU�S

� System 36 Conversions

� AutoCad Available for RS/6000

� Sun Sparc Compatibles

New & Used IN STOCK

Complete Technical Center, Installation,
Stock Parts & Features for RISC.

-= .=.- .= -= luut

MARKETPLACE

(800) 858-1144

A Publidy Traded Company NASDAQ: MKPL

MOTOROLA UDS Western Regional Distributor of the Year

(nI 4 as
I_F1_/U

1490 RAILROAD ST., CORONA CA 91720

TEL (909) 735-2102 � FAX (909) 735-5717

RS/6000
users...

� HD1 & HD3 memory
32- 128MB

� SCSI disk subsystems

� AIX software utilities

� Tape back-up

tile � RAID disk subsystems

only
choice.
Cambex is the ONLY alternative

manufacturer of HD1 and HD3

compatible memory boards for your
RS/6000 system.

CALL TODAY for a quick price
quote from our Cambex Direct YL_

representatives. ---_

1 �800�292�RISC

RS/Magazine APRIL 7994 37

POSIX

In Which We Look

at the Processes
in the Corral
by Jeffreys Copeland and Haemer

H
owdy again, buckaroos. Last

time around the campfire,
we talked about process

trees. As usual, over our last cup of

bad campfire coffee, we left you with

some questions:
Who creates process 0?

The egg. No, wait. The chicken.

No, wait
...

It�s true. Processes usual

ly only come from other processes,

but someone has to make the first

process. On typical UNIX systems,

process 0�the swapper�is handcraft

ed by the kernel, as is process 1,

mit. Everyone else is a descendant,

direct or indirect, oi mit. (Oh, and

the answer is �the egg.�)
Why were I most of the process

numbers in last month�s column] so

big?
Process numbers are allocated seri

ally. Even thotigh most processes

eventually terminate, the process

numbers for new processes continue

to rise until they hit the maximum

value of a pid_t�typically either a

short (64K) or an mt (4G).

� What�s a process that�s <defunct>?

Imagine you�re a process that�s

forked a subprocess. After that sub-

process terminates, you�ll want to

collect information from it on a vari

ety of things. As a programmer,

you�ve seen and thought about this

one before. For example, you�ve
called exic (8) in any number of

programs, from �hello, world� on.

It�s the parent process that�s interest

ed in the exit status returned by
exit I)

. Typically, parents collect

Jeffrey Copeland (jeff@aLIs. shi
.
corn or copeianda1umni .

caltech
.
edu) lives in Austin,

TX, rvlterc lie nctncigcs projects for SHL Systctnltousc He recently acted as software consultant for the

adnititist,�ators cf the 1993 Hugo Awards I�Its technicctl interests include intcrnotionalzation rind

typesetting.

Jeffrey S. Hornier (j sh@c�anary .com) is an independent consultant based in Boulder, Co. Hc

works, writes and spcaks on tire interrelated topics of open Systems, standards, software portahiltty
and porting, and internationalization. 0r l-lrrcnter iicts been a featured speaker at Usenix, UniForunr

curd Ex;,o Kuwait.

32 RS/Magazine MAY 7994

POSIX

these pieces of information from their children with the

system call wait 0. But suppose the child terminates

before the parent gets to that system call. (Remember

uniprocessor UNIX is a time-sharing system. All those

processes may seem like they�re executing at once, but

face it: At any given instant, only one process has the

CPU.) Even though the child has terminated, the kernel

has to keep around a process data structure for the child

until the parent executes the wait () to collect the data it

contains. Such ephemeral unprocesses are called �zom

bies.� The data strucwre in which the data are kept is the

same data structure that ps looks at, so ps reports their

existence, but marks them �<defunct>.� We think it�s a

pity that ps doesn�t just mark them �<zombie>.�

One of us (JSL-I) knows all the verses to �Zombie Jam

boree.� Oh, and if you haven�t seen �Incredible Strange
Creatures Who Stopped Living and Became Mixed-Up
Zombies,� starring Cash Flagg and Carolyn Branch, you

spent too much of your college career studying.
� How small a typeface can the average person read?

About. live-point type without eyestrain. It�s easier with

a serifecl type, like the one this column is set in. Also, a

typeface with a large relative x-height, such as Stanley
Morison�s brilliant New Times Roman, can be read in a

smaller size than an older classic typeface like Goudy Old

Style. (What�s an �x-heighi�? That�s the height of letters

without ascenders or descenders, like x, e and w. New

Times Roman has an x-height that�s a larger proportion
of the total height of the font than most older typefaces.)

Information about Processes

We�ve said this before, but it�s still true: processes + files

= operating systems. (There�s a book title in there, if no

one from ETH Zurich has thought of it yet.)
We spent a whole lot of columns talking about files, and

how to get information about them. We talked a little bit

two months ago about how to create processes (and we�ll

come back to process creation in gory detail later). We dis

cussed process trees last month. This month, we discuss

the process equivalent of is: ps.

$ PS

PID

14418 pts/7

36469 pts/7

32025 pts/7

$ is -1 /bin/ps

-r-xr-sr-x 1 bin

Why is ps set-uicl? Because it needs to look at kernel

data, in /dev/kmem, which is protected from casual

perusal. If we could read the kernel data, we could con

ceivably read data from other users� programs that they
didn�t want us to read. But why do we need to read raw

kernel data? Because there�s no process equivalent of the

ever-useful file interface, stat .

However, by reading /dev/kmem, ps does allow us to get

process information for processes other than our own, so

we can get the list of all the processes on the system. If

we didn�t have access to this information, we couldn�t

have produced the process tree diagram for the whole

system last month.

Be warned, however, that ps can find out all the useful

information about your process. For example, it knows

about and prints your command-line arguments. A shell

script that gets a file from another host by taking the oth

er host�s password as an argument would be a security
hole.

Unlike every other program we�ve discussed, ps is not

standardized�it doesn�t appear in POSIX.2. Worse, it�s

not just a matter of slightly different flags on the BSD and

System V versions; the flags are almost completely differ

ent. For example, on BSD, we typically type ps -aix, but

on AIX or other System Vs, we type ps -fade. See Table 1

for further comparison.
As you can see from the table, the commonality

between the two versions is almost nonexistent. It�s also

obvious once again that AIX came from System V roots

and has been modified slightly.

Available Information

Skipping over details about what flags we use to get
them from ps, what can we find out about processes on

the system? Lots, it turns out.

We can get the executable code, and the arguments and

the environment, which we get by reading them from

memory. The process tree information is available, as we

demonstrated last month�that is, the current process�

process-id-number, id of its parent, process group. We

can find out what signals the process is waiting for, what

its signal mask is, how much time is left on any alarm

signals in its queue�signals are a topic we�ll discuss later

in more detail. We also have access to the sort of

accounting information for the process that would allow

-..---�- us to bill time�if you can imagine a

UNIX system actually billing for

time�such as user name, process times

and elapsed time. (We know that there

are UNIX installations that bill for

time, such as commercial Internet

providers. It�s just that as UNIX hack

ers from way back, the concept will

always be a little foreign to us.) Also,

we can get the working directory of the process, the login
directory of the process and the root directory of the

process group. We aren�t going to write ps, but we can

experiment with some of the ideas we would need to

implement it. Consider the following program:

TTJ�

0:00

0:00

0:00

bin

vi posix-a.nlm

PS

-ksh

46073 Apr 17 1993 Ibm/ps

RS/Magazirie MAY 1994 33

POSIX

#define _POSIX_SOURCE � getpid () is a process primitive: It rewrns the process

#include <stdio.h> idnumber.

#include <sys/types.h> � sleep() waits for the specified number of seconds.

#include <sys/times .h> � times (returns the time in clock ticks from an arbi

#include <time.h> trary starting point. (Note the difference from time

main(int argc, char argv]) which returns seconds from a universally known time.)

times () also fills a tms buffer with process times, which

struct tms tbuf; allows the time command to work.

clock_t ticks; � Clock ticks are arbitrary. The manifest constant

char *basene(); CLK_TCK in times.h provides the number of clock ticks

ticks times (&tbuf) ; per second. (Actually, use of CLK_TCK is obsolete�or

sieep(10) ; obsolescent, as we say in standard-speak. The POSIX.1

printf I� %6s %-8s %4s %s
,

standard specifies that the value should be the same as

�PID�, �TTY�, �TIME�, �COMMAND�); the resultofasysconf(_sc_CLK_TCK) call.)

ticks = times (&tbuf) - ticks; � We are trying both interfaces that return the terminal

printf(�%6d %-8s 0:%02d %s
,

name: ctermid(), which gets the pathname to the �con

getpid . basename (cterrnid(NULL)), trolling terminal,� and ttyname which returns the

ticks/CLK_TCK, rgv0J); pathname to the terminal associated with a given file

printf(�%6d %-8s O:%02d %s descriptor.
getpid() , basename(ttyname(0)) ,

� Last, the system() call is a POSIX.2 interface that

ticks/CLK_TCK, rgv0]); executes a command line.

fflush(stdout); What happens when we run this program?
system(�ps�);

exit(0); $ a.out

PID �ITI TIME COMMAND

48666 tty 0:10 a.out

Some points to note about this program: 48666 7 0:10 a.out

Table 1. A Flag Isn�t Always a Standard

Flag System V AIX Sun/BSD

-a all processes, except process group all processes, except process group include processes not owned

headers and processes not con- headers and processes not con- by you
nected to a terminal nected to a terminal

-A n/a all processes n/a

-e every process every process (except kernel display the environment in addition

processes) to the command arguments

-f full listing full listing n/a

-F n/a custom format n/a

-g n/a n/a �interesting processes��normally,
the getty waiting for login on an idle

terminal, and login shells are not

_____ _________________________________

included in the listing

-l long listing long listing long listing

-r n/a n/a �running processes�--runnable
processes, processes in page wait

(that is, waiting for memory) and

processes in short-term noninter

______ ___________________________________

ruptible waits (e.g., sleepO)

-x n/a n/a include processes without a

controlling terminal

34 AS/Magazine MAY 1994

PID �ITt� TIME C?

18669 pts/7 0:00 -ksh

19228 pts/7 0:00 Ps

48666 pts/7 0:00 a.out

50459 pts/7 0:00 bsh bsh bsh

POSIX

Can we identify the processes? The -ksh is the login
shell under which we are running. The ps is the program

executed by the system call; and the bsh is the shell

created to run that command. a.out is our test program.

Notice that cterrnid () returns /dev/tty, which is not

the most helpful information in the context. We�d like to

know what device we�re actually using. In fact, since

we�re actually running an X terminal on a pseudo-try,
that column should at least say py rather than tty. At

least ttyname(0) provides us with the pseudo-tty num
ber, even if it doesn�t provide us with as complete infor

mation as the real ps.

But, even worse, if we provide our program with a stan

dard input, for example, by running it from within the

editor, we get:

PID TIME COMMAND

20790 0:10 a.out

20790 0:10 a.out

PID TT�Y TIME CMD

18669 ps/7 0:00 �ksh

20790 ptsl7 0:00 a.out

38945 pts/7 0:00 vi. posix-a.rmn

50488 pts/7 0:00 Ps

50743 pts/7 0:00 bsh bsh bsh

(Note the addition of a vi session to the process listing
this time.)

Notice that there is no tty name on the second line.

When standard input is attached to a file, as it is when we

run a command like a. ou from inside vi using a. ouc

as a filter on the line we�re pointing to, there is no con

trolling tty for file stream zero, or stdin.

So how does ps manage to get the correct tty name?

Magic. Once again, the ability to probe into kernel data

gives ps powers beyond those of mortal men, but here�s

an interesting case in which there is no standard inter

face that even lets a process ask about its own value of

something that the kernel has access to. Most systems

have programs that can provide even more detailed

information: On AIX, most of the smit service pro

grams provide good examples; on other systems, look

for programs with names like kdb, kdump, fsdb or

crash.

Points to Ponder

In parting, we�ll leave you with our usual question or

two:

� If process ids are assigned sequentially, why is the id

of the shell, in our example above, higher than the id of

the ps that it�s running?
� Why isn�t there a process-level equivalent of seat ?

� Are all the characters in your name legal flags to ps?

(On at least one system we�re running, �ps -haemer�

works fine.) If so, what kind of output do you get?
� Why would ctermid() return /dev/cry instead of

something useful? A

Reader Feedback
To help AS/Magazine serve you better, please take a few minutes to dose the feedback loop by circling
the appropriate numbers on the Reader Service card located elsewhere in this magazine. Rate the

following column and feature topics in this issue.

INTEREST LEVEL

Features: High Medium

Big Business 170 171 172

PC-to-UNIX Mail Integration 173 174 175

Security Is 176 177 178

Looking Underthe Hood 179 180 181

Columns:
Q&AIX�Be Careful Out There 182 183 184

Systems Wrangler�X and the Sysadm 185 186 187

Datagrams�Sudo 188 189 190

AlXtensions�ODMspeak 191 192 193

POSIX�A Look at the Processes in the Corral 194 195 196

Low

36 RS/Magazne MAY 1994

POSIX

In Which We Go

to the Beach
by Jeffreys Copeland and Haemer

N
ow is the time to take the mit, which creates processes, so we

blanket, pack the picnic bas- go from pid 65535 to pid 2.

ket and head for the beach. � Why isn�t there a process-level
Unfortunately, from where we live equivalent of stat() ?

now, it�s a multiday trek. Nonethe- There easily could be. However,

less, we can do a little exploring POSIX is not intend-

from where we sit. Actually, we�re ed to create a better

not so much interested in the beach operating system,

as the shells on it: We�ll be exploring but rather to codify
the POSIX exec () interface and how existing practices
it�s used in the shell. We�ll write a because there�s no

simple version of the shell to demon- pstat () in existing

strate. (Yes, it�s a hackneyed pun, systems, there�s

but it gave us a headline this month, none in POSIX.1. A -

didn�t it?) more interesting

A Quick Visit to
I
didn�tKenThomp-

- I
the Process Corral son include one in

First, as usual, we�ll review the the original UNIX ________

questions we left you with at the end implementation?
of last month�s column: For that question, we

If process ids are assigned sequen- will have to plead ignorance.

tially, why is the id of the shell in our � Are all the characters in your name

example higher than the id of the ps legal flags to ps? (On at least one sys

that it�s running? tem we�re running, ps -haemer works

Yes, process ids are assigned fine.) If so, what output do you get?
sequentially, but after you�ve For AIX, neither ps -haemer

assigned the 65,535th process, we (which works on BSD systems) nor

cycle back to zero. No, actually, ps -copeland works: Both result in

that�s the swapper, so we cycle back bad flag errors. On the other hand,

to process 1. No, actually, that�s still ps �jeff gives a full process listing.

