
Work
by Jeffreys Copeland and Haemer

30 SW Expert ■ November 2001

LL
ast month we talked about gener-
ating random text, and this month,
as promised, we will talk about

generating random haiku. Eventually.
Before we can talk about random

haiku, we need to cover some other
ground first. Because of the nature of
the problems we’ll be discussing, this
whole column, in some ways, is an
exercise for the reader.

NP-complete
There is a class of problems in com-

puting literature called “NP-complete”
problems. We need to go back to Turing
and his successors to discuss some of the
theory involved here.

Assume that we have a set P of pro-
grams that can be run in polynomial
time on a Turing machine. There is also,
then, a class of programs NP which can
be solved in non-polynomial time. If
one could show that P = NP one would
be able to show nearly any problem that
can be expressed algorithmically is easily
solvable with a computer program.

(Yes, we are being sloppy and cutting
some corners. If you want a really pedantic
treatment, we’d recommend Computa-
bility and Unsolvability by Martin Davis
[McGraw-Hill, 1958, reprinted by Dover,
1982, ISBN 0-486-61471-9] or the more
accessible Lewis and Papadimitriou’s
Elements of the Theory of Computation
[second edition, Prentice-Hall,1998,ISBN
0-13-262478-9]. And while we are dis-
cussing references, we take a moment to
recommend the short story “Antibodies”
by British science fiction writer Charles
Stross, in which it is proved that P = NP
with disastrous results for our timeline.
It’s reprinted in The Year’s Best Science
Fiction: Eighteenth Annual Collection,
edited by Gardner Dozois, St. Martin’s
Press, 2001, ISBN 0-31227465-3.)

We sometimes speak of “NP-com-
plete” problems. These are problems
least likely to be solvable in polynomial
time. Roughly, they are problems without
closed form solutions that must be solved
by brute force, and may not actually
have a solution.

An example of an NP-complete
problem is, of course, the Traveling
Salesman Program. In this classic puzzle,
a salesman must make arrangements to
visit a number of cities in his territory,
and can only stop in each city once.
What’s the most mileage-efficient route
that can be devised to get him through
the full cycle?

The obvious solution is to …
Well, maybe it’s to …
Sorry, but it turns out there isn’t an

obvious solution. The brute-force one
is the only one we know about: List the
cities, add up the mileage for each per-
mutation of the possible visits, and select
the lowest total out of that enumeration.

Similarly, public-key crypto systems
depend on the nature of NP-complete
problems. The RSA algorithm works
because multiplication is much easier
than factorization: we can only factor
the product of two primes by brute force.
This means that as long as we keep pick-
ing RSA public keys that increase in size
by a decimal digit every five years, we’ll

Furuike ya
kawazu tobikomu
mizu no oto.
– Basho

Hard Problems

CH
ET

PH
IL

LI
PS

Work

keep ahead of Moore’s Law in the difficulty of breaking them.
Another public-key algorithm which depends on brute

force is the knapsack algorithm: given a set of pieces cut from
a tree trunk of certain thicknesses, which of them will fill a
knapsack of a particular length and the same diameter as the
original tree trunk?

The Test Matrix
We tripped over a similar problem a few months ago. But

unfortunately, it’s a variation of the traveling salesman prob-
lem, so the only solution we can adopt is the brute force one.

Given a set of products, each with a set of features, what’s
the minimum list of products on which we need to run the
full test set to ensure that we’ve tested all the features at least
once? If we were building printers, the feature set might
include duplexers, staplers and long-edge feed vs. short-edge
feed. If we were building middleware, the feature set might
include base operating system, processor type, and additional
installed products. You get the idea.

Let’s start with a list of product code names and feature
codes, such as:

jackson a b z

lincoln a x y z

washington b d e f g

jefferson d f z

madison d e

adams a c b

hamilton x y z

(We hasten to add that any resemblance between these
product code names and any actual product code names at any
company where we’ve ever worked is merely coincidental. We
mention this only because we once worked at a company where
there was a code name for the code names, and we know how
paranoid and humorless people get about these things.)

Given that input file, how can we figure out which set of
rows is the minimum to cover all the features, “a” through “z”?
By now, you’re cued to answer “Brute force!”

Our programs always begin the same way.

