
Work
by Jeffreys Copeland and Haemer

SW Expert ■ December 2001 31

Documentation
TT

he problem with UNIX is that
there’s no documentation.”
This is so widely known that

it appears in the book UNIX Has No
Documentation: The Colossal Book
of Modern Urban UNIX Legends, by
Jan Harold Brunvand, Thomas J.
Craughwell, and David Holt. (Bob’s
Bait and Publishing, 1999, ISBN 0-
945-6QRZP-X.)

Earlier this year, we spent a month
in Romania doing volunteer computer
work. Among other things, we helped
design and give a weeklong UNIX
course. The target was people who
would be running ISP points-of-
presence, on their own, in cities around
the country. We had to get them to a
point where they could largely teach
themselves what they needed to know.
We had to teach them how to use the
UNIX documentation.

Where would you start?
We took guidance from a poem in

The Second Jungle Book by Rudyard
Kipling:

I keep six honest serving-men
(They taught me all I knew);
Their names are What and Why and
When,
And How and Where and Who.

Let’s walk through these, though not in
that order.

What
What commands are there? Look in

$PATH. This can be a lot. I see more
than 2,000 commands in my path. The
word-list file used by the spell-checker
was named w2001 on old UNIX sys-
tems, because it contained 2,001 words.

In fact, if you think of these as new
vocabulary words–new verbs–how does
learning UNIX stack up against natural
languages? English has about 13,000
verbs. But what does “to besom” mean?
Perhaps we should ask how many com-
mon verbs there are? We don’t know,
but w2001 suggests that there aren’t
too many.

Ogden’s Basic English has only 850

words, total, about 200 of which are
verbs. After adding a bushel of proper
names (like “God”), this is enough to
write the Bible (http://www.o-bible.
com/bbe.html).

We would find it very interesting to
see a study of the size of typical UNIX
active and passive “vocabularies”–how
many commands users can typically use
and how many they recognize.

Where
Try the command type date. Try

also whereis date, whatis date,
and even whois date.

We encourage our Kiplingesque
readers to create commands that permit
howis date, whyis date, and
whenis date.

Why
Why would you want to use a com-

mand? You could read the man page,
but when we want a quick-and-dirty
synopsis, we run man -k date, or the
frequently available synonym apropos

““

CH
ET

PH
IL

LI
PS

Ken Thompson has an
automobile which he
helped design. Unlike most
automobiles, it has neither
speedometer, nor gas gauge,
nor any of the other
numerous idiot lights
which plague the modern
driver. Rather, if the driver
makes any mistake, a giant
“?” lights up in the center
of the dashboard. “The
experienced driver,” says
Thompson, “will usually
know what’s wrong.”
–Anonymous

When you get up in
the morning when
that big bell rings,
You go marching
to the table,
you see the same
old thing,
Knife and fork are
on the table,
ain’t nothin’ in my pan,
And you say a word
about it you get in
trouble with the man.
–Hudie Ledbetter,
“Midnight Special”

http://www.o-bible.com/bbe.html

Work
date. We’ve always particularly liked the self-referential
apropos apropos.

Unfortunately, this sometimes gets us a bit more than we
want, but it’s trivial to filter the output with something like

man date | perl -ne 'print if /^date\s/'

When
When was a command used? Could that be useful to ask?

Yes.
Have you ever spent time debugging a program only to dis-

cover that the version you were debugging wasn’t the one you
were executing? ls -ul tells you the last time a file was read.
Invoking an executable requires reading it, and this will tell
you. So try

$ ls -ul /bin/date

$ date

$ ls -ul /bin/date

There are other uses for the -u flag, too. We use it to see if
data files are actually being read by the programs that should
be reading them. Try

$ ls -ul /etc/hosts

$ ping foo

$ ls -ul /etc/hosts

A more creative application is to ask whether Zipf ’s Law
holds for UNIX commands.

Zipf ’s law is an observation in human linguistics: there is
an inverse correlation between word-use and word-frequency.
Frequently used words are short. This is a statement about the
evolution of language. It’s why we create contractions and
acronyms. Some of its implications are historical and cultural.
For example, “dar” (gallows) is a one-syllable word in Persian,
and “whip” is a one-syllable word in English.

But is it why ls and cd are easy to type? Is it why the
AT&T predecessor to more was called l? Probably.

As it says in K&R, “Since assignment is about twice as
frequent as equality testing in typical C programs, it’s appro-
priate that the operator be half as long.”

Does Zipf ’s law hold for UNIX commands as a whole?
Collecting long-term statistics on UNIX command-frequency
use would require instrumenting the shell or the kernel. But
we can use ls -ut to get a quick-and-dirty measure, because

frequency of use will be correlated with recency. The most
frequently used commands will, in general, be ones that were
used most recently. The most rarely used commands, in con-
trast, will not have been used for a long time.

On the systems we measured, command-name length
and recency-of-use were essentially uncorrelated. The highest
correlation coefficient–only about 0.25–was for /bin. For
/usr/local/bin the two were negatively correlated to the
same degree!