Jeffrey Copeland (copeland9alumni .
caltech

.
edu) is currently looking for interesting work

in a project-managernent or senior-technical capacity. His reasearch interests include internaionciliza.

tion and typesetting. He lives in Austin, TX, where he raises children, cats and roses.

Jeffrey S. Haenier (j sh@canary .Corn) is an independent consultant based in Boulder, CO. He

works, writes and speaks on the interrelated topics of open systems, standards, software portability
and porting, and internationalization. Dr. Haemer has been a featured speaker at tisenix, UniForurn

and Expo Kuwait.

RS/Magazine JUNE 1994 35

/

POSIX

Why would ctermid() return /dev/tty instead of and now we�re seeing it in action. We parse the input line

something useful? into its blank delimited arguments, and if built_in ()

You can communicate with the controlling terminal, if returns zero, we fork(). This creates a new process,

there is one, by writing to /dev/tty, so it makes sense duplicating the existing one. Remember that fork()

for cterrnid () to return that, if it exists. returns a 0 to the child process�that is the new process�

and returns the process id of the child to the original
Onward to the Beach process. The child process then does an execvp) to

Let�s consider the sketchy program in Listing 1. Notice invoke the command line. The parent process invokes a

that since this is a toy version, we�ve not been careful wait ()
,
which returns when the child terminates.

about several things. For example, we are not particular Exercise for the reader: How does our coniiand () rou

about the exit code from the routine sh(). Also, if we tine differ from the standard system() interface?

haven�t defined the environment variable psi, there is no We are not done with the shell yet. We haven�t done

default command prompt. Similarly, if HOtE is undefined, anything about I/O redirection, or pipes, which means

the behavior of cd will not be good. our favorite command line:

Let�s continue to consider cd for a moment: Why is it

handled as a separate case in the routine built_in LI? Cer- find
. -type f -print I xargs egrep Jeff

tam operations have to be handled internally to the shell,

not by external programs. Changing directories is one of won�t work. We are missing other built-in functions, such

them. If we did the cd in a separate program, that program as read and for. (How would you make ihe current direc

would be running in a different directory, while this invo- tory part of the si string?) Environment variables aren�t

cation of the shell would remain where we started it. parsed on the command line. We need to handle invoking
Let�s review the actions in command LI: We talked about commands in background. The exit code for the shell

the fork () and exec () interfaces several columns ago, needs to be defined and cleaned up. We can�t fix all of

Listing 1

#define _POSIX_SOURCE mt buiit_in(char **);

#inciude <stdio.h> char **pp = args;

#include <sysllirnits.h> char *IFs=.

#include <stdlib.h> jot stat, pid;

#inciude <string.h>
for (cpp = strtok(s, IFS); cpp 1= NULL;

main(int argc, char *argJ) *pp = strtok(NULL, IFS))

C cpp++;

7* argument processing *1 if ((!args) buiit_in(args))

exit(shW; return;

if ((pid = fork()) = = -1)

err_sys(�carl�t fork�);

sh() if (pid = = 0)

xecvp(args0], args);

char *Cp; exit(l);

lot cornmand(char *);

char *pi = getenv(�PSl�); else

char POSIX_MAX_CANONJ; wait(&stat);

for (;;) { built.in(char **args)

fputs(PS1, stdout);

if ((cp=fgets(s, _POSIX_MX_C1NON, stthn)) ==NULL) char *PWD;

return(O); if strcinp(argsO], �cd�) == 0)

s(st.rlen(cp)-l] = �\O; WD=argsiJ ?args{l] : getenv(�HONE�);

command(s); chdir(PWD);

returri(l);

} I

else

cornmand(char *s) ; / etc. /

return (0)

char argspQ5IxGflJJ;

36 AS/Magazine JUNE 1994

POSIX

these, or even the missing features from the POSIX shell line, shell, which would fail because the compilation
we haven�t mentioned, but we can explore some of them. wasn�t complete yet. (Pretty obvious, right? We had to

think about it for a minute before we got it correct.)

Background Jobs Let�s also add a built-in to let the shell wait if we want it

Let�s begin by fixing our shell to invoke commands in to by adding this to built_in () at the etc comment:

the background. To do that, we add two things: We need

to recognize th & at the end of the command line, and we else if (strcmp (args 0] ,
�wait�) = = 0)

need to not wait for the command to complete. We begin wait (&stat);

by adding two declarations at the top of the program:

This allows us to reconsider the & we added to a corn-

* include <string.h> mand line and wait for the command instead. Two points
mt background; to ponder, before we move on: Does wait () need to be a

system call? Or can it be a library function? Also, does

main () the wait command need to be built in?

Then we look for the ampersand, by changing: I/O Redirection

Being able to redirect standard input and output is one

if ((cp = fgets (s, POSIX_MPXCANON, stdin)) = = NULL) of the simple notions in UNIX that has turned out to be

returri(0) ;
.

so powerful. The redirection is handled by the shell. But

slstrlen(cp) -1] �\O �; how? This is where the dup() interface conies in handy.
We�ll demonstrate by including output redirection in our

to this: shell. Let�s begin by adding the relevant dec�arations:

4tinclude <syslstat.h>
if ((cp = fgets(s, POSIXMX_CANON, stdin)) = = NULL)

#dne MODE 666
return(0);

=

S_IRUSRJS_IWUSR S_IRGRPISIWGRPIS_IROTH S_IWOTH

mt fd;
if (cp = strrchr(s, �&�))

(Notice that we�ve invented a shorthand or the file per-

else missions we want.)

cp = s + strlen(s) - 1; Next, we need to check for an output file name, in

= �\O ; command).

if (out = strrchr(s, �>�))
Now, we can change our action after the fork() in

*(out+÷) =

conunand ():
out = strtok(out, IFS);

if (pid == 0)

xecvp(args0], args); Lastly, we need to connect the standard output to the file:

exit(l);
if (pid==0)

else if (bg)
if (out)

return (0)
fd = creat(out, MODE_666);

else
dup2(fd, 1);

waitpid(pid, &stat, 0);

xecvp(args0], args);
We now use waitpid , which allows us to wait for

a specific process. Why? Because waite returns when
exit(l)

any of the children terminates. Consider the following
scenario: Notice that we�ve actually used the dup2 () interface,

which closes the file associated with the second argument

$ wc /unix & (in this case, standard output), and then assigns the file

$ cc -o shell shell.c associated with the first argument (in this case, the file we

$ shell just opened), to that file descriptor. So, our new file is

associated with file descriptor 1, so any write to standard

If the wc completed before the cc, then the wait)) would output goes to the file named in out. dup () and related

allow conunand () to return and collect the last command interfaces act across exec () calls, which allows us to set up

RS/Magazine JUNE 1994 37

POSIX

the files before we invoke the new program. The POSIX Listing 2
standard tells us that we don�t need dup () or

* include <sys/types .h>
dup2 () (even though they are both provided in Standard

#include <sys/tirnes h>

C), with the F_D(JPFD subcommand. That is, dup(fd) 5
#include <stdio.h>

equivalent to fcntl (fd, F_DUPFD, 0) and dup2 (fd, fd2) *include <time.h>

is the same as close(fd2); fcntl(fd,F_Dt.JPFD, fd2).

The dup2 () interface has not always existed, being main (irit argc, char *argv f])

implemented as macros in many places where the func

tionality was needed. Why bother with a separate rou- struct tins tbuf;

tine then? Because it provides us with a clean, common pid_t pid;

interface, and the library routine as specified in Stan- clock_t start, end;

dard C does some argument checking for us.
mt stat;

if (argc < 2)
Timing our Commands

err_quit(�usage: %s command�, rgv0]);
Some time ago, we played with the time command,

i ((pid = fork) = -1)
and the related times () interface. As you�ll remember,

err_sys (�can� t. fork�)

times takes a pointer to a time accounting buffer, start = times (&tbuf)

That buffer contains four things: the user CPU time if (pid = 0) C / child /

used by the children of this process, tins_cutime; the execvp (argv 1], argv + 1);

system CPU time used by the children of this process, err_sys (�exec failed�)

tms_cstime; the user CPU time used by this process) else C / Parent /

and its children, tms_utime; and the system CPU time pid = wait (&stat);

used by this process and its children, tms_stime. The end = times (&tbuf);

fprintf(stderr, � �l2s%3.2f
time for the children recorded after a wait () would

�real�, (double) (end - start)/CLK_TCK);
return when the child process ends. Also, times()

fprintf(stderr, �%-l2s%3.2f
returns the elapsed real time relative to an arbitrary �user�, (double) (thuf.tmscutime)/CL}(TcK);

point in the past. These times are all measured in
fprintf(stderr, �%�12s%3 .2f

clock ticks per second, CLK_TCIK. �systen�, (double) (tif.tmscstime)/CLKTQ();
In some shells, time is a built-in command, but it�s a jt (0)

pretty simple program and can be written as a stand-

alone, as we�ll do in Listing 2.

Points to note:

� We invoke times () twice. This first time merely
gives us the starting real time, and we ignore the tbuf it How would you implement these? Does this change how

returns, you�d implement shell return code handling?
� Why don�t we check the error return on execvp () and � We�ve written output redirection. How would you add

just always print the error message? Because if an exec () input redirection? Slightly trickier: What about standard

returns, the new program has failed to start up. If the call error?

was successful, it never returns, and the new image exits. � We�ve also written output redirection in a way that

� Similarly, the else clause is unnecessary. If we are in allows commands of the form:

the branch of the fork where pid is 0, then we will either

successfully exec () the new program, and terminate $ sed � s/tJNIX/tinix/g� in out

from there, or exit on failure from the child.

but not:

Exercises for the Reader

This month, our back-of-the-envelope exercises are pro- $ sed �s/UNIX/Unix/g� >out in

gramming problems. To wit:

� We�ve ignored command stacking in which POSIX How can we fix this? How does this affect your changes
allows lines such as: for input redirection?

That�s it for our visit to the beach. Next time

we�ll visit the clock factory and further explore$ date; is

how we tell time on POSIX systems. From there
$ sleep 10 & date

$ sed �s/foo/bar/� <zzazz >rnumble && my mumble zzazz
we�ll segue into a discussion of signals and inter-

process communications. Until then! A

38 AS/Magazine JUNE 7994

POSIX

In Which We Check

Out the Clock Factory
by Jeffreys Copeland and Haemer

L
ast month, we did some $ date; is

exploration of fork() and $ sleep 10 & date

exec() and built a version of $ sed �slfoo/bar/� <zzazz

the shell. This month, we�ll revise >murnbie && my mumble zzazz

that version of the shell and

explore the POSIX time-keeping How would you

functions. implement these?

The Shell, Revisited h:w you�d imp e

Let�s start with last month�s exer- ment shell return
.

�

cises for the reader. Normally, the code handling?

output redirec
�

sify as 10 or 15. (If you aren�t famil- tion. How would

jar with the logarithmic scale used you add input
for the exercises in The Art of Corn- redirection?

puter Programming, it ranges from 0 Slightly trickier:

for immediate, such as �what�s the What about stan- �

sum of the first three positive inte- dard error?

gers,� to 50 for a research problem, � We�ve also written output redirec

such as Fermat�s last theorem. It tion in a way tha allows commands of
turns out to be a useful way of the form:
expressing the difficulty of problems

$ sed �s/TJNIX/Unix/g� in >out
in real life, too.) This time, we left

you with problems that involve a bit but not

of coding and rank about 20 or 25.
$ sed �sIt3NIX/tJnix/g >out in

We left you with three problems:
� We�ve ignored command stacking, This wasn�t strictly true, but we�ll

in which POSIX allows lines such as: touch on that here, too.J How can we

Jeffrey Copeland (copeland@alumrti.caltech.edu) lives in Austin, TX, where he consults,

writes and raises children, cats and roses. His recent adventures include automating a series of land.

fills and providing software ser,ices to the administrators of the 1993 and 1994 Hugo awards. His

research interests include internationalization and typesetting.
Jeffrey S. Haemer (jsh@canary.com) is an independent consultant based in Boulder, CO. He

works, writes and speaks on the interrelated topics of open systems, standards, software portability
and porting, and internationalization. Dr. Haemer has been a featured speaker at Usenix, UniForum

and Expo Kuwait.

RS/Magazine JULY 1994 31

POSIX

fix this? How does this affect your changes for input redirec

tion?

Rather than spend the whole column writing code, we�ll

ignore the first problem and solve the second two in one

lump. Holding that thought in mind, if you look at List

ing 1, you�ll find the unedited shell code we had at the

end of last month�s column.

We can handle the changes for all three kinds of 110

redirection and the argument order with just changes to

the comand() routine.

Let�s begin by adding some declarations:

char *jfl NULL, *out = NULL, *err = NULL, *t;

We need the initializations because we won�t be using
the variables in a way that automatically sets them. In

addition, we want to change the way we parse the argu

ments into the args 1] array. This involves

changing the initial for loop to:

for (t = �c = strtok(s, IFS); * NULL;

t = *pp = strtok(NULL, IFS))

jf(* = =

Now, at the end of the argument parsing

loop, each of the file name pointers is either

NULL or points at the redirection symbol. We
need to extract the file name, so we replace
the current iL(out = strrchr(s,

clause command () with the following:

if(in) (

in++; 7* skip past redirection syrrD1 *7

in=strtok(in, IFS);

if(out)

out++; 1* skip past redirection syml /

out = strtok(out, IFS);

if(err

err += 2; / skip past �2>� *1

err = strtok(err, IFS);

Now all that remains is to expand the file

opening after the fork 0. To do this, we add

some code inside of the if (pid = = 0

statement.

