
Work
by Jeffreys Copeland and Haemer

28 SW Expert ■ August 2001

JA
NE

M
AR

IN
SK

Y

The Nesting Instinct
WW

eary of beating ourselves
bloody against the rock of
“Expect scripts in Perl,” we

decided we needed to try something eas-
ier and less stressful.

Our boss had asked us to look into
XML, and writing a little XML-related
code seemed like a good place to start.
(We’ll warn you right off that this isn’t an
XML column; still, we’ll need to tell you
a little about XML–a cousin to HTML–
and we’ll get to that in a second.)

A quick scan through the Web finds
a forest of Perl modules to handle XML,
such as XML::Twig and XML::Grove.
This was encouraging, since we are
comfortable in Perl and Perl is terse
and powerful: we can write interesting
Perl programs in few enough lines to fit
in a 2,000-word column.

But wait. There are about 50 XML
modules on the CPAN. Which one
shall we use? O’Reilly and Associates’
xml.com has an article, “Ways to Rome:
Processing XML with Perl” that contrasts
11 different approaches to XML using

nine different modules. We were not
ready for that.

What to do? What to do?
“Perhaps,” we thought, “a fresh look

at things would help.” A little free-associ-
ation got us an answer.

One view of XML is that it’s a lan-
guage for writing nested text. Any time
we hear “nested,” we think “parsers” and
“stack machines” and “pumping lemmas
for context-free grammars.” (Well, one
Jeff does. The other one thinks about the
hatching sparrow’s egg he found on the
sidewalk earlier this week.) “Maybe this,”
we thought,“is a job for yacc.”

Careful readers have noticed that we
didn’t say free association got us a good
idea. But what of that?

Besides, we had just installed RedHat
7.1 (on special for $19.95 at our local
CompUSA), and writing a yacc parser
for XML on a system where lots of things
were no longer where we expected them
to be seemed, oh, challenging. To round
out the experience, we decided to switch
from vi to emacs.

Thoughtful study of the Greek and
Latin classics teaches that even watching
people get torn apart by lions can have
entertainment value as long as you have
good seats.

So relax, don’t worry, have a home
brew, read on.

XML is a Good Idea
XML looks like this:

<?xml version="1.0"

standalone="yes"?>

<order>

<customer>

<name>Coyote, Ltd.</name>

<shipping_info>

<address>1313 Desert

Road</address>

<city>Flagstaff</city>

<state>AZ</state>

<zip>90210</zip>

</shipping_info>

</customer>

<item>

<product id="1111">Acme

The purpose of a programming
system is to make a computer
easy to use. To do this, it fur-
nishes languages and various
facilities that are in fact pro-
grams invoked and controlled
by language features. But these
facilities are bought at a price …
– Fred Brooks, The Mythical
Man Month

There was an Old
Man with a beard,

Who said, “It is
just as I feared!
Two Owls and a Hen,
Four Larks and a Wren,
Have all built their
nests in my beard!”
– Edward Lear,
Book of Nonsense

SW Expert ■ August 2001 29

Work
Rocket Jet Pack</product>

<quantity type="each">1</quantity>

</item>

<item>

<product id="2222">Roadrunner Chow</product>

<quantity type="bag">10</quantity>

</item>

</order>

It’s data dressed up to look like HTML.
Notice a couple of things. For one, it’s structured, but

familiar. Orders have a customer followed by items. Customers
have names and shipping information. Shipping information
has a street address, city, state, and zip. And so on.

The syntax for beginning and ending tags that everyone is
now used to from HTML, <some_tag> and </some_tag>,
are borrowed and applied to any tag you want to make up.

Actually, both HTML and XML steal this syntax from their
parent, SGML (Standard Generalized Mark-up Language),
which gave everyone a way to mark up text that was so general-
ized that no one would use it.