#! /usr/local/bin/perl -w

find test matrix coverage

$Id: matrix,v 1.2 ...

use strict;

In this case, because we need to exhaustively examine each
possible ordering of the products, we’ll use the Permute package
from the Comprehensive Perl Archive Network (http://www.
cpan.org). Collect Algorithm-Permute-0.03.tar.gz,
unpack it, and then run

perl Makefile.PL

make

make test

make install

Back in our program, we include the permutation algorithm
with a Perl use statement, followed by some global variables.

use Algorithm::Permute;

my %products;

my %features;

my @products;

my @features;

Why both hashes and matrices? Internally, we’ll be storing
the list of features in a hash indexed by the product name. Thus
we can say %products{'lincoln'} to get a particular fea-
ture set. Similarly, we’ll enumerate the features in a hash. We
will find later on in the code that a list of either the product or
feature names will be helpful. We could generate them on the
fly each time with sort keys %products, but if we do that
once at the beginning it will save us compute time.

Reading the list is a fairly simple loop.

read the test list, saving the

feature list in a hash by product

while (<>) {

chomp;

s/(\w+)\s//;

$products{$1} = $_;

foreach (split / /, $_) {

$features{$_}++;

}

}

For each line, we strip off the product name, store the fea-
ture list in the hash (as threatened), and then enumerate the
features in their own hash. Yes, we could store the features as
an array pointer in the hash, but we’d still have to walk the
array every time we accessed it.

@features = sort keys %features;

@products = sort keys %products;

print "products: @products = ",

scalar(@products), " items\n";

print "features: @features = ",

scalar(@features), " items\n";

Again, as promised, we list the features and products in
their own arrays, and print them out for reference, along with
the counts of items in both lists.

Now, using the permute method from the Permute pack-
age, we need to run through each permutation of the products
array, and determine how many items we need before we achieve
full feature coverage.

now find the set of minimum permutations

my @min_set = @products;

Algorithm::Permute::permute {

my @n = coverage(@products);

32 SW Expert ■ November 2001

http://www.cpan.org

@min_set = @n if($#n < $#min_set);

} @products;

The permute interface generates each permutation in
turn, and executes the block of code for each one of them.
To enumerate all the permutations, we’d just insert

print "@products\n";

as the block. Our coverage routine returns the minimum
list from the permutation, as we’ll see here:

sub coverage {

my @products = @_;

my @used = ();

my %cov;

foreach (@products) {

push @used, $_;

foreach (split / /, $products{$_}) {

$cov{$_}++;

}

my @cov = sort keys %cov;

last if($#cov == $#features);

}

@used;

}

We loop through the permutation given us, and stop when
we’ve enumerated the full set of features in the products we’ve
seen so far. We return that subset to the caller.

Once we have min_set in hand, we should print it out, so
we know what products to test:

print out the minimum list

print "minimum test coverage from@min_set\n";

foreach (@min_set) {

print "$_: ", $products{$_}, "\n";

}

Which brings us to the first major exercise for the reader.
We’ve assumed that this matrix problem is NP-complete, and
we must solve it with a brute-force program. On the other
hand, we have a sneaking suspicion that there’s a method of
attacking the matrix itself that would yield a simple algorith-
mic solution. If anyone can provide us with that algorithm,
it will be our readers.

Haiku
Which brings us to the other hard problem of the month:

haiku. Haiku, of course, is the Japanese poetry form in which
a verse of 17 syllables–three lines of five, seven and five syllables,
respectively–captures the mood of a particular moment with
(sometime oblique) reference to the season. One of the earli-
est, and best loved, practitioners of the form was Matsuo Kisaku
(1644-1694), whose pen name was Basho. Our favorite example
is the one we chose as this month’s epigram, which translates
as “An old pond. A frog jumps in. The sound of water.” Even

the translation is problematic, as demonstrated in Hiroaki
Sato’s book One Hundred Frogs: From Renga to Haiku to
English (Weatherhill, 1983, ISBN 0-8348-0176-0, but no
doubt out of print long since) which discusses the haiku (and
predecessor hokku) forms. Sato finishes with a 100 alternate
translations of those seventeen syllables of Basho’s.

We set out, once we had finished last month’s column, to
develop a program to generate random haiku as much as we
generated random English sentences. It isn’t nearly as easy as
the statement of the problem.

We follow the same basic approach of last month’s random
sentences. We produce lines with words in the specified parts
of speech in the specified order. The trick is to ensure the lines
are the appropriate number of syllables. This is where the
brute-force aspect appears.

We’ll show you:

#! /usr/local/bin/perl -w

$Id: haiku,v 1.5 ...

write code in the fall /

generate random haiku /

amuse our readers

Our usual beginning, including a self-referential comment.

use strict;

use Lingua::EN::Syllable;

This time, we include the Syllable module, which allows
us to determine the number of syllables in a given word.