Listing I

if (pid. = = 0) {

if (in)

fd = open(in);

dup2(fd, 0);

if (out)

if (err)

fd = creat(err, MODE_666);

dup2(fd, 2);

}

xecvp(args0), args);

exit(l)

#define _POSIX_SOURCE

#include <stdio.h>

#include <sys/lirr1its.h>
#include <stdlib.h>

#include <string.h>
#include <sys/stat.h.>

#define MODE_666

S_IRUSR S_IWUSR S_IRGRP I S_IWGRP S.IROTH I S_IWOTF1
mt fd;

mt background;
main(irlt argc, char *arg.])

sh ()

1* argument processing *1

exit(sh()

char *CP;

mt commarid(char *);

char pS1 = getenv(�PSl�);

char g POSIXJIAX CANON];

for (;;) (

fputs(PS1, stdout);

it ((cp=fgets(s, _POSDLMAX_CANON, stdin)) ==NULL)

return (0)

if(cp = strrcbr(s,�&�))

++background;

else

cp = S + strien(s) � 1;

*cp

corrmand(s);.

fd = creat(out, MODE_666);

dup2(fd, 1);

in =

else if(==

out = t;

else if(strncmp(t, 2>�)

err =

else

command(char *s)

char *gLPOSILARGJ�IAX];
mt buiitJn (char **);

char *cpp = args

32 RSlMagazine JULY 1994

POSIX

Notice that we still have a small problem here. We cor- If Mickey�s Little Hand Is on the Four...

rectly handle We ended our discussion of shell internal functions last

month with the time command. As you�ll recall, this tells

cat foo >bar us how much user, system and clock time our process

used. To pull off this trick, we used the times () inter-

but not face, which returns the elapsed time relative to an arbi

trary time in the past. (What time? We really don�t care,

cat foo > bar since we are using it to determine elapsed tune, and as

you�ll recall from your high school algebra class, if x y z,

The extra space just causes us to have an empty file then x y c=z c.)

name. This is why: In addition to a long discussion of That�s all well and good, but how do we tell what time it

shell command syntax and semantics, POSIX.2 specifies really is on the wall clock? How does the date appear on

the grammar for the shell in the form of a yacc source. the banner page on the printer? How does the date corn-

Given the yacc grammar for the parser of our toy shell, it mand know what time it is and what time zone I live in?

would be much easier to add the command stacking We�ve already, discussed some of these issues in the con-

we�re going to ignore here. text of file access times in our sixth, seventh and eighth
columns. Let�s discuss them now in terms of how

POSIX tells clock time.

POSIX provides three sets of time information. The

char *IFS= �;

-

first set, which we discussed last time, is the inforina

char *out; tion on command timing, definitions for which appear
mt stat, pid, fd; I in <sys/tirnes.h>. Times for file access are defined in
for (*cpp = strtok(s, IFS); *cpp = NULL;

<utime.h>, which we discussed when we covered
*cpp = strtok(NULL, IFS)) I

files. Lastly, Standard C defines <time.h;., which coy
c++;

if ((!args) built_in (args)) ers the wall clock time, and which defines a flock of

return; interfaces, such as asctime() and strfti.me(). Con-

if (out = strrchr(s, �>�)) C sider the following program:
*(out++) =

out = strtok(out, IFS); #define POSIX_SOTJRCE

#include <tirne.h>
if ((pid = fork()) = = �1)

main()
err_sys(�can�t fork�);

if (pid==O) C

if (out) (time_t t;

fd = creat(out, MODE_666); t = timeNtime_t *) NULL);

dup2(fd, 1); prjntf(�At the tone, the time will be %s

ctime(&t));
execvp (args 0], args);

exit(l);

else if(background

return(0) ;
(What does the \a in the printf) format string do?

else It�s the same as the ASCII character \007; that is, it

wait (&stat) ; rings the bell. But, as we�ve been preaching all along,
\a is preferred because it�s portable, while \007 works

built_in(char **args) only in ASCII.)

In this program, we first call time 0, which gives us

char *PVJD.
the number of seconds since the epoch�midnight

if strcmp(args0], �cd�) == 0)
GMT, 1 January 1970. For the truly interested, pagePWD = rgsl] ? rgsl] : getenv(�HO�);
200 of the POSIX.l standard provides a full-pagechdir(D);

return(l) rationale for use of the epoch, since the original defi

else if (strcrrargs0] , �wait�) = = o) nition was considered too loose. For example, �sec

wait (&stat) ; oncls since midnight GMT, January 1, 1970� doesn�t

else
. specify what happens for leap seconds. (They�re
1* etc. I

ignored.)
return (0)

Note that time () both returns the current time and
}

puts it in the location we send as an argument, unless

RS/?vlagazino JULY 1994 33

osIx

the argument is NULL, as in our example;
in that case, the time is simply returned. Figure 1

(Why does time () act this way? Why not
mt tm.sec; / seconds after the minute � 0,59] */

justreturn the time_t value of the cur-
mt titunin; / minutes after the hour � 0,59) */

rent time? This is another example of
mt tin_hour; /* hour since midnight � 0,23] *7

POSIX.1 codifying existing practice. m
int taurday; 7* day of the month - 1,31] */

tially, the C language didn�t provide a
mt tmjnon; 1* months since January � 0,11] *1

long data type, so time () couldn�t return
mt tm_year; / years since 1900 */

its value. Instead, the routine was
mt tm_wday; / days since Sunday - 0,6] /

invoked with the address of a two-integer
mt tin_yday; / days since Jan 1 � 0,365j *1

array, into which was stored the halves of
mt tm_isdst; /* flag for daylight savings time /

the long specifying the time.)

Returning to our example program: We

translate the number of seconds returned

by time 0 to an ASCII string using the

ctime () interface, which is defined in Standard C. This as CST6CtYT in Austin, or MST7IIDT in Boulder. (Notice that

routine returns a pointer to a character string such as Wed time zones west of the meridian�that is, earlier than

Jul 13 16:44:11 1994. UTC�have positive offsets. This is just the reverse of

Two other useful interfaces for time are localtime () what you�d expect if you were designing a system from

and gintime ()
,
which take the time_t we get from the ground up, but it�s another artifact of the standard

time () and break it down into a struct tin, which codifying existing practice for a system originally devel

contains the times in Figure 1. oped in North America.) POSIX now defines rz to be of

What�s the difference between the struct tin returned the form std offset dst offset]] ,ruleJ where rule is

by gmtime and that returned by localtime C)? The start /timej,end f/time].
first returns the Coordinated Universal Time, and the Pretty obscure, right? Well, std and clst are the names of

second returns the local time. the standard and summer time zones. Each has an offset

How do we determine the local time? From the �rz envi- from Coordinated Universal Time, of the form

ronment variable. Traditionally, this has had a value such hmm:ss]]. In places such as Japan, where there is no

Reader Feedback
To help RS/Magazine serve you better, please take a few minutes to close the feedback ioop by
circling the appropriate numbers on the Reader Service card located elsewhere in this magazine.
Rate the following column and feature topics in this issue.

INTEREST LEVEL

Features: High Medium Low

Taking the Plunge into Objects 170 171 172

Putting Objects in Place 173 174 175

Columns:

Q&AIX�File Systems on a Diet 176 177 178

Systems Wrangler�AIX System Parameters 179 180 181

Datagrams�The Recent History of the Internet 182 183 184

AlXtensions�DCE Time and Again 185 186 187

POSIX�We Check Out the Clock Factory 188 189 190

34 RS/Magazine JULY 1994

osix
EASILY CAN

SOMEONE GAIN

daylight savings time, only the first part is used. (Why ACCESS TO YOUR
both minutes and seconds? Because there are places such

as Iran, Afghanistan, India and central Australia that have SYSTEM �WITHOUT

time zones on the half hour rather than the even hour. AUTHOR.IZA1�ION?
Up until the 1970s, the time in Singapore was

GMT+7:45.) The rule is the complicated part and tells us CAN YOU:

when summer time begins and ends. For the United Set an automatic profile expiration date?

States, the rule is: M4 .1.0/2:00:00 ,M10.5.0/2:00:00.
Require regular password changes?
Prevent the re-use of old passwords?

That is: begin daylight savings time on the first Sunday Control the time and location for all user logins?
of April at 2 am., and end it on the last Sunday of Octo- Keep a detailed audit log of all account changes?
ber at 2 am. Keep a log of all valid and invalid login attempts?

What is POSIX. 1 lacking in the way of time functions? Force password changes after a security breach?

We don�t have an explicit way to set the time�that�s pro

vided by POSIX.2 in the date command. We don�t have a
If the answer to any of these questions

gettimeofday() function, to just give us clock time. We is �no�, then you need GUARDIAN,
don�t have any functions to do a sanity check on the val- the account and access control system
ues we feed into a struct tm. with a proven world-wide reputation
Our personal favorite time function remains for enhancing Unix system security.

strftime(buf,fmttm). This takesa struct tmand fills
__

a buffer with the formatted time specified in a printf- DataLynx, Inc., 6659 Convoy Ci. (619).560-8112
San Diego, CA 92111 Fax: (619).560.8114

style frnt string. For example, the two fragments:
Le Software Man, P.O. Box 545 (071).354.8414

char buf 128] ,
= &but 10];

I.oidon, N7 8DF, U.K. Fax: (O71)-226.2O1
time_t t;

Circle No. 8 on Inquiry Card
t = time((time....t *) NULL

s=ctime(&t 1;

and WE BUY, SELL & RENT

char uf128], &buf tO];

time_t t;

= time((timet *) NTJLL

strftime(s, �%a %b %d %T %Y%n�, &t);

PARTS � FEATURES
fill buf with the same value. There are roughly three

dozen specifiers for strftime(),many of which apply to UPGRADES � CPU�S
non-English language, and non-Western calendars. We

� System 36 Conversions
discussed this interface in some detail in our series of

� AutoCad Available for RS/6000
columns on internationalization.

� Sun Sparc Compatibles

Until Next Time... New & Used IN STOCK

We leave you with one multipart exercise: What non- Complete Technical Center, Installation,

Western calendars should we handle in a routine like Stock Parts & Features for RISC.

strf time ? How many of them are practical to handle?

(We�ll give this a Knuth rating of 10.) Instead of folding
''1PT

these into strftirneO, choose one calendar, and write
-Tht�,R �]J

the language-specific equivalent of asctimer for it.
�i�

(We�ll give that one a Knuth rating of 25.) ''

A Publicly Traded Company NASDAQ: MKPL

So Long for Now

We didn�t manage to get to our expected discussion of MOTOROLA UDS Western Regional Distributor of the Year I

signals and interprocess communication, but we�ll begin (flI 4 as
..LJI_/U fl

with that next time. Itt the meantime, keep those cards
1490 RAILROAD ST., CORONA CA 91720

and letters coming, folks. A
TEL (909) 735-21 02. FAX (909) 735-5717

Circle No. 6 on Inquiry Card

RS/Magaziie JULY 1994 35

POSIX

In Which We Discover

Signals: The Other IPC
by Jeflreys Copeland and Haemer

L
ast month, we dropped an the user and restarting from some

assortment of calendar ques- synchronization point.
tions with idiosyncratic The user-level code called when an

answers in your laps. Answering the exception occurs is an exception

most instructive of these�how to handler. Think of this as code that�s

write a language-specific equivalent never called

of asctime�will take a while, so explicitly but is

we�ll begin with.., asynchronously
What�s that? We�ve been promising branched to, as

to talk about signals and you yant to if with a �go
hear about them instead? Well, we�ll to,� when some

get to them right after... outside condi

Eh? You�d rather hear about them tion occurs.

right now? OK, OK. But I wish you�d The condition

stop interrupting, can occur any

time, between

Exceptions any two state-

All operating systems have to ments, within 7
detect and address exceptional a statement I

,
events�hardware failures at the very or while exe- _____________�

least. (Not often, of course; other- cuting a sys

wise, they wouldn�t be exceptions.) tern call. Some languages,
In the simplest imaginable case, the such as Ada, have long provided
operating system might detect the portable constructs to handle excep

exception and just terminate all run- tions. Traditional (Kernighan and

fling processes. Most operating sys- Ritchie) C, did not, but we�ll return

tems do better than this and let user- to that in a moment.

level programs die gracefully, closing
open files and so on. In some cases, Software Interrupts
it�s even possible to specify a way to When else might we want to arbi

recover cleanly from an exception� trarily interrupt the flow of a pro-

discarding a bad result, or notifying gram? A runaway program? Control

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in Austin, TX, where he consults,

writes and raises children, cats and roses. His recent adventures include automating a series of land

fills and providing software services to the administrators of the 1993 and 1994 Hugo awards. His

re.cearch interests include internationalization and typesetting.
Jeffrey S. Haemer (jsh@ca.nary.com) is an independent consultant based in Boulder, CO. He

works, writes and speaks on the interrelated topics of open systems, standards, software portability
and porting, and interncttionalizarion Dr. Haemer has been afeatured speaker at Usenix, UniForum

and Expo Kuwait.

