
Work
by Jeffreys Copeland and Haemer

32 SW Expert ■ October 2001

Nonsense
WW

e have spent a lot of effort
over the years building text-
processing programs. We’ve

built tools for formatting text, reformat-
ting text, examining text, extracting text,
compressing text, encrypting text, and
washing text in the kitchen sink. Most
recently we’ve even told you how to
read text on your Palm handheld–see
our January and April columns (http:
//swexpert.com/C9/SE.C9.JAN.

01.pdf and http://swexpert.com/
C9/SE.C9.APR.01.pdf). We’ve written
TeX device drivers and invented pre- and
post-processors for troff. We’ve ported
troff enough times and in enough differ-
ent countries that we can probably do
it in our sleep.

We have also spent a lot of time
explaining how important testing is.
How do we get test data for our test pro-
grams? Sometimes we get the test text
from the same source as our live data.
Sometimes we grab random test text off
the Web–the RISKS digest from either
Usenet newsgroup comp.risks or

ftp://ftp.sri.com/risks/ is a
great source. Sometimes we generate the
test text ourselves–and that’s our exercise
for this month. (And as an exercise, try
typing “test text” three times fast.)

Why do we want random text rather
than purpose-build data? Because it is
often more likely to find bugs in the cor-
ners of our code. Sometimes we find we
generate test text like the expected input,
and not enough like the likely input.

How to Do It
One of the current favorite methods

of generating random text is the Markov-
chain algorithm. Markov chains gather
groups of words that occur in some
domain space of input text, and then
randomly re-generates chains of words,
so that the randomly-generated text
looks a lot like the source text. For exam-
ple, if we’re building three-word chains
and the word “chips” only appears after
the words “fish and” in our input text,
“chips” will always be preceeded by “fish
and” in our output. If “fish” is only

followed by “and chips” in the input
data, anytime when we randomly gener-
ate “fish,” we will (as night follows day)
follow it with “and chips.”

Markov chains have been used for
such disparate purposes as simulating
Web page navigation and generating a
completely fake Usenet persona. There
is an excellent discussion of Markov
algorithms in Chapter 3 of Kernighan
and Pike’s The Practice of Programming
(Addison-Wesley, 1999, ISBN 0-201-
61586-X).

(We will confess that since this column
was actually written on a warm, beauti-
ful summer day, we were sorely tempted
to actually generate the column from
Markov chains of previous columns.
But we thought better of it.)

It’s also worth noting that we vaguely
remember an episode of The Avengers,
long ago, when we were wee lads and
televisions only had two colors (black
and white), which centered on a com-
puter (with a console disguised as a
grand piano) that generated random

‘Twas brillig, and
the slithy toves
Did gyre and
gimble in the wabe;
All mimsy were
the borogroves,
And the mome
raths outgrabe.
– Lewis Carroll
The Hunting
of the Snark

CH
ET

PH
IL

LI
PS

ftp://ftp.sri.com/risks
http://swexpert.com/C9/Se.C9.JAN.01.pdf
http://swexpert.com/C9/SE.C9.APR.01.pdf

SW Expert ■ October 2001 33

Work
romance novels. We’ve been unable to place the episode, but
would be delighted to hear which one it was.

There are other possible approaches to the problem, however.
We could just produce random letters, in random length “words,”
randomly punctuated. But that wouldn’t look very much like
real input data. One consequence of that would be that our
hyphenation algorithms wouldn’t get a realistic workout.

We could improve on that method by choosing letters
in the same frequencies as they actually appear in English,
except that we still would be generating unreadable “words.”
Alternately, we could use a Markov chain on the letters to gen-
erate our “words”–rather the inverse of typo, an early UNIX
spell checking program that used letter frequencies to find
unlikely words, rather than using a dictionary lookup. (See
“Statistical Text Processing” in the UNIX issue of The Bell
Systems Technical Journal, July-August 1978, Vol. 57, No. 6,
Part 2, pp 2137-2154.)

What if we bumped up a level and generated strings of
randomly chosen words? We’d still have some of the same
problems. It would be much more salutary to generate real
sentences out of randomly chosen words. We could then actu-
ally read the input text, which would make it much easier
to correlate the input text with the bugs in the output. How
to do it, though?