Our mnemonic for the too-little-used -u flag is “useful.”

How
How do you use a command? First, try it out. Invoke the

command: date.
Second, try a bogus flag. You should get a usage message.

The flag -? is often a good choice. Also, POSIX.2 guarantees
that : will never be a valid flag, so -: should always not work.
date -? and date -: should offer usage messages. (On
our system, neither does, but both tell you how to get a usage
message.)

Third, the --help flag often gives detailed information
about the options.

Next-to-last, you can Read The Friendly Manual. We were
amused by this bumper sticker.

WWJD?
JWRTFM.

Finally, on open-source systems, you can read the code.

Who
Your path determines the commands you can invoke. For

example, root’s $PATH typically adds a suite of commands
from the directories /sbin and /usr/sbin.

And we all put ~/bin in our path to let us add home-
grown commands–idiosyncratic slang–to our vocabularies.

The shell makes this easy. An early study by Ted Dolotta
and co-conspirators found that most programs on the multi-
user UNIX systems they examined were shell scripts that users
had constructed for themselves. (T. A. Dolotta, R. C. Haight,
and J. R. Mashey, “The Programmer’s Workbench,” Bell
Systems Technical Journal, volume 57, number 6, pp. 2177-
2200, July-August, 1978.)

Has this changed? Most UNIX systems today are single-
owner systems with a few thousand standard commands in their
distributions. Nevertheless, the workstations we’ve glanced at
still have hundreds of scripts in the users’ home directories.

Documenting Your Commands
But how well are the homegrown commands documented?

You know–the ones you write yourself and put in your ~/bin
directory?

We looked in a friend’s ~/bin directory that had 244 exe-
cutable scripts. Seven appeared to have man pages. We were
afraid to run them to find how many produced usage messages.

Of course, since they’re personal commands, perhaps he
remembers what they all do and exactly how to use them. All
244? ls -ult says probably not.

Inspection of the ~/bin directory of another friend, who

32 SW Expert ■ December 2001

Zipf’s law is an
observation in human
linguistics: there is
an inverse correlation
between word-use
and word-frequency.

has only 71 commands in his bin directory, reveals that the
majority are more than three-and-a-half years old.

So, is it hard to add documentation to homegrown code?
Not very. Let’s show you how, first in Perl, then in the shell.

Pod::Usage Basics
Here’s a simple Perl script.

#!/usr/bin/perl -w

$Id: hello0.pl,v 1.1 ... jsh Exp $

print "hello, world\n";

Even if you’re not a Perl programmer, this one should
be clear. We use this example to remind our readers that
November 21, Haemer’s birthday, is also "World Hello Day,”
and to complain that, as usual, you forgot to send him a
birthday card.

Next, let’s handle a few arguments, so we have something
to emit a usage message about.

#!/usr/bin/perl -w

$Id: hello1.pl,v 1.2 ... jsh Exp $

$0 =~ s(.*/)();

$usage = "$0 [greetee]\n";

if (@ARGV == 0) {

print "hello, world\n"

} elsif (@ARGV == 1) {

print "hello, $ARGV[0]\n";

} else {

die $usage;

}

For the Perl novice, here’s how this behaves:

$ hello

hello, world

$ hello Gillian

hello, Gillian

$ hello Zoe and Riley

usage: hello [greetee]

This isn’t good enough.

$ hello -?

hello, -?

$ man hello

No manual entry for hello

We could write a lot of argument-parsing code, and then
a lot of troff for the man page, but Perl offers a better path:
POD (plain old documentation), and the Getopt::Long
argument-parsing package. Both come in the standard Perl
distribution. Using these tools, our third version does this:

$ hello

hello, world

$ hello allie

hello, allie

$ hello jj liz

Too many args: 2

Usage:

hello [--help] [--man] [greetee]

$ hello -?

Unknown option: ?

Try 'hello2.pl --help' for more information

Usage:

hello [--help] [--man] [greetee]

$ hello --help

Usage:

hello [--help] [--man] [greetee]

Options and Arguments:

greetee

The world to whom salutations should be

offered.

-help

Print more details about the arguments.

-man

Print a full man page.

It looks like this:

#!/usr/bin/perl -w

$Id: hello2.pl,v 1.3 ... jsh Exp $

use Pod::Usage;

use Getopt::Long;

$0 =~ s(.*/)();

From the Pod::Usage man page

our ($opt_help, $opt_man);

GetOptions("help", "man")

or pod2usage("Try '$0 --help' for more\

information");

pod2usage(-verbose => 1) if $opt_help;

pod2usage(-verbose => 2) if $opt_man;

pod2usage("Too many args: " . @ARGV)

if @ARGV > 1;

print "hello, " . (@ARGV ? $ARGV[0] :

"world") . "\n";

__END__

=head1 NAME

SW Expert ■ December 2001 33

Work

Work
hello - hello, world

=head1 SYNOPSIS

hello [--help] [--man] [greetee]

=head1 DESCRIPTION

The first program to write is the same for

all languages:

=over 4

=item

Print the words

hello, world

=back

=head1 OPTIONS AND ARGUMENTS

=over 4

=item greetee

The world to whom salutations should be

offered.