RS/Magazirse AUGUST 1994 31

POSIX

C, Delete, Break or Control-back- (A man sees a drunk on his hands you shouldn�t do too much inside a

slash usually does the trick, even if and knees underneath a lamppost, signal handler. If you start getting

you haven�t put in code between scouring the ground for something. signals when inside a signal handler,

each line to check whether the user �What did you lose?� control flow within applications built

has typed one of these keys. How �I�ve dropped my keysh.� around using signals for interprocess
does this work? UNIX has always �On the street side, or the sidewalk communication would become con-

handled what are known as software side?� the man asks, getting down on fusing. A good rule of thumb is

interrupts by generalizing the idea of his knees to help. �don�t do much inside signal han-

exception handlers. The operating �Actually, I dropped them about dlers�: save a little state, set some

system detects and notifies applica- half a block back, but the light�s a lot flags, close a file or two if you have

tions of user- or application-generat- better here.�) to, but return quickly to where you

ed signals just as though they were One of the UNIX systems we�ve left off. The reliability problem was

hardware exceptions. Therefore, we used has the line: one of bad design. In early UNIX sys

approach writing an interrupt han- tems, entering a signal handler reset

dler for SIGQUIT the same way we #define raise(x) kill (getpid() ,
x) the signal to its default behavior; to

do for SIGFPE (floating point excep- catch a signal received while in the

tion)�with Control-backslash. If in <signal.h>. signal handler, you had to put

you�ve lived in UNIX all your life, It seems to us as though signal (I signal () statements at the top of

you may take this for granted. should mean �signal a process,� and your signal-handling code. Berkeley
�Tain�t so. One of us remembers �handle a signal� should be called UNIX fixed this by changing the

working on a port of a large UNIX handle r, or something, but POSIX semantics of signals, hut there�s so

application to a proprietary operat- follows historical practice, which is much code out there that assumes

ing system that had only exception UNIX historical practice. the traditional, unreliable signal I)

handling. Figuring out how to simu- semantics that standard C�s

late UNIX signal handling was a Interprocess Communication signal () function leaves its reliabili

major part of the port. Although tra- Really, then, although signal pro- ty unspecified. POSIX solves the reli

ditional C lacks any way to specify cessing started as a generalization of ability problem by supplying a new

interrupt handlers, exception han- hardware exception handling, it�s set of interfaces for reliable signal
dlers are ubiquitous, and standard C more useful to think of signals on handling. The semantics are roughly
(that is, ISO/ANSI C) uses the tradi- UNIX systems as interprocess corn- the same as those of Berkeley signals.
tional UNIX signal () function to let munication (IPC) mechanisms. Like Old code containing calls to

users tie user-level interrupt han- most UNIX systems, AIX has a lar- signal () will still work and will be

dling code to particular signals. In gish array of such mechanisms, as unreliable as it ever was, but new

the prototype, as you�d guess, the including shared memory, sema- code should use the new interfaces.

other half of the problem�user-gen- phores, sockets and message queues, We won�t talk about signal ()
.

Don�t

erated signals�is a touch trickier, but the only ones covered by use it.

since not all operating systems let POSIX. 1 are those from System Ill What? You want to talk about last

user-level processes generate arbi- UNIX: pipes (together with their month�s exercise? Now? Another

trary signals. The traditional UNIX close kin, FIFOs) and signals. We�ve interruption? (sigh) All right.
mechanism is killO, which sends a spent some time talking about pipes;
signal from one process to another, now we�ll spend a little talking about Asctime() Revisited

The prototype is just �signals: the other POSIX IPC.� Obviously, we could write a whole

Unfortunately, signals have tradi- flock of asctirne () equivalents for

mt kill (pid_t pid, inC sig) tionally had two problems as IPC different languages that printed �6

mechanisms: limited capabilities and Juin 1944,� for example, instead of

On single-process systems, this reliability. �June 6, 1944.� If you read our previ
would be overkillO, so standard C The limited capabilities of signals ous series on internationalization

provides raise, which lets a process come from their very small band- (RS/Magazine, May 1992-April
send a signal to itself. This is width. Realistically, the small num- 1993), you know thai this trick is

portable to any system that has a ber of possible signals that an appli- correctly handled with a locale defin

standard C compiler, but its sharply cation can respond to limits the ition, which contains, among other

limited utility makes it seem like number of things you can communi- information, the names of the

looking under the lamppost for your care to an application through a sig- months in various languages. Our

keys. nal. Signals are also limited because real question was, for what calen

32 AS/Magazine AUQUST 1994

V

dars, other than Gregorian, would it

be useful to have a special version of

asctime ? As you probably realize,

the standard Gregorian civil calendar

isn�t the only one used in the world.

The Russian Orthodox Church still

Listing 1.

ja_asctime(tin

struct tin *bfl;

)

mt era, year;

if(later(tin, 1989, 1, 7))

era = 0;

year = tm->tin_year

else if(later(tin,

era = 1;

year = trn->tin.year

else if(later(tin,

era = 2;

year = tm->t.inyear

else if(later(tin,

era = 3;

year = tm->tinyear

else

/ return true if the m/d/y given

date in the tin structure /

later(tin, y, in, d

struct tin *fl

mt y, m, d;

C

if(txn->tm..year < y

return 1;

else if(tm->tm_mon < m

return 1;

else if(tm->tin_day < d

return 1;

return 0;

POSIX

operates on the Julian calendar; the

Hebrew and Islamic calendars are the

time lines for secular and religious
life in communities worldwide (ever

try cashing a check on Friday in

Riyadh?); years are numbered differ-

ently in Japan; there are separate cal

enclar schemes for Chinese and Indi

an cultures; decoding the Mayan cal

endar allowed scholars to understand

their mathematics. Given all that,

let�s write two different versions of

asctime() ,one for the Japanese date

and one for the Islamic calendar.

Let�s start with the Japanese calen

dar, which is simpler. En Japan, the

Gregorian calendar is used with a

minor variation: The years are num

bered based on the year of the cur

rent emperor�s reign. For example,
the day we mark as August 8, 1991,

would be Heisei 3 nen 8 gatsu 20

nichi, the 20th day of the eighth
month in the third year in the era of

Emperor Akihito. Note that Japanese
time spans are based on one, not

zero, so a newborn baby is one year

old. As a result, 1989, the year in

which Hirohito died and Akihito

took the throne, was not only Heisei

I nen, the first year of Heisei, but

also Showa 64 nert, the 64th year of

the Showa era, or the reign of Hiro

hito. So,-given a tin structure, we can

implement ja_asctime as shown in

Listing 1.

Note that we really could use the

value in tm_yday to check the first

day of the eras, instead of writing the

utility routine later L, hut the code

we�ve written is clearer. Also, in a

real implementation we would have

printed our results with the appro

priate kanji, orJapanese characters.

Lastly, UNIX time doesn�t extend

earlier than Showa 45 (that�s 1970 to

us gaijin), so much of our code is

unnecessary.

On the other hand, the Islamic cal

endar.. .Yes, you in the back row

waving the semaphore flags. You

had an interrupt? You want to talk

about POSIX signals instead? All

right.

POSIX Signal Handling
The basic idea to get in your head

about POSIX signals is that they
come in sets, of type sigset....t. You can

imagine implementing a signal set as

char eranane J = { �Heisei�, �Showa�, �Taisho�, �Meiji�, 0);

� 1989 + 1;

1926, 12, 24

� 1926 + 1;

1912, 7, 29

- 1912 + 1;

1868, 9, 7

- 1868 + 1;

error(�the year %d is too early for a Ioiown emperor\n�,

tm->tn..year);

return 1;

printf (�%s %d neri %d gatsu %d nichi\rt�,

year, tm->tm_mon, tirt->trn_day);

return 0;

is later than the

RS/Magaz,rie AUGUST 1994 33

an array, as bits in a word, or as a C++

class, or even as a linked list�POSIX

doesn�t say. For us, a signal set is an

abstract data type, with the following
POSIX. 1-specified operators:

� mt sigemptyset(sigset_t

*set);

� mt sigfihlset(sigset_t

*set)

� mt. sigaddset(sigset_t *set,

mt signo);

� mt. sigdelset(sigset_t *set,

mt signo);

� mt sigmernber(const sigset_t

*set, mt signo);

Each of these does what it looks like

it does. For example, sigaddsee ()

adds a particular signal to a set, and

so on. None of these operators affect

signal handling or delivery in any

way, but many other POSIX signal-
related functions expect signal sets as

arguments, rather than individual sig
nal numbers. Sets come in handy
from time to time and, in theory,
there�s no reason we couldn�t use

variables of type sigset_t, together
with these operators, when the occa

sion arises. The elements, however,

need to be legitimate signal values,

for the operators to be guaranteed to

work. The set of available signals
varies from implementation to imple
mentation, but these signals are guar

anteed to be available: SIGBRT,

SIGPLRM, SIFGPE, SIGHUP, SIGILL,

SIGINT, SIGKILL, SIGPIPE,

SIGQUIT, SIGSEGV, SIGTERM,

SIGtJSRJ., SIGIJSR2.

On systems with the job control

option (#ifdef _POSIX_JOB_CON

TROL), you�re also guaranteed these:

SIGCHLD, SIGCONT, SIGSTOP,

SIGTSTP, SIG�PTIN, SiGrou. We�ll

return to why job control is special
later on, but nowadays almost every

UNIX operating system (including
AIX) supports job control because

the U.S. government�s procurement

regulations, set out in the National

Institute of Science and Technology�s
FIPS 15 1-2, require it.

POSIX

Don�t Just Stand There,
Do Something
Having defined signal sets, what

can we do with them? The first, and

most trivial, is to block signals and to

ask what signals are pending. The

functions for this are

and

mt sigpending(sigset_t *set)

Traditional UNIX signals couldn�t

be blocked. These interfaces and

functionality are new.

Traditional signal handling is also

available, but is now set up with a

call to the function

The first argument is the signal to

be handled (note the singular: �the

signal�). The second and third are

the new sigaction structure and the

value of the sigaction structure

before the call.

�What the heck,� you may be

asking yourself, �is a sigaction
structure?� Here�s what it looks

like:

The first field is the name of the

function that is the signal handler.

These can be the names of user-

defined functions, or can be the

special values SIG_DFL or SIG_IGN.

Just as with the old signal () inter

face, SIG_IGN says �ignore the sig
nal,� and SIG_DFL says �restore

default handling of the signal.� The

second field is more interesting.
When processing a signal handler

set up with sigaction ()
,
the signal

being processed is automatically
blocked. For example, if I�m an

application that has a signal han

dler for SIGQtJIT, when I enter the

signal handler, any future SIGQUIT

signals are blocked until I return.

What the sa_mask lets the program

mer do is specify an additional

array of signals to block within the

signal handler. Often, this field is

set to contain an empty set, but it

need not be. The third field is more

abstruse; you probably won�t need

it unless you write shells. We�ll

leave its exploration to the bold-at-

heart.

Don�t Just Do Something,
Stand There

The pair of functions kill () and

sigact ion () do nearly everything

normally involved in signaling and

signal handling, but there are a

handful of ancillary functions worth

mentioning.
One of these is the traditional mt

pause II, a Snow White-like function

that puts the process into a deep
sleep, broken only by the kiss of a

princely signal. (Cart you tell we

both have 9-year-old daughters?)
Processes that are paused will awak

en to any signal that the process

hasn�t blocked.

If you�d prefer being more selec

tive about the signa�s you�ll respond
to, use sigsuspend i. This function

takes a signal set as an argument,

mt sigprocmask(irit how, const. sigset_t *set, sigset_t *oset);

mt sigaction(int sig, const struct sigaction *act

struct sigaction *oact);

struct sigaction

void (*sa_handler) 0; / signal handler *1

sigset_t sa_mask; 1* added during handling */

mt sa..flags; 1* only for SIGC}D /

/ can have other members *1

34 RS/Magazine AUGUST 1994

POSIX

which are the signals to block standard counsels that the two calls use in signal handlers. Signals can

receipt of. When sigsuspend() are so closely related that your happen anywhere, and sometimes

returns, the previous signal mask is application should use only one or the safest thing to do after getting a

restored. (You might be thinking the other, not both, signal that may be deep within a

that you could do the same job by maze of logic is to return to some

combining sigprocinask () and Deep Trivia safe, well-specified spot in the �ode

pause ()
,
but you�d be overlooking Because we�ve run out of space, and start afresh. This can be done

the possibility that a signal might we�ll defer discussing the remainder by doing a set imp () at the syn

arise between the two calls. The of the topic of signals (and giving chronization point, and then doing
sigsuspend () function is atomic.) you problems to think about) until a longimp () from the signal han-

The function sleep(puts your next time. And if you promise not to dier. Ah, but here�s the catch.

process to sleep for a specified interrupt, we�ll finish talking about What�s the signal mask after the

amount of time, or until the process the Islamic calendar and write an longjmp () ? Is it the mask set in the

receives a signal, whichever comes isl_asctime . signal handler? The misk set just
first. The related function alarm () We�ll wind up this installment by before the signal handler was

sets an alarm clock, which generates digressing, without apology or real called? The mask before the

the alarm signal SItM after a cer- justification, into our favorite piece setjmp () ? Without knowing the

tam number of seconds. of POSIX trivia: the functions mask, it could be hard to write code

Because the read () function sigsetjmp () and siglongjmp II. that behaved reproducibly and

blocks until it completes, a tradi- Standard C incorporates the two tra- reliably.
tional way to write code that waits ditional UNIX functions that collabo- If the second argument to

for user input, but not forever, is to rate to offer nonlocal gotos: setjrtp () sigsetjmp C) is nonzero, a return to

call alarm () before calling read M; and longjnp . The first of these, that point also resets the signal mask
the SIGALRN will break out of the set jmp() ,marks a spot in your code; to the one in force at the time that

read () if no input is available, and the second, longjmp , returns you to sigsetjmp was called. (The

let the application either continue, it. (A goto usually won�t work for this siglongjrnp () call is only needed

or retry the read ()
.

It�s not hard to because it is only permitted to go to a because you can only return to

imagine writing sleep () with point within the same function.) sigsetjmp(.) with a siglongjmp Y.)

pause() and alarm(). Indeed, the These two functions find frequent Until next time, folks. A

Reader Feedback
To help RS/Magazine serve you better, please take a few minutes to close the feedback loop by
circling the appropriate numbers on the Reader Service card located elsewhere in this magazine.
Rate the following column and feature topics in this issue.

INTEREST LEVEL

Features: High Medium Low

The High Road to Parallel Processing 170 171 172

Look What�s Listening 173 174 175

Columns:

Q&AIX�Beyond Archie 176 177 178

Systems Wrangler�A Command Named Su 179 180 181

Datagrams�Bastion Hosts, Firewalls and Socks...182 183 184

AiXtensions�UNIX to Scale 185 186 187

POSIX�Signals: The Other IPC 188 189 190

RS/Maga2Ine AUGUST 1994 35

POSIX

In Which We Discuss

the Environment
by Jetfreys Copeland and Haemer

T
his month, we want to dis

cuss water quality and the

state of the rain forest. We�ll

spend a little time talking
about...What? Oh! Sorry, wrong

environment.