We could use the refrigerator magnets someone gave us
with words for generating tabloid headlines, and write down
every sentence some visitor to our kitchen generates, for
example, “Michael’s satanic glove father of Elvis space alien
baby.” Then again, maybe not.

There’s another way.

Grammar in Reverse
Normally, as programmers, when we look at grammar dia-

grams, it’s because we’re planning to use them to analyze rather
than synthesize. We usually want to parse a sentence–usually a
statement in a computer language. However, now we want to
think about what constitutes a natural language sentence so we
can generate one. Put another way, rather than diagramming
sentences, like we used to do in elementary school, we’re using
the grammar rules to fill in a sketch of a sentence.

The first useful question to ask is “what’s the grammar
for a sentence?” Generally, we’ll want to generate a subject
followed by a verb, followed by an object. Put into Backus-
Naur Form, that’s

<sentence> := <subject-phrase> <verb-phrase>

<object-phrase>

By specifying the grammar for each token, we would even-
tually end up with rules like

<object-phrase> := <verb> <adverb>?

<verb> := come | give | go | get

<adverb> := well | darkly

(Our original implemation of this program had a frighten-
ingly short list of available words. For explanatory purposes,

we’ll use that same short list here. The sentences sometimes
sound alike, which caused longtime friend and collegue Chris
Kostanick to dub it the “darkly cheese program.”)

At this point, we’ve got enough bits to write code for
sentence generation. Let’s have at it:

#! /usr/local/bin/perl -w

generate junk sentences

$Id: junk,v 1.3 2001/08/06 00:23:01 jeff Exp $

We start with the usual boilerplate, then proceed into some
POD (that’s Perl-speak for plain old documentation). POD
allows us to include documentation directly in the body of the
program. In this case, we show the generating grammar we’re
going to use.

=pod

What's a sentence? We construct sentences

from the following simple grammar.

<sentence> :== <subj-phrase> <verb-phrase>

<object-phrase>

<subj-phrase> :== <subject>

{<CONJUNCTION> <subject>}

<subject> :== <ADJECTIVE>? <SUBJ_NOUN>

<object-phrase> :== <object>

{<CONJUNCTION> <object>}

<object> :== <ADJECTIVE>? <OBJ_NOUN>

<verb-phrase> :== <VERB> <ADVERB>?

Each of the base parts of speech (in caps)

is generated randomly from an internal list.

=cut

Let’s do a brief review of the grammar for the grammar, that
is, what the symbols in Backus-Naur Form mean. Things con-
tained in <...> are symbols. We’ve used capitals to be tokens.
(In the UNIX model, typically the lowest-level tokens are the ones
returned to yacc from lex.) For our purposes, the word tokens will
be chosen from lists. Like in Perl regular expressions, ? is an ele-
ment that appears zero or one times; here an expression in curly
braces also indicates an element that appears zero or more times.

Now we need the actual vocabulary. We provide an array of
words for each of the lowest level tokens.

@VERB = ("come from", "get", "give", "go to",

"keep", "let", "make", "put",

"seem", "take", "be", "do");

@OBJ_NOUN = ("him", "her", "it", "them",

"Bob", "Carol", "Ted", "Alice",

"Holmes", "Watson", "cheese", "lunch");

@SUBJ_NOUN = ("he", "she", "it", "they",

"Bob", "Carol", "Ted", "Alice",

"Holmes", "Watson", "cheese", "lunch");

@ADJECTIVE = ("blue", "green", "awful",

"tasty");

@ADVERB = ("badly", "well", "darkly");

Work

34 SW Expert ■ October 2001

@CONJUNCTION = ("and", "or");

We’ve kept this list short, since the last thing you need is to
look at all the words in the dictionary. You can get a longer ver-
sion at the usual Web sites, or add more words on your own.

We’ll also need routines to randomly grab words out of
each of those lists:

my @words;

generate the parts of speech

sub verb() {

push @words, $VERB[rand @VERB]; }

sub obj_noun() {

push @words, $OBJ_NOUN[rand @OBJ_NOUN]; }

sub subj_noun() {

push @words, $SUBJ_NOUN[rand @SUBJ_NOUN]; }

sub adjective() {

push @words, $ADJECTIVE[rand @ADJECTIVE]; }

sub adverb() {

push @words, $ADVERB[rand @ADVERB]; }

sub conjunction() {

push@words,$CONJUNCTION[rand @CONJUNCTION];}

We’re grabbing a random element out of each array, based
on its size, and pushing it onto our array of words.