=item I<-help>

Print more details about the arguments.

=item I<-man>

Print a full man page.

=back

=head1 AUTHOR

Jeffrey Copeland

<copeland@alumni.caltech.edu>

Jeffrey S. Haemer <jsh@usenix.org>

=head1 CONFORMING TO

K&R

=cut

Notice a few things:
1. The documentation is in the same file as the program.
2. The program messages are extracted from the documenta-

tion itself.
3. The argument parsing is relatively short.

All these help keep the documentation and code in synch.
And for a man page? Either hello --man or perldoc
hello will give it to you instantly, or you can run pod2man
hello and generate a man page, suitable for installation in
/usr/local/man/manl.

What would you pay? But wait! There’s more. You can run
other preprocessors like pod2html to generate Web-based
man pages, pod2text to generate flat text, podselect to
pull out specific sections to the man page, and on and on. All
at today’s special, introductory, low price of ... nothing.

Do a man perlpod on your system for more details.
There’s seldom an excuse to have an undocumented Perl script.

Shell Scripts
What about shell scripts, that other workhorse of quick-

and-dirty commands? The solution here is–hold on to your
hats–the same thing.

Starting with an equivalent, trivial shell script

#!/bin/sh

$Id: hello0.sh,v 1.1 ... jsh Exp $

echo hello, world

we first add argument-handling to give us something to parse

#!/bin/sh

$Id: hello1.sh,v 1.1 ... jsh Exp $

die() {

test -z "$*" || echo $* 1>&2

exit 1

}

usage="usage: ${0##*/} [greetee]"

case $# in

0) echo hello, world ;;

1) echo hello, $1 ;;

2) die $usage ;;

esac

and then add documentation

#!/bin/sh

$Id: hello2.sh,v 1.4 ... jsh Exp $

usage() {

echo Try ${0##*/} --help for more\

information 1>&2

pod2usage $0

exit 1

}

for o

do

case "$o" in

34 SW Expert ■ December 2001

--man) pod2text $0

exit 0 ;;

--help) pod2usage $0

podselect -s 'OPTIONS AND ARGUMENTS' $0|

pod2text

exit 0 ;;

-*) usage;;

*) test $# -gt 1 && usage ;;

esac

done

echo hello, ${1:-world}

exit 0

=head1 NAME

hello - hello, world

=head1 SYNOPSIS

hello [--help] [--man] [greetee]

=head1 DESCRIPTION

The first program to write is the same for

all languages:

=over 4

=item

Print the words

hello, world

=back

=head1 OPTIONS AND ARGUMENTS

=over 4

=item greetee

The world to whom salutations should be

offered.

=item I<-help>

Print more details about the arguments.

=item I<-man>

Print a full man page.

=back

=head1 AUTHOR

Jeffrey Copeland

<copeland@alumni.caltech.edu>

Jeffrey S. Haemer <jsh@usenix.org>

=head1 CONFORMING TO

K&R

=cut

We could go through this line-by-line but, as you can see,
it’s basically the same approach as in Perl. The exit 0 at the
end of the code prevents the shell from trying to interpret the
pod, and the pod utilities ignore everything outside the pod
directives. Three command-line utilities that understand pod
do the work of the Perl function calls. Pod2text(1) formats
pod into printable text–both man page and help message.
Podselect(1) pulls out specific sections. Pod2usage(1) creates a
usage message out of a pod man page.

We tried using getopt(1) to parse the arguments, but decided,
in the end, that it was clunkier than a simple case statement
enclosed in a for loop.

Is this overkill for echo hello, world? Absolutely.
But if you have something that’s more than a few lines long,
you can use these as models. There’s seldom an excuse to
have an undocumented shell script. And we haven’t even
talked about things like info or xman or the troff “man”
macros or ... Want more information on how to deal with
documentation? It’s on your system. Reread this column on
how to get it.

Until next time, happy documenting, happy FM reading,
and happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) is cur-
rently living in the Pacific Northwest, where he spends his time
writing UNIX software in a large development organization and
fighting damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at Minolta-QMS
Inc. in Boulder, CO, building laser printer firmware. Before he
worked for QMS, he operated his own consulting firm and did a
lot of other things, like everyone else in the software industry.

Note: The software from this and past Work columns is available
at http://alumni.caltech.edu/~copeland/work or alternately
at ftp://ftp.cpg.com/pub/Work.

SW Expert ■ December 2001 35

Work

Want more information
on how to deal with
documentation? It’s on
your system. Reread
this column on how to
get it.

http://alumni.caltech.edu/~copeland/work

	Documentation
	What
	Where
	Why
	When
	How
	Who
	Documenting Your Commands
	Pod::Usage Basics
	Shell Scripts