We actually want to talk about

process environments. That is, about

the information that surrounds your

program in your POSIX system. But

first, we want to finish answering a

question we posed two months ago:

How would you write a version of

asctime () for a non-Western calen

dar? Last month, we showed you

how to handle Japanese Imperial
dates, and this month we�ll finally
show you our code for isl_asc

time ()
,

which handles Islamic cal

endars.

If It�s Ramadan,
This Must Be Riyadh
Remember when you were in col

lege, and every once in a while one

of your profs would say, �Let�s spend
the day discussing something that�s

not in the syllabus�? Well, that�s

more or less what we�re going to do

for the first half of this month�s

column.

We started this discussion as a

toss-off question about calendars

two months ago.

We originally
asked about

interesting non-

Western calen

dars for which

to implement
asctime().

When it came

time to imple
ment the code,

we wanted to

do it for a

lunar calendar.

In practical

terms, that

meant either the Hebrew or the

Islamic calendar, because the Chi

nese and Mayan ones would take

multiple columns to discuss. It turns

out that the Islamic calendar is a lit

tle more straightforward than the

Hebrew one. Why? Because the

1-lebrew calendar has very funny leap

year rules so that Passover, which

Jeffrey Copeland (copelnd@alnsni.caltech.edu) lives in Austin, TX, wherc lic consults,

writes and raises children, cats aml roscs. His r-eccnt adventures include automating a series of land

fills and prvling softwci: e scrviccs to the adnrinist,ators of die 1993 and 1994 Hugo awards. His

research inter ests i cludr� iiternationalization cincl typesetting.
Jeffrey S. Haenier (j sh@cariary. corn) is an independent consultant based in l3oulclcr, CO. He

works, writes and speaks oil the tntcrrelatccl topics of opcn systems, standards, software portability
and porting and n ernat ionali zal ion. Dr. Hacnier hia.c been a feats red spea her at tlsen ix, In Forum

arid Expo Kuwait.

32 RS/Magazine SEPTEMBER 1994

POSIX

replaced an early planting festival, remains in the spring. First, credit where credit is due: We�ve mentioned them

(Interesting side note: Because both Easter and Passover before, but Nachum Dershowitz and Edward M. Reingold
are tied to a calculated full moon, they are either within a at the University of Illinois have done a wonderful study
week of each other or a month apart.) Even using the of calendric calculations, and it is from their work that

Islamic calendar, the easier of the two, the algorithms are we have cribbed our algorithms. (Check out their paper

complicated, and it took a lot of effort to get the code �Calendric Calculations� in Software�Practice and Experi

right. So, let�s put the soundtrack from Lawrence of Ara- ence, 20 19] September 1990], pp. 899-928.)

bia on the stereo arid pass the bowl of dates while we The Muslim calendar is strictly lunar, so it consists of

show you how the Islamic calendar works. 12 months alternating between 30 and 29 days. Leap

years don�t follow a four-year
cycle but occur in 11 out of

every 30 years. And in a leap
Listing 1

year, the last month has 30,

1* What�s an Islamic leap year? rather than 29, days. Let�s

One whose Islamic year mod 30 begin by writing a pair of

is 2, 5, 7, 10, 13, 16, 18, utility routines to tell us the

21, 24, 26, or 29 * / number of days in a month, and

whether we have a leap year (see

isl_.leap(mt year) Listing I).

Dershowitz and Reingold

switch(year) { use a trick that we�ve used our-

case 2: case 5: case 7: case 10: selves: They number days from

case 13: case 16: case 18: case 21: an arbitrary point in the past.

case 24: case 26: case 29: (Let�s call these absolute day
return 1; numbers.) They choose to use

default: the first of January, 1 A.D., on

return 0; the Gregorian calendar, as a

starting point. Never mind that

there wasn�t a Gregorian calen

dar two millenia ago; it turns

I How many days in a month? E out to be a convenient starting

This takes an *Isla1c* month point because, among other rca-

and year as arguments *1 sons, it was a Monday. So, let�s

i write a quick routine to give us

isl_rnon_len(mt mon. mt year) the day number of a given Gre

gorian date (see Listing 2).

if(mon & 01) Now we need to knowsome

return 30; thing about when the Islamic

else if (isl_leap (year) && mon = = 12) era started. It began with the

return 30; Hegira, Mohammed�s flight to

else Medina, on the (Julian) 16th of

return 29; July, 622. If the Gregorian cal

endar had existed, that would

have been the 19th ofJuly, 622.

We will also find it useful to have the names of those months available: Using abs_greg_date () above,

we discover that the absolute

char *j monnaxne] = ��, day number of the beginning of

�Muharram�, �Safar�, the Islamic calendar is 227015,

�Ra.bi i�, �Rabi II�, which is 1 Muharrarn 1 A.H.

�Jumada I�, Jumada II�, (anno hegira). From the infor

�Rajab�, �Sha�ban�, mation so far, we can write a

�Ramadan�, �Shawwal�, routine to give us the absolute

�Dhu al.-Qada�, �Dhu al-Hijjah�); day number from the Islamic

date:

RS/Magazine SEPTCMBER 1994 33

POSIX

*define ISL,A.NICO 227015L

long

Listing 2 abs_isl_date(

mt mon. mt day, mt year

mt greg_leap_year(mt year);

mt ays_in_greg_mon] =

long Sum;

0, 31, 28, 31, 30, 31, 30,
sum = ((mon-i) * 29L)

31, 31, 30, 31, 30, 31);
+ (mon I 2L) + day;

sum += (year-i) * 354L;

long sum ÷= ((year * ilL) + 3L) I 30L;

abs_greg_date(mt mom, mt day, mt year sum + ISLAMICO � 1L;

C return sum;

unsigned long Sum;

mt i;

That�s all the setup we need. Now we can write a rou

7* Begin with days so far this year: I
tine to take a Gregorian date and print out the Islamic

for(sum = OL, I = 1; 1 < mon; i++
one.

sum += (long) ays_in_greg_moni];

isi_print_date(mt. mon, mt day, mt. year

I Pius days in current mon: *1

sum += (long) day; long abs_date;

mt isl_year, isi_mon, isl_day;
I Pius regular days in previous years I

sum += (long) ((year � 1) * 365L); 7* What�s the absolute Gregorian

date we�re asking about? I

1* Pius leap day this year? *1 abs_date =

abs_greg_date) mom, day, year

if(mon > 2 &&
printf(�%dI%d/%d (%ld) ->

greg_leap_year(year))
mon, day, year, abs_date);

sum++;
/ If the date is before i/ill AH,

/ plus previous leap days *1
f0rt it. I

sum += (long) ((year - 1) / 4L);
if(abs_date < ISLANICO

sum -= (long) ((year - 1) / lOOL);

sum += (long) ((year - 1) / 40OL)
printf(�error: this date is

�before Islamic calendar began);

return sum;
return -1;

Of course, the calculation of leap years is bunches
That part was easy. We could do a very complicated cal-

easier:
culation to get the Islamic month, day and year, but we

choose to take a guess and then do a linear search. We

mt greg_leap_year (mt year)
begin by making a lower bounds estimate of the year, and

then using the abs_isl_date () routine above to close in

if((year % 400) = = 0) return 1
on the correct year.

if((year % 100) = = 0) return 0;

if((year % 4) = = 0) return 1;
Lower bound on year I

return 0;
isl_year = (abs_date - ISLANICO - 1L) / 355L;

/* Search for the actual year I

while (abs_isl_d.ate (1,1, isl_year+ 1.)

<= abs_date

isi_year++;

34 RSIMaga2ine SEPTEMBER 1994

POSIX

Similarly, we home in on the month: Given all that, we can exercise our code with the

(co main 0) routine in Listing 3, and we get the outpui

for(isi_mon = 1; inListing4.
abs_isl_date(isl_mori, Please note that we haven�t actually written an

isl_mon_len(isl_mon, isl_year), isl_asctimeO, which takes a struct tm * and emits an

isl._year) < abs_date; ASCII string. With the realization that this is exactly how

isl_mon++) we started this digression, we leave that last step as an

continue; exercise for the reader.

There is a major caveat: This calendar is calculated.

Then, the correct day of the month is obtained by sub- Strictly speaking, some Muslims wait until the new moon

traction, and we�re done. has been proclaimed by religious authorities before

changing the month. As a result, your computed first of

isi_day = abs_date Shawwal may differ from the one recognized by your

- abs_isl_date(isl_mon, 1, isl.year) + 1; more pious neighbor.

/ print the result / Back to Our Regularly Scheduled Topic
printf(�%s %d, %d A.H., What does POSIX.1 say about environments? What

isi_mon_name isl_rnon), useful information can I get about who is running my

isi_day, isl_year); program? What about the computer my program is run-

return 0; ning on? What about the characteristics of the system

Listing 3

rnain(

isl_print_date(1, 1, 1);

printf(�\t 7/19/622 is 227015 or Muharram 1, 1 \n�);

isl_print_date(7, 19, 622);

printf(�\t 11/12/1945 is 710347 or Dhu al-Hijjah 6, 1364 \n�);

isl_.print_date(11, 12, 1945);

printf (� \t a date of no significance in Arabia \n�);

isl_print_date(7, 6, 1776);

printf(�\t note that we can have the same day twice in a Gregorian year \n�);

isl_print_date(1, 5, 1930);

isl_print_date(12, 25, 1930

Listing 4

1/1/1 (1) -> error: this date is before Islamic calendar began

7/19/622 is 227015 or Muharram 1, 1

7/19/622 (227015) �> Muharrain 1, 1 A.H.

11/12/1945 is 710347 or Dhu al�Hijjah 6, 1364

11/12/1945 (710347) �> Dhu al�Hijjah 6, 1364 A.H.

a date of no significance in Arabia

7/6/1776 (648493) �> Jumada I 19, 1190 A.H.

note that we can have the same day twice in a Gregorian year

1/5/1930 (704557) �> Shaban 4, 1348 A.H.

12/25/1930 (704911) -> Sha�ban 4, 1349 A.H.

AS/Magazine SEPTEMBER 1994 35

POSIX

running on that computer? Most of these questions are defined in the <sys/utsname.h> include file. The

actually asking where your process is, for arbitrary values utsnarne structure contains at least the name of the

01 �where.�

Let�s try an example to begin our exploration. We

can find out who you are with the following short

program: f you�ve been paying atten

*define POSIX SOURCE � r 1

#include <stdio.h>
tion ior t e last 14 montns,

*include <unistd.h>

main (void) you�ve guessed that there is a

puts(getloginl:fl; r

system interlace in POSIX.1 to

Around our offices this program often provides the out- get this information for you.
ptit jeff for arbitrary values of �jeff.�
Historically, UNIX provides a way of getting informa-

A 1...

Lion about the system you�re running, with the uriarne
.n you e rigilt.

command. If you�ve been paying attention for the last

14 months, you�ve guessed that POSIX.l has a system

interface to get this information for you. And you�d be implementation of the operating system (sysname), name

right, of the UUCP node (nodenarne), current release level of

The uname () call populates the utsnarne structure, the system (release), current version level of the system

Table 1

Attribute Type Get Function Set Function

process ID pid_t getpid() �

parent process ID pid_t getppid() �

process group ID pid_t getpgrp() setpgid()

login user name char* getlogin() �

real user ID uid_t getuid() setuid()

effective user ID uid_t geteuid() setuidO
real group ID gidj getgid() setgid()

supplementary group IDs id_t] getgroups() �

current directory char getcwd() chdir()

file mode creation mask modet umaskO umask()

signal mask sigset_t sigprocmask() sigprocmask()
set of pending signals sigset_t sigpending() �

process times struct tms times() �

controlling terminal char* ctermid() �

session ID �
� setsid()

password file entries struct passwd* getpwuid() �

group file entries struct group* getgrid() �

36 RS/Magazr1e SEPTEMBER 1994

POSIX

(version) and name of the hardware (machine). If you

wrote a version of the uname program, using the uname ()

interface, you might find out from an RS/6000 near you

that:

� its operating system is called AIX

� the system is at Release 2 of Version 3

� the machine type code is 75, i.e., a 7015 Model 375

� and in the case of a machine near us, the nodename is

armadillo.

We�ve written a lot of code already this month, so we�ll

leave uname as an exercise for the reader.

This process carries around quite a lot of information

about the environment. It�s summarized in Table 1..

You�ll notice that you can set some of this information,

too. This is how the cd built into the shell works, for

example. As for those arbitrary values of �where,� you

can even get arbitrary named information out of the

process space with the getenv () ititerface.

If you will remember, the point of POSIX was to codify
existing practice, not to provide a new standard for an

imaginary operating system. To do this, though, it was

necessary to provide the occasional innovation. For

example, how can you codify the amount of space

needed for a file name? Do you specify it as 14 bytes, as

in traditional AT&T UNIX, in arbitrarily long, as in

Berkeley derivatives? Why not, instead, allow you to

ask the system at runtime? That is the point of the

POSIX.1 interfaces sysconf () and pathcorif . To

find the number of time intervals per second, try sysconf

(_SC_CLK_TCK). For finding out the length of a file name,

try pathconf (�.�,PC_PATH_MAX). (Why do you need

to provide a file name to pathconf LI? With network file

systems, and remote mounting, it is possible that a file

system configuration parameter may vary within a single
host.) In general, sysconf () provides information about

the general system configuration, and pathconf () tells

you about parameters associated with files and data

movement. A full table of the information from these two

calls is provided in the POSIX.1 standard in tables 4-2

and 5-2. Some of it may also be found in the include file

limits.h.

Wrapping Up
That�s it for information about the environment, albeit

information that�s a little compressed since we rearranged
the syllabus. Tune in next month when we discttss

device-specific functionality, and visit the dreaded

tcgetattr() interface. Until then A

Circle No. 18 on Inquiry Card

FacetTerm Version 3: Your Window On Unlimited Terminal Productivity
Increase your productivity with the FacetTerrn

windowing environment on character terminals,

AiphaWindow terminals and PCs.

FacetTerm features:

� Run tip to 10 applications simultaneotisly

� Use zi character application on iiy UNIX

system with y character terminal

� Cut and paste between applications
� Get automatic notification of Email and any

other �off screen� activity
� Print screens

� Utilize new AiphaWindow terminals

Free Evaluation! Full features, documentation

and support for 30 days.