One other thing we need to be able to do is generate an
optional element. For example, in the case of a noun phrase,
we want to be able to generate a conjunction and another
noun with a specified probability.

probability check

sub probably {

my $x = shift;

rand() < $x;

}

This routine allows us to say things like

adjective() if(probably(.3));

If we were writing in C, we’d define macros so we could
write the more natural

maybe(.3) adjective();

Alternately, we could define a maybe() function in Perl
that took a probability and a pointer to a function.

Clearly we’ll need a routine to produce a sentence.

sub sentence() {

@words = ();

subj_phrase();

verb_phrase();

obj_phrase();

print ucfirst(join(" ",@words)), ".\n";

}

We begin by clearing the array words, and then adding
subject, verb, and object phrases. We finish off by printing the
words, using ucfirst to ensure that the first letter of the
sentence is capitalized.

Subject and object phrases are parallel constructions. We
optionally can use multiple subjects (or objects) connected
by conjunctions. Given the probability we’ve chosen, one
in 25 of the phrases will have more than one conjunction
involved.

sub subj_phrase() {

subject();

while(probably(.2)) {

conjunction();

subject();

}

}

sub obj_phrase() {

object();

while(probably(.2)) {

conjunction();

object();

}

}

Of course, we then need to generate the subjects and
objects. These are optional adjectives with a noun. For exam-
ple, “dead Bob” or “old Jake.”

sub subject() {

adjective() if(probably(.3));

subj_noun();

}

sub object() {

adjective() if(probably(.3));

obj_noun();

}

Remember that we have already looked at the routines
to generate object and subject nouns and adjectives for their
respective lists.

Verb phrases are remarkably similar to what we have
done already.

sub verb_phrase() {

verb();

adverb() if(probably(.25));

}

Those are the parts we needed. Now we can construct
our main program. We begin by defaulting to 100 sentences
if we haven’t asked for a different number on the command
line.

Work
my $count = @ARGV ? $ARGV[0] : 100;

We generate the requested number of sentences, and add
a blank line to begin a new paragraph after about one in 10
sentences.

while($count-- > 0) {

sentence();

print "\n" if(probably(.1));

}

What sort of text does this generate? Given
the list of words we’ve provided, we get output
such as:

Awful Ted go to darkly green lunch.

Green Carol take Alice.

She let Bob.

It come from badly green Carol.

Awful they go to Carol.

Tasty Bob come from tasty lunch.

A Random Summary
Clearly there are improvements that could be made. We

should be using different verb numbers based on whether
our subject phrase is singular or plural, for example.

Exercise one for the reader: Use the Lingua::EN::Stem

or Text::Stem modules from http://www.cpan.org/
to fix the verb number for singular or plural subjects auto-
matically. Exercise two for the reader: Replace our routines
for choosing random words with the CPAN module Data::

Random::WordList. We haven’t used this
approach because it doesn’t save much code.

On the other hand, this gives us a rea-
sonable first cut, and reasonable test input
for many purposes, even if it does read a lit-
tle oddly.

Next time, we’ll see if we can take this
one step further and build haiku from ran-
dom elements. Until then, happy trails. ✒

Jeffrey Copeland (copeland@alumni.
caltech.edu) is currently living in the Pacific
Northwest, where he spends his time writing
UNIX software in a large development organi-
zation and fighting damp rot.

Jeffrey S. Haemer (jsh@usenix.org)
works at Minolta-QMS Inc. in Boulder, CO,
building laser printer firmware. Before he

worked for QMS, he operated his own consulting firm and did
a lot of other things, like everyone else in the software industry.

Note: The software from this and past Work columns is available
at http://alumni.caltech.edu/~copeland/work or alternately
at ftp://ftp.cpg.com/pub/Work.

SW Expert ■ October 2001 35

http://www.cpan.org
http://alumni.caltech.edu/~copeland/work

	Nonsense
	How to Do It
	Grammar in Reverse
	A Random Summary