We need a selection of words, as before:

Adverb selection

my @A = ("badly", "happily", "sadly");

adjective selection

my @a = ("bright", "large", "odd",

"green", "blue", "new", "random", "correct");

verb selection

my @v = ("generate", "sleep", "amuse", "write",

"watch", "jump", "leap", "love", "correct");

noun selection

my @n = ("fall", "spring", "summer", "winter",

"code", "haiku", "error", "Silent Bob",

"frog", "snow", "leaves");

SW Expert ■ November 2001 33

Work

We set out, once we had
finished last month’s
column, to develop a
program to generate
random haiku as much
as we generated random
English sentences.

Work
This time, rather than encapsulate the possible order of

the parts of speech in the algorithm, we’ll provide it in a table:

possible parts of speech in each line

my @order = ("vaan", "van", "Avn", "anv",

"Avan", "Avaan", "AvA", "aaa");

This will make it easier to select a random word order,
since we want more variance in structure for our haiku than
we did for our sentences. The members of our @order array
are made up of the names of our word arrays, for ease of
reference.

We must generate a line of words. We select a random
parts-of-speech order, and try to assemble the specified num-
ber of syllables (in this case, stored as $n) from those lists of
words.

sub line {

my $n = shift;

my $result;

while(1) {

$result = try($n, $order[rand @order]);

last if(length($result));

}

print $result;

}

We make an attempt, and keep trying until we get it
right. We are reminded of the episode early in T.H. White’s
The Once and Future King where Merlin transforms Arthur
into an ant, and lets him watch the ant colony try to arrange
their nest. They do this by picking things up and dropping
them at random, rather than having an overriding plan.

We also need our try routine, which is the “brute” of our
brute-force approach.

sub try {

my ($n, $order) = @_;

my $syl = 0;

my $word;

my @words = ();

foreach my $x (split //, $order) {

$word = $n[rand @n] if($x eq 'n');

$word = $v[rand @v] if($x eq 'v');

$word = $a[rand @a] if($x eq 'a');

$word = $A[rand @A] if($x eq 'A');

push @words, $word;

$syl += syllable($word);

last if($syl > $n);

}

return "" if($syl != $n);

return join(" ", @words) . "\n";

}

We pass in a specified number of syllables and parts-of-
speech order, and assemble words. We count syllables as we

go (relying on the syllable package), and we short-circuit
the loop if we have assembled too many syllables. If we do
not have the specified number of syllables at the end, we
return the empty string, and pull back our head to bang it
against the wall again. If we finished the loop successfully,
we concatenate the words in our line, and return them as
a single string suitable for printing.

All that remains is to generate the appropriate lines:

line(5);

line(7);

line(5);

What does this get us? Not, unfortunately, classic haiku lines
such as “probable user error” or “please correct and resubmit.”
But we do get haiku such as:

watch correct haiku

badly write green correct snow

badly love large spring

sleep correct blue spring

generate large random snow

jump random winter

It may not be great literature, but it does end up providing
amusement.

Random Colors, Too
As we’ve mentioned before, Copeland is red-green color

blind, which has provided us–and Copeland’s children, Allie
and JJ–with no small amount of amusement. Last month,
longtime reader Dr. Neil G. Cuadra wrote to us about a Web
site put together by Robert Dougherty and Alex Wade at Stan-
ford, (http://vischeck.com). If you upload a picture to
the Web site, you can readjust its colormap to see how it would
appear to someone with a color deficiency. Check it out.

Also, constant British reader Paul Livesey provided the
prompt answer to one of last month’s puzzlers: The episode
of British cult TV show The Avengers in question was “Love
All.” We remembered it as black-and-white, and that mis-cue
caused Paul some problems, too. It was actually an early
color episode.

Next month, as usual, we’ll be back with a new adventure
in computing. Until then, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) is cur-
rently living in the Pacific Northwest, where he spends his time
writing UNIX software in a large development organization and
fighting damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at Minolta-QMS
Inc. in Boulder, CO, building laser printer firmware. Before he worked
for QMS, he operated his own consulting firm and did a lot of other
things, like everyone else in the software industry.

Note: The software from this and past Work columns is available
at http://alumni.caltech.edu/~copeland/work or alternately
at ftp://ftp.cpg.com/pub/Work.

34 SW Expert ■ November 2001

http://vischeck.com
http://alumni.caltech.edu/~copeland/work

	Hard Problems
	NP-complete
	The Test Matrix
	Haiku
	Random Colors, Too