Structured Software

Solutions, Inc

E,cctTcr,,, aregi�it.rcd Tr,dcr,,.,rk of Scruettireti Sof uw-a,e SoI,,r,,,i,... tic

Oultor 1011,0% are pr(npcnies ,,i hour rc�pu.ctive Iu,�I,fer.

Opening Windows on Terminal Productivity
Structured Software Solutions, Inc.

403 I West PIano Parkway
PIano, Texas 75093

TEL: (800) 235-9901 (214) 985-9901

FAX: (800) 982-9901 (214) 612-2035

Email: info@sssi.com

RS/Magazine SFPTEM8ER ?994 37

POSIX

In Which We Discuss

Replacements for the

ioctl() System Call

by Jefireys Copeland and Haemer

T
his month, in our cominuing realistic example
exploration of the POSIX. 1 would be pro-

standard, we will discuss the cessing the

changes POSIX has made in getting escape codes

data in and out of your terminal, generated by the

arrow keys so

The Ubiquitous Backspace that you could
�

Let�s begin by considering what navigate around

happens when you type Control-H a dungeon. For

on your keyboard at the sheli the purposes of

prompt. (if you read our series on this column,

internationalization, you�ve seen however, we�re L.

some of this discussion before.) The going to explore
Control-H doesn�t appear. In fact, a simpler exam-

something entirely different hap- pie.) Historically,

pens: The cursor moves backward, you would have used some form of

and the previous character disap- the ioctl () interface, which existed

pears. This is because the standard as far back as Version 7 UNIX, to put

input to the terminal is in �cooked� the terminal into �raw� mode. Unfor

(or �canonical�) mode: The terminal tunately, ioctl () was intended to

driver is processing the characters provide a general 110 control facility,
before it passes them on to the shell, and nearly each driver for each

What do you do if you want to device relied on a different number

process the Control-H character of arguments to ,ioctl ()
,
of different

yourself? (We realize that a more types�try to provide an ANSI C pro

Jeffrey Copeland (copelrid@almni.caltech.edu) lives in Austin, TX, where he consults,

writes and raises children, cats and roses. His recent adventures include cwtoniating a series of land

fills and providing software services to the tchnin:strators of she 1993 and 1994 Hugo awards. His

research interests include internationalization and typesetting.
Jeffrey S. Hae,ner (jsh9carsary.com) is an independent consultant based in Boulder, CO. He

works, writes and speaks on the interrelated topics of open systems, standards, software portability
and porting, and internationalization. Dr. Haeinc, has been afeatured speaker at Usenix, UniFortiin

and Expo Kuwait.

36 AS/Magazine OCTOBER 1994

POSIX

totype for that! Indeed, between Ver- to remap characters for interrupt and � We want to prevent a break con

sion 7 and System III releases of erase. There may be other fields in dition at the terminal (generally, this

UNIX, the arguments to ioctl () the structure, but these are the ones means you pressed the Break key)
changed entirely. Worse, the Berke- POSIX guarantees, from flushing the terminal driver�s

ley UNIX releases provided an entire- input and output queues.

ly different set of arguments and sub- Magic Procedures On the other hand, the output flags
commands for the interface and Let�s try a simple example. (No, are much simpler. There is only one

added hooks for governing features we�re not going to process the arrow defined by POSIX, and we are unset-

like job control, keys this time�we�ll leave that as an ting it�though there may be some

This is another case of the POSIX.1 exercise for you.) We�ll simply echo others in your implementation that

standard not quite following existing the characters we read from the key- we are leaving alone. Turning off

practice. In this case, instead of board and investigate the differences OPOST prevents any postprocessing of

adopting either the BSD or USG between �raw� and �cooked� mode. the output characters on their way to

styles of terminal control, POSIX We can start by setting up the main the terminal screen. Finally, we reset

adopted something that� s fairly close program (see Listing 1). three bits in the local flags to prevent

to the System Ill termio structure, Notice that we do as we claimed, canonical processing. That is, don�t

called terrnios. To communicate We echo all the characters we read automatically process the erase (nor-

with the tenni.os structure, we have (expanding control characters), mally Control-H) and kill (Control-

two interfaces: tcgetattr (mt except that when we read an �x� we U) characters, but instead pass them

filedes, struct teri�nios *tp), invoke setraw) or restore(). What on to the program to disable signals,
which allows us to get information do these magic procedures do? Let�s so we don�t automatically process the

about a terminal, and tcsetattr (do the simple one first (see Listing 2). interrupt and quit characters (nor

mt. filedes, mt options, const We need to take a closer look at mally Control-C and Control-back

struct tennios *tp), which sets those middle lines in setrawO, slash). Most important, turn off

it. This means, in general, that we beginning with setting tbuf.c_ifiag, echo, so that our program is solely
write programs of the form which actually do the work. First, we reponsible for displaying the charac

�-�

ters we read. Notice that we have
tcgetattr(fd, &otbuf); done nothing with the c_.cflag bits,
ntbuf = otbuf; . .

which control line conditions like
/ modify ntbuf for new settings /

number of bits per byte and number
tcsetattr(fd, 0, &ntbuf);

1* application prograrri continues with new settings /
� of stop bits. See Figure 1 for a corn

tcsetattr(fd, 0, &otbuf); 1* cleanup / plete list of the bits corresponding to

/ now terminal is reset to original settings 1 ,j
each element of the flagset.

If you�ve ever aborted out of, say, unset some input flags: Finishing It Up
vi and left the terminal in a funny � We don�t want to translate the NL To complete things, we do some

state, you can probably guess that character to c, and vice versa (INL- setup in the control characters array.

the part you failed to execute is the CR ICRNL). The VMIN and v�rn� values in the

line with comment �cleanup.� � We don�t want to strip the input c_cc array are useful only when we

It might be useful at this point to characters to 7 bits. are reading in noncanonical mode.

take a look at the contents of the � We actually want to see the START For canonical input, the read C) call

termios structure: and s�op characters rather than use returns when a new line is received.

But, in canonical mode, the read))

struct termios C 1 (which means the getchar ()
,
too)

tcflag_t cifiag; / Input modes / completes after buffering VMIN char

tcflag_t coflag; /* Output modes / acters. So, if we set VMIN to 1, we can

t�lag_.t ccflag; / Control modes / act after each character is typed.
tcflag_t c_lflag; /* Local modes i What about v�rii? If v�rm is

cc._t c_cc NCCS]; / Control characters zero,

we return when we�ve read

VMIN bytes. On the other hand, if

v�rIt is greater than zero, we return

Each of the tcnagt elements con- them to implement flow control when either we have VMIN charac

tains a set of flags. The array of con- (those characters are defined in ters, or vrn seconds have passed
trol characters in cc_cc I] allows us c_cc, which we�ll return to). without a character being detected.

RS/Magazune OCTOBER 1994 37

Why? Because noisy serial lines are

common. The following is a list of

other control characters we can

manipulate:

VEOF end of file character

VEOL end of line character

VTII time to wait before

returning an error

VMIN minimum characters

to read

CSIZE

CS5

CS6

CS7

CS8

CSJPB

HUPCL

PARB

PPRODD

POSIX

VERASE erase character (normally
Control-H)

VINTR interrupt character

(Control-C)

VKILL kill character (Control-U)

VQtJIT quit character
-

(Control-backslash)

vsusP suspend character

(Control-Z)

VSTART start character (Control-S)

vs�ro stop character (Control-Q)

ignore modem status lines

enable receiver�otherwise read

no characters

number of bits per byte
5 bits

6 bits

7 bits

8 bits

send two stop bits

hang up on exit

enable parity
odd parity

So Where�s 1oct10?
If we don�t have ioctl () anymore,

how do we handle line control, baud

rate and other device control func

tions? What do we end up missing?
Last questions first: The main thing

we lose is Berkeley-style word erase.

POSIX doesn�t support it at all.

Among other problems, how do you

define word erase for a language like

Japanese where words are not delim

ited by white space? (Note that the

Berkeley Control-W operator works

on AIX, anyway. For Japanese text, it

deletes back to the last ASCII white-

space character.) Furthermore, we

lose compatibility with existing

implementations. To go back to the

arrow key example, to port your

dungeon game from BSD to a strictly
POSIX platform, you�d now need to

change all the terminal setup code.

To provide the other terminal func

tions we get from ioct]. , POSIX

provides roughly a dozen routines:

� tcsendbreak () send a break

� tcdrain() drain the input

queue

flush the input.

queue

set flow control

on the input queue

get the output

baud rate

set the output

baud rate

get the input
baud rate

set the input
baud rate

get the terminal

identification

get the name of

the terminal

tell us if we are

really on a terminal

What about the ioctl coverage for

job control? What about other

devices? For job control, there are

POSIX routines such as tcgetpgrp 0,

which gets the group ID of the fore

ground process group.

FIgure 1. The Flag Set

Field Mask Description

c_iflag BRKINT

xx

IGNCR

.

interrupt on break
.:

ignore break condition

ignore cR character
-

IPAR ignore characters with parity errors;

INPCK enable input parity check

P.AP.MRK mark parity errors

ICRNL map cR to NL on input
INLR map NL to on input
ismi strip character to 7 bits

IXOFF enable flow control on input
-

IXON enable low control on output -.

c_oflag OPOST perform implementation-
dependent output processing

c_lflag XHO

EOHOE

EHOK

EHONL

ICNON

icr

ISIG

NOFLSH

TOSTOP

�

enable local echo

echo ERASE as backspace- .

. space-backspace

echo KILL character

echo \n
.

canonical input -,,

enable extended (imp1ementaticn.
defined) functions

-

-

enable signals
don�t flush buffers on nr, QtJIT

or SUSPEND -, ,.

send SIGTIOU for background output

c_cfiag CLOCAL

CRED

� tcflush()

� tcflow()

� cfgetospeed()

� cfsetospeed()

� cfgetispeed()

� cfsetispeed()

� ctermid()

� ttyname()

� isatty()

38 RS/Magazie OCTOBER ?9B4

POSIX

-

Listing I

- -

.1 As for other devices, POSIX pro

vides the fcntl () interface. However,
#deflne POSIX SOURCE

�

#iriclude <stdio.h>
-

. .: note that there s no attempt to make

#iriclude <terrnios.h>
the actions of fcntl() parallel to the

functions provided by th terminal

struct terznios thufsave controls we ye jtist described How

void setraw (void) restore (voi.d), does it work? mt Lcntl (mt EJ.des

mt raw
mt ai) takes a file descriptor
and a command to execute The corn

xriamn () -

.

{
- mands are defined in <cfntl h> and

3.nt c
� include commands like F_DUPFD

-.
which is similar to the function of the

wlule(l) { fdup() interface F_GETFL which
c getchar () r returns the status flags of the open

,if.c=:=EOF) �.
.�

break -

file or F_GETLK which checks an

if (iscntrl(c)) { I advisory lock on the file

putchar(A
- Advisory locking is probably the

putchar(c + 0x40) �
most

interesting of the three Its

) else if (C = X) { called advisory because its not

if (raw)
.

.-J enforced. Another program only
restoreQ; ;..

else
-

.:-- knows that you have locked part of a

setraw () file by calling fcntl () and checking
else

.
. existing locks.

putchar(c) And how does it work? In general
) we request a lock with the F_GETLK

command and a pointer to an flock

structure. The flock structure con

ListIng 2
��

.

.

�:.:�. tains the type of lock requested (read

void restore (void)
.

or write), where in the Ele we want

{ .

.
.

.

.

. r -. . to lock, and how large a region of the

raw = o;
�

.

� file we want to lock. We check a lock

if (tcsetattr(O, .TCSANOW, &tbufsave) = = -1) { ��

with

F_GETLK, which returns type
fprintf (stdext tcsetattr failed) F_UNLCK if there is no existing lock
exit(l)

- We can then request a lock with

} � F_SETLK or F_STLKW the latter

waits until the file is unlocked to

void setraw(void)
�

-

return When we are done we set

{ - the lock type to F_UNLCY and call

struct terirdos tbUf fcntl() again. All in all, it�s pretty

�

.
� ...

.

. . ..
. straightforward, as long as everyone

W(cetattr(O &tbuf) = -1) { plays by the same rules md provides

fprintf (stderr, �tcsetattr failed)�
:

- functionality that wasn�t standard in

it (1);.
.

. Version 7 or System III.

}
.;

tbufsave = tbuf; :: The Days Dwindle Down...
tbuf.c_iflag &= �(INLcRJICRNLJISTRIPJIXONJBRKINT); �.� We�ve now taken the simple

�

tbuf.c_oflag &= -OPOST;
.

thuf
. c iflag & � (ICANON j ISIG ECHO);

notions of terminal interface and file

thuf.ccc(VMIN] = 5;
.

-

control and beaten them to death.
�

tbuf
. c_cc rrrmi = 2;

.� .

Next

month, we will consider some

if (tcsetattr(O, SAN,J, &tbuf) = 1) { -

.

I odds and ends, such as the standard

fprintf(stderr, �tcsetattr failed); �

ized format for tar (.. .or was it
exit(1);

I

.cpio?) archives. Following that, well

-

sum up our programmer�s view of

_j POSIX.1. A

RS/Magazine OCTOBER 1994 39

POSIX

In Which We Discuss

Odds and Ends

by Jeffreys Copeland and Haemer

W
ell, we�re about at the ASCIIs,� you know you�re in trou

end of our survey of ble. Still, the diversity of physical
POSIX.1-1990. We�ve media and data

shown you its general structure and formats can

you

by the standard: file systems and taking so long to

-�

processes. Before we finish, we need move your

to touch on a few loose ends that are �portable� pro-

in the tail end of the standard. grams. The

POSIX.1 com-
.

A Data-Exchange Standard mittee decided it

The purpose of the POSIX stan- had to address

dards is to provide application this question N ,,e. 7

portability across a wide range of and sort of did. �-

machine types, all running UNIX- As you�d
like operating systems. Seems sensi- expect, ventur

ble enough. But if you�re an old ing into the tern

hand at porting, you�ll know that tory of physical media was out of the

just moving the bits from one question. This is a software standard

machine to another can be a chal- designed to buffer the programmer

lenge. We�ll admit that it�s better from the speed of hardware evolu

now than it used to be�one of us tion. In 1988, when the original
remembers working on CDC6400s, standard passed, no one had CD-

running Kronos, where you had a ROM drives, people still used 5Y2-

choice of ASCII character sets. Any inch floppies and DAT tapes were

time someone gives you �a choice of out of everyone�s reach. Neverthe

Jcffrey Copeland (copeland@alumni.caltech.edu) lives in Austin, TX, ivherc lie consults,

writCs and ci children, cats and ,iiç His recent adventures include automating a series of land
fills and providing software sericcs to the itdministrcttors of the 1993 and 1994 Hugo awards. His

research ii (erests nc lade it ternat ionali zat on and typecett ng

Jeffrey S. Haenter (jsh@canary.com) is an independent consultant based in Boulder, CO. He

works, writes and speaks on tile izitertehitted topics of open systems, standards, software portability
and porting and internationalization. Dr. Hae,ner has been a featured speaker at Usenix, UniForuzn

and Expo Kuwait.

28 RS/Magazine NOVEM6ER t994

TheG UP
POSIX

less, the committee did do something
almost as surprising: They decided to

It�s worth pausing here to note

how big a step this was. All of the

POS1X standards are interface stan-

specify a data format.

dards. A reluctance to specify data

formats and data structures is deeply
woven into software standards

aimed at portability. Data abstrac
__

tion�separating the interfaces from
1.2 Gb Disk 1.9 Gb Disk 2.4 Gb Disk 3.5 Gb Disk 5.0 Gb Disk

the underlying data representation� $860 $1,320 $1,605 $2,192 $2,575
is what lets programs written to the I I I

POSIX C standard on a PC running 10.8 Gb Disk I 2.0 Gb 4mm 4.0 Gb 4mm 5.0 Gb 8mm I 10Gb 8mm

MS-DOS, compile and run on an $4,205 I $1,025 I $1,120 $1,510 I $2,295

MVS machine with an EBCDIC char- Prices ore for fully assembled & tested subsystems with enclosure, cable and terminator

acter set. Likewise, because POSIX.1

is careful to avoid specifying the
A complete family of mass storage products for RS/6000, SUN, HP, SGI, DEC, & NOVELL.

Dynamic Computer Products.., not just price, but

directory�s format, the marketplace over 25 years oltechnical expertise, service and support.

now offers POSIX.1-conforming

MVS, VMS, CTOS and MP/E sys

tems. You can move a carefully writ- I

ten, POSIX.1-coriforming applica- 233 Greenwood Avenue, Bethel, Connecticut 06801

tion from one to another with a Tel: 203/791-9511 � 1-800.714-SCSI � Fax: 203/778.4535

recompile, despite the fact that the CiIe No. 12 on Inquiry Card

underlying file systems and process

structures vary wildly. Although the quate for the vast number of BSD- some subtler areas. One solution to

POSIX standards are clearly modeled based systems. They also said that the quandary would have been to fix

on UNIX, there is no working group BSD-based systems had as much one of the two formats. Unfortunate-

standardizing an equivalent to the right to the sacred label of �existing ly, each utility has half a zillion (we

traditional section seven of the man- practice� as AT&T-based systems. counted) shell scripts in the field that

ual: file formats. \Vhy inadequate? The cpio corn- call it, and a similar number of reli

Usually we don�t think of standards mand will take a list of UNIX file gious adherents. 3CPIO�s and TAR2-

organizations as bold, but the decision names and archive the corresponding D2�s resulting fierce struggle for dom

to specify a data format in an interface files into a single file, which may be inance was, of course, christened �tar

standard was genuinely gutsy. put out on a external medium for wars.�

transport. Conversely, it will also take The deadlock was eventually bro
Tar Wars a single archive and restore some or ken by Glenn Fowler, who came to a

We have been careful to say that all of the files. This means it has to meeting armed with an overhead that

the committee decided to specify a know about file names and file types. asked a simple question: Which for-

data interchange standard instead of And it does: System III file names and mat file is this?

saying that they agreed on one. I-lay- System Ill file types.

ing agreed to stipulate that POSIX.1 The data structures .: .

systems would support a data inter- can�t handle long file 0707070020b701�46151Ô06640001440000240000

change format, the first candidate to names, symbolic links 020656340563312123300002100000011357odd

step up was cpio. This was because or sockets or symbolic snd_ends.rroii�@. � Id

the 1984 /usr/group standard was user and group names. .
S 12

based on AT&T�s System Ill (Believe it or not, bin
.TL

(remember when the phone cornpa- is not always group 7
SIX From the Outside In:

ny owned UNIX?). on all systems.)
SP

A Retrospective
Fortunately, hotter heads prevailed, �Ah!� you say. �But

and people quickly began appearing that�s where tar comes
.AU �Jeffreys Copeland & Haner�

at the committee meetings who in.� As it turns out, tar .rr 4 1

pointed out that cpio was made- falls equally short in
- __ .

i

RS/Magasine NOVEMBER 1994 29

At this, the shouting stopped. it

turns out that almost none of the

formats� rabid adherents actually
knew what the formats looked like.

Glenn then announced that he not

only knew the difference but could

distinguish the two on the fly,
which meant that a single utility
could be constructed that

would read (or write)

either format.

The committee then

agreed to require that

POSIX.1 systems support
both formats. They also

specified backward-compat
ible extensions to each for

mat to solve the problems
identified during the

debates, and the Usenix

association funded the

development of a publicly
available utility, called pax (�peace,�
in Latin) that would read or write

either, demonstrating that Fowler

was right.
The cpio format is unimaginative

ly called �extended cpio,� but the

extended tar format is called ustar

and pronounced either �U.S. tar� or

�u-star.� You�ll find all three on

your system. On many systems,

though not on AIX, an is -1 will

reveal that the three commands are

links. Usenix�s pax is designed to

behave like cpio when called by
that name, like ustar when called

by that name, and to use its own

flags and format when called as pax.

(Try the experiment to see if each

format will work on your system.
On AIX, however, the three pro

grams are distinct.)

Last but Not Least

Section 8 of POS1X.1 has the pecu

liar title �Language-Specific Services

for the C Programming Language.�
This seems odd for a few reasons.

First, the entire standard is a C-lan

guage binding. A pair of standards

exist that bind POSIX.1 services to

other languages�POSIX.5 for Ada

and POSIX.9 for FORTRAN-77--that

POSIX

required considerable effort to work

around the language-specific features

utilized by POSIX.1. For example,
three of the POSIX. 1 directory entry

routines, readdir (I, rewinddir (I

and ciosedirO, all take pointers to

dirent structures as arguments, and

the fourth, openthr I), returns the

Section 8 carefully

connects C�s stdio

functions to POSIX.l�s

low-level I/O functions.

pointer. FORTRAN77 has neither

structs nor pointers.
Second, standards are, in theory,

orthogonal. The entire point of sepa

rating out the C and POSIX.1 stan

dards is that even a non-POSIX oper

ating system like MS-DOS should be

able to support a standard C compil
er. Indeed, we�ll remind you that

POSIX.1 doesn�t require standard C

at all. Although the C in the standard

itself looks like standard C, it�s legal
to have either a standard-C binding
or a traditional (K&R) C binding�

support for prototypes, for example,
isn�t required. Because that�s true, the

POSIX.1 standard should have a

clean boundary that separates the

language from its operating system-

specific functions.

�Taint so.

Here�s why. First, although stan

dard C isn�t required, POSIX.1 does

require that even traditional C imple
mentations provide a specific subset

of the functions in the standard. Sec

tion 8 sets these out, and the subset

is large, but not all-inclusive. For

example, although setlocale () is

required, the functions that deal with

multibyte characters, mbtowc () and

friends, are not.

Second, POSIX.1 has to extend the

semantics of a handful of the stan

dard C functions: setlocale(),

rename , abort Y, getenv,

ctime, gintimeU, localtimel,

mktime() and strftime().

Let�s take an example. The call

rename (�/usr�, �/usr/bin�) is

illegal in POSIX.1 because

/usr/bin is a subdirectory of

/usr. To prohibit this sort of

thing, standard C would have

to know about directories and

pathnames, which it doesn�t.

Some restrictions are

relaxed, too. POSIX.1 dis

avows any distinction between

text files and binary files. This

means that on proprietary sys

tems that do make such dis

tinctions, POSIX.1-confor-

mance can require some fancy
footwork.

Another example is set locale ,

which knows about the r.c_ envi

ronment variables. Standard C

knows about environments

(getenvi)) but specifies no envi

ronment variable names, because

not all operating systems have envi

ronment variables.

Third, POSIX.l has to connect.

some of its functions to C-language
functions. One of the topics we cov

ered in our treatment of file systems

was low-level 110. The UNIX pro

grammer�s assumption is that the

standard 110 library is implemented

through calls to open , close ,

read(),write() and seekO,but

the C-standard specification of the

functions in <stdio.b> makes no

such statements. On an MS-DOS

machine, for example, the underly
ing BIOS calls need not be anything
like the UNIX operations. Section 8

carefully connects C�s stdio func

tions to POSIX.l�s low-level 1/0

functions. For example, POSIX.1

requires that fclose I) do a close ()

on the underlying file descriptor and

update the st_ctime and st_mtiine

fields of the file.

In fact, the standard, even provides

30 RS/Magazine NOVEMBER 1994

CROJAT) T)ORSE?
POSIX

in your stables?
a pair of interfaces to interconvert (_PosIx_sizD_ioRY_oaIEcTs)

POSIX. 1 file descriptors and C FILE and memory mapped files

pointers: mt fileno(FILE (_POSIx_I1LocK). Memory locking
*streji) and FILE *fdopen(int lets real-time processes lock mapped
filedes, const char *t.ype). The pages into memory, for performance
first of these takes a FILE pointer enhancement. Shared memory is

and returns the associated file much like the System V model, and

descriptor, and the second takes a memory-mapped files are done with

file descriptor and returns a FILE Berkeley�s nimap 0. Although mmap ()

pointer that you can use to do input can provide shared memory facili

or output to the file using standard ties, the standard has a separate set

110 functions. of shared-memory routines for sys

tems that want to supply shared
Last year trojan horses compromisedAnother Day, memory without implementing a
te of Thousands of user accounts

Another Standard full-blown mechanism for memory- and passcids on The Internet.

Well, that�s about it for POSIX.1- mapped files.

1990, and just in the nick of time! � Section 13: Execution Schedul

The IEEE has now passed IEEE ing�This section has interfaces that

1003.lb-1993, which has the 10 let you set process priorities and Don�t let this happen to you.
chapters we�ve covered so far, plus scheduling policies on a per-process

five more. These five chapters, plus basis (_PoSIX_PRIORITY_

extensions and modifications to the SCHEDULING). You can choose fifo

first 10, add �real-time� interfaces to (5cHED_FIF0), round-robin STJP
POSIX.1. (SCHED_RR) or an implementation-
Although we noted the existence of specific (sCH_oTH) scheduling Internet Intruders

a few POSIX options in earlier algorithm, set priorities and even

columns, such as _POSIX_JOB_CON- yield the processor.

TROL and POSIX_CHOWN_RESTRICT- � Section 14: Clocks and

ED, all of the interfaces we�ve dis- Timers�This section supplies per-

cussed so far have been mandatory. process timers and high-resolution
This is not true of the interfaces in sleeps (_PosIx_TIRs). Real-time a secure firevvcill
the newer chapters, whose presence processes are characterized not so system from
is under the control of a wasp�s nest much by speed as by predictability.
of new POSIX options. For example, You can tell a real-time system by I..SLIif posix_sIpi-ros is true, then the fact that its response times are

the implementation supplies the given as ranges instead of averages.

process synchronization interfaces Sections 13 and 14 combine to help CALL 1 �800�240�5754
described in Section 11. If not, then provide that predictability.
whether they�re there or not is up for � Section 15: Message FA)(1 �7 1 3�379�5225
grabs. If they�re there, however, they Passing�Not System V message

must behave as described in the stan- queues, but similar enough to lack

dard. Here are the new chapters and surprises (PosIx_IssAGEPA.Ss

what they supply: rii). PORTUS vcs developed at the IBM

Thomas J. �tson Research Center
Section 11: Synchronization� We won�t say any more about these

to secure is pte net.orI W-ien
Interfaces to create and use named new chapters in this series for a sim- conr-cted to the Internet and has

and unnamed semaphores pie reason: We don�t know them well been In production since 1988.

(_PosIxstPHos). For those enough (yet). If, however, you�re an
POR11JS Is based on Itie current version

of this secure gatewry and represents
who had to suffer through System V expert in this area, we suspect that

the state of the art In secung a

semaphores, these aren�t the same. the folks here at RS/Magazine would netvod< from intiuders.

Section 12: Memory Manage- love to hear from you.
ment�Three relatively disjointed sets That�s all for us for the moment.

Contact LSU to secure �tour gatevciy
vth the finest softvore technology in

of interfaces: memory locking Next month, we�ll be back for the The od
..

FCR11JS.

LPosIx.j�i�u.ocK and osixi- grand finale: a review of the original
LOCK..RANGE), shared memory POSIX.1. A ' 1994 LSLI

POQR aXj LSU ae frmcr4 of Lf,rnc.e So4tae

Lafo�fes. �c. .f a trnt Of te,r,afcr,cI

&,koss M,chr,es Ccpoaflo,

Circle No. 15 on inquiry Card
RS/Magazine NOVEMBER 1994

POSIX

In Which We Summarize

by Jeffreys Copeland and Haemer

W
ith this column, we end

our 17-part series on

POSIX programming.
Whew.

We called our series �POSIX from

the Outside In� because we took an

unusual approach: Instead of a

methodical recitation of the inter

faces, we asked, �What interfaces

need to be in POSIX.1 to support the

commands, like is?� Face it: Stan

dards aren�t so exciting that just

reading about them will make them

stick in your head. Our goal was to

spur you to learn the POSIX.1 inter

faces by making you think about

why POSIX.1 has the interfaces it

does. (We also thought it would be a

fun approach to try.)
Likewise, we tried to throw a few

questions into each column to be

answered the following month. This

tune-in-next-week ploy wasn�t just a

cheap trick to entice you into read

ing our next column. It was another

attempt to tease you into thinking
enough about what you were read-

ing to internalize the material.

We�d like to hear if our little tech

niques worked.

Drop us a line

and let us

know�our email

addresses are

below. If you do

send us feedback,

we�ll send you

the punch line to

�What�s Dan

Quayle�s favorite

palindrome?�
While we wait,

here�s POSIX.l�s

annotated table

of contents.

Where We�ve Been

1. From the Outside In (August
1993). A brief introduction to the

world of standards itself, a general
cook�s tour of the structure of the

POSIX.1 standard and a sketch of

how POSIX.1 relates to other stan

dards you need to worry about.

Jeffrey Copeland (copeland@alumni .
cal tech. edu) lives in Austin, TX, where he Consults,

writes and raises children, cats and roses. 1�1k recent adventures include automating a series of land

fills and providing soft ware services to the administrators of the 1993 and 1994 Hugo awards. His

research interests include internationalization and typesetting.
Jeffrey S. Hae,ner (jsh@canary. coin) is an independent consultant based in Boulder, CO. i-fe

works, writes smcl speaks on the interrelated topics of open systems, standards, software portability
cind porting and internationalization. Dr. Haciner has been a featured speaker at Usenix, UniForuni

ctncl Expo Kuwait.

32 RS/Magazine DECEMBER 1994

POSIX

2. Headers, Identifiers and Writing Programs (Septem- question �What POSIX interfaces underly the familiar

ber 1993). Following a tour of the header files and the standard I/O library?� and its corollary, �Why don�t we

rules, POSIX sets out to keep you from stepping on the use them instead?�

identifiers that are defined in those headers. We write 8. In �Which We Discover Processes (March 1994). Most

simplified versions of two commands, touch and is, in of the POSIX.1 standard deals with two things: File systems

order to illustrate the way C programs use POSIX.1 calls and processes. This isn�t a limitation on POSIX. 1�it�s most-

to talk to the underlying operating system, and what ly what operating systems deal with. In this column, we

those calls must provide in order to supply the function- quickly review what POSIX.1 says about file systems and

ality that we use day-to-day at the shell level, move on to processes. We introduce the two most impor
3. In Which We Write in (October 1993). Elaborating tant process-related interfaces: fork, which creates new

on the previous column�s processes, and the exec ()

discussion of the stat family, which ties processes to

structure, we discuss the
ost of the POSIX 1 files. To stress the need for

underlying UNIX mode these interfaces and to help
that stat was designed to _i -i i . clarify why they�re different,

report on, and use the stan
aru ueais Witii

we look at logging in in some

command to introduce the
.

detail, concentrating on the

idea of access functions two things: fIle systems and
getty, login and passwd

that change the attributes commands.

reported by stat. processes. 9. In Which We Corral

4. In Which We Move Some Processes (April
and Remove Files 1994). We�ve mentioned that

(November 1993). On traditional UNIX systems, the corn- the two central concerns of operating systems are file sys

mands in, my and rm are all the same program. The fourth tems and processes. On POSIX systems, both form trees.

column uses that fact to firm up the idea of links and In this column, we explore the process tree and provide a

modes, to delve deeper into how to write commands and shell script to display it on your system. The script also

to provide readers with a much more concrete picture of gives us an opportunity to touch on POSIX.2�the stan-

what UNIX directories and filenames are really all about. dard that provides for portable shell scripts.
5. In Which We Explore Directories (December 1993). 10. In Which We Look at the Processes in the Corral

On traditional UNIX systems, directories are files. (On (May 1994). We continue exploring our rough analogy
non-BSD systems, they�re particularly simple, two-column between processes and files to see how far it will get us.

files that pair file names with mode numbers.) We see here This also leads us to ask what the attributes of a process

how POSIX frees itself from UNIX by turning directories might be and how we can go about getting them. It turns

into abstract data structures, with access functions that let out there isn�t a system call analogous to stat () that gets

you write truly portable versions of is. We then elaborate all the process attributes in a single call. There is, howev

on access functions by talking about the functions that er, a shell-level command (which, unfortunately, isn�t

underlie the familiar commands chmod and chown. standardized by POSIX.2), that gets the information: ps.

6. In Which We Discuss File Attributes (January We thus spend a little time talking about ps.

1994). Here, we round out our treatment of the stat 11. In Which We Go to the Beach (June 1994). No series

structure by looking at file types other than regular files on system calls would be complete without a column on

and directories, and the three �times� found in the stat how to write a shell. Starting with the now-familiar fork ()

structure: st_ctime, st_mtime and st_atime. We rein- and exec () calls, we lead onward to talk about the under-

force the idea that POSIX. 1 is full of access functions that lying calls needed to implement 110 redirection.

report on or change underlying operating system data We also dip our feet into the sea of system calls provid
structures. In the process, we write more sophisticated ed to get process attributes by implementing a simple
versions of both is and touch, shell-level commands that version of time.

report on and change the fundamental file-system data 12. In Which We Check Out the Clock Factory (July
structure, the mode and touch on rnthfo. 1994). In this column, we let ourselves get diverted into

7. In Which We Discuss File Contents (Finally) (Feb- contrasting the three different time-related headers speci

ruary 1994). Having finally nearly exhausted the mode, fled by POSIX.1: <sys/times .h>, which cleats with timing
we use one last field, st_size, to delve into both the file processes, <utime.h>, which handles the times in the stat.

itself and the access functions needed to change file con- structure and <time.h>, which is concerned with wall-

tents. Our command? cat. And once we get started writ- clock times. (We don�t have much of an excuse for inclucl

ing it, we don�t stop until we have you hip-deep in the ing this distraction, except that we don�t have an excuse

RS/Magazine DECEMBER 1994 33

SALES � RENTALS
CONVERSIONS � INTEGRATIONS osix

for putting it anyplace else either, and we do need to talk

RSI6000 about it.) The discussion of <utime.h> also allows us to

touch on internationalization, a fascinating subject.
13. In Which We Discover Signals: The Other IPC

(August 1994). We return to processes and consider the1�1161 50
IBM problem of moving information in and out of them. Hay-

SERIES/i Authorized
ing written about pipes when we write about I/O

p,, tion, we now attack the issue of the only other inter-

Integrator process communications mechanism specified in

SYSTEM/36 POSIX.1: signals. Faced with two fundamentally incom

patible ways of handling signals (AT&T- and Berkeley
AS/400 CALL: style), POSIX sidestepped choosing one or the other and

(800) 888�2000 invented a suite of interfaces for reliable signal handling
that�s basically sane but requires rewriting your code.

This column goes through what you need to know to

09177/,SejI rewrite, culminating with sigsetjmp () and sig

BUS/NESS SYSTEAIS
longjmp which give you the option of preserving the

Il9lefe/841Q(Ja//fy/sSeConowo/u,e
signal mask during nonlocal go-tos.

14. In Which We Discuss the Environment (September
18377Beach Blvd. Suite 323

Hunting/on Beach California 92648
1994). We�ve already admitted that there is no specific

1714) 8478486.FAx (714) 8473149 system call to get all the process attributes. Nevertheless,

at this point, you may have concluded that there must be

system
calls to support commands like logname and PS,

and shell functionality such as environment variables. In

Circle No. 9 on Inquiry Card this column, we summarize those functions.

Looking back at this column, we realize with embar

I *11 :Til i I iI rassment that we failed to credit Fred Zlotnick�s out

standing book, The POSIX. I Standard: A Programmer�s

CLEAN U CABLE CLUTTER Guide, for the table of process attributes. This book,
Richard Stevens� Advanced Programming in the UNIX

AND REDUCE YOUR COSTS
Environment and Marc Rochkind�s Advanced UNIX Pro

�WITH THE NEW DCB UNIMUx gramming are musts for the serious UNIX programmer.

Eliminate that snarl of wires to your standard multiplexer. Generalizing the topic of �environment� just a little, we

With the DCB UNImux, you can make allyour local also talk about the sysconf () and pathconf () functions,

connections with a single cable to a SCSI interface which POSIX gives you to let applications ask the system
and reduce the number of slots used. what optional behaviors it supports.

Finally, we return in this column to talk about calen

dars, more or less because we feel like it and it is, after
Replace this

cable mess: J��.f1.,,>���
all, our column.

15. In Which We Discuss Replacements for the

ioctl() System Call (October 1994). There are only

UNImux solution

half a dozen classic UNIX systems calls for dealing with

With the files: open , close I), read (), write 0, seek(.) and

ioctl 0. The reason there are only half a dozen, despite
the fact that even devices are files, is hidden in that last

For AIX, HP-UX, SCO, DEC and SUN. call, ioctl (I, which is a grab bag of device-specific

Data Cornni functionality. This makes ioctl () impossible to stan

dardize; POSIX. 1 has no standard for ioctl (). That

for&/)feBs, /MC, said, a handful of device-specific actions�those that pro-

Manufacturers of modems, multiplexers, vide terminal control�are so frequent that no operating
everything for your data communications application, system can be without them. These must be standard-

807 Pioneer, Champaign, IL 61820 ized to guarantee portability of a wide variety of key,

Toll-free (637-1127
�raw-mode� applications, such as screen editors, that

nhI1lYI1HPy4lYJ ���
need direct access to keystrokes and screens. In this col

Circle No. ion Inquiry Card

34 RS/Magazine DECEMBER 1994

POSIX

umn, we discuss the new POSIX.1 interfaces that pro

vide that functionality.
16. Odds �n Ends (November 1994). POSIX.l was

designed as an interface standard, not a protocol stan

dard its goal is to make your source code portable, not

your data. If POSIX.1 stuck strictly to this goal, however,

we programmers would be left in a paradoxical position:
We�d have portable code, but no way to move the pro

grams from one machine to another. To solve this prob
lem, the standard sets out two formats, standardized ver

sions of tar and cpio, that all conforming systems must

support.

In addition to tar and cpio, we use this column to talk

about odds and ends, like fdopen (I and fileno , which

interconvert standard C�s streams and POSIX.l�s underly
ing file descriptors, and the new POSIX.lb standard,

which specifies real-time extensions to POSIX.1, includ

ing scheduling, timers and a suite of additional inter-

process communications mechanisms.

Highlighting the POSIX Standard

What would you say if your boss were to ask you for a

single-sheet, management summary of this series? Here�s

our answer.

POSIX is a suite of international standards for program

ming interfaces to any operating system. Of these,

POSIX.1, the system interface standard, is now every

where. Conform to it, and your code will be portable.
POSIX.1 is modeled on traditional UNIX practices (par

ticularly, but not exclusively, System V). Despite this,

acceptance of POSIX is so widespread that man)� non-

UNIX systems are now certified as POSIX-conforming,
including IBM�s MVS, HP�s MPIE, Unisys� CTOS and

DEC�s MVS.

POSIX.1 interfaces are sometimes more abstract than

their traditional UNIX counterparts. This is to avoid tying
the interfaces to UNIX or to specific hardware.

In a few cases, where folks thought a standard was nec

essary but there wasn�t consensus, POSIX.1 created head

ers, symbolic constants or interfaces to supply the needed

functionality.
Where behavior is optional or implementation-depen

dent, POSIX.1 provides the means for the application to

determine an implementation�s choices.

Hasta La Vista, Buckaroos

And, as the sun sinks slowly in the West, we steal a

page from Roy and Dale, and wish you happy trails. If

you�ve been with us for this whole series, then we hope
we�ve given you what you needed. (If you�ve been with us

since our earlier series on internationalization, then

you�ve probably gained the answer to another RSIMagci
zine trivia-quiz question.) If you�ve just joined us, then

we hope to see you again. A

Circle No. 3 on Inquiry Card

Circle No. 17 on Inquiry Card

RS/0000TM
users..

� New HD1 & HD3

Memory Boards & SIMMs
0 - 256MB

� SCSI disk subsystems
1 - 9GB Internal/External
FWD

� AIX software utilities

Back-up/Restore
AIX MIrroring
Tape Duplication

� Tape back-up
20 -100GB, 9GB/HR
Internal/External/Autoloader

is
the,
0lilY

� Cambex products are

ChoiCe. eligible for IBM maintenance

� RAID disk subsystems
4- 189GB Fully Redundant

Cambex is the ONLY alternative

manufacturer of new HD1 and HD3

compatible memory boards for your
RS/6000TM system.

CALL TODAY for a quick price
quote from our CambexDirect -.

representatives.

1 -800-292-IRUSC 1i
RS/6000 Is a agIsterod ,,ademOd, of he In,oma,IonaI OsInesC MactOnes CO,po(a,Io,,

New for the RS/6ç00!
Tritus SPF

and

IBM REXXI6OOO

The editor and macro language you
already know are now available for AIX!

Reliability. Tritus SPF has been the SPF editor of choice

for over two years in the DOS and OS/2 world. Now

the power of mainframe editing is available for AIX

with all the same functionality and ease of use.

Compatibility. Tritus SPF emulates ISPF/PDF including
modifiable panels and keyboards. Plus, it supports
many other features like Undo/Redo and highlighting.

REXX Macros. Write your own edit macros utilizing
REXX and an ISREDIT superset of over 95 commands.

Great Deal. Tritus SPF and REXX/6000 are available as a

package, or they can he ordered separately. Call us at

1-800-321-2100.

TRITUS
6034 W. Courtyard Drive, Suite 120

Austin, Texas 78730-5014 USA

(512) 794-5800, Fax (512) 794-3833

RS/Magazine DECEMBER 1994 35

	RS Magazine 1993 .pdf
	RS Magazine 1993
	1. From the Outside In
	2. Headers, Identifiers & Writing Programs
	3. In Which We Write In
	4. In Which We Move & Remove Files
	5. Explore Directories
	6. Discuss File Attributes
	7. Discuss File Contents
	8. Discover Processes
	9. Corall Some Processes
	a10. Look at the Processes in the Corral
	b11. Go to the Beach
	c12. Check Out the Clock Factory
	d13. Discover Signals
	e14. Discuss the Enviroment
	f15. Discuss Replacements for the ioct() system call
	g15. Discuss Odds & Ends
	h16. in Which We Summarize