HTML provided a very simplified subset of SGML and
proved that something SGML-like could succeed. But if you’ve
ever wanted to define your own tags in HTML–and, lets face
it, we all have–you’ll know that HTML can sometimes be too
simplified. Enter XML, a simplified version of SGML that still
lets you define your own tags.

Second, it’s text, and there’s a public spec. There’s no shortage
of structured document formats. Microsoft Word documents are
structured in some way. So are Excel spreadsheets.

The next time you try to write a shell script to parse one of
these to extract and reformat information needed for another
document, drop us a line to tell us how much fun you’re hav-
ing. We need the laugh.

XML files, in contrast, are human-readable. For documents
alone, this is a great idea, but it’s an idea in an arena where there
are already a lot of mature, open, text-based markup languages,
such as troff , TeX, and HTML.

What transforms XML into something interesting is turning
simple text markup on its head by realizing that XML tags can
be used to attach meanings to any kind of nested data.

For example?
Well, spreadsheets, which we mentioned earlier, are one.

The Gnome spreadsheet, gnumeric, uses XML as its native-file
format. Run gnumeric, type a few things in, save the spread-
sheet, then gunzip it (the files are gzipped to save space) and
look at it using whatever you use to peruse ASCII files: cat,
less, vi, whatever.

Glade, Gnome’s user interface builder, spits out interface
description files in XML.

For that matter, any data structures you want to pass
around can be flattened out with XML, written to a file, and
then read in by anything else that understands the same tags.
SOAP and XML-RPC, for example, are RPC (remote-proce-
dure-call) mechanisms that pass arguments and return values
over the Web as XML-formatted data. WebDAV (Distributed
Authoring and Versioning)–Wiki-Wiki Web filtered through

too many committees, sort of–passes its data around as
XML, too.

And, no matter how intricately structured, no matter
how complex the semantics, XML is always something you
can read. With cat, with less, with vi. (OK, even with emacs.)
You can hunt for stuff in it with grep. You can print it out on
your printer.

It’s just text.

Validating XML
What else can we do with XML? We can parse it.
Why is that interesting? Because syntactically valid data, like

syntactically valid programs, are a long way towards being correct.
Dimidium facti, qui coepit, habet. –Horace
Well begun is half done.
We find that using perl -c -w -Mstrict on our Perl

programs goes a long way towards making them work.
When developing data formats as complex as the output of

gnumeric, having a tool verify that data have the correct struc-
ture is also a big help.

Moreover, when data are known to be valid, you don’t have
to scatter data validation through your programs. No need to
write N separate sets of routines (with N separate sets of bugs)
for N separate application, to check that each customer has a
city, state, and zip code if there is a central data-validator or a
single data-validation library that anyone can call.

There are a lot of articles on XML validation, but we particu-
larly like Kip Hampton’s “Simple XML Validation in Perl,”
(http://www.xml.com/pub/a/2000/11/08/perl),
because it uses Joshua Nathaniel Pritikin’s Test.pm, which we
wrote about a few months back, (“The Art of SoftwareTesting,”
http://swexpert.com/C9/SE.C9.AUG.00.pdf, and
“Testy, Aren’t We?”, http://swexpert.com/C9/SE.C9.
SEP.00.pdf).

Better still, it uses the module in a way we suspect its
author never intended: as part of a stand-alone application.

Rolling Our Own
As we mentioned at the outset, we wanted to see if we

understood the concepts, so we decided to build our own
XML validator. Since we were impressed by Hampton’s paper,
we started with his data. These are the customer-order data we
showed earlier, available for downloading from O’Reilly’s
xml.com Web site.

And, so as to not ape his approach (or that of any sane per-
son), we thought it might be fun to validate XML the same way
we validate Perl: with a parser. To build our parser, we used the
universally-available parser-generator, yacc.

Before we show you what we ended up with, let’s digress for
a minute to review some basic Computer Science.

Lack and Yecchs
A compiler’s job is to take a program we feed it, tease apart

the text to see what it’s supposed to do, and then generate
machine instructions that correspond to our source.

The “tease apart” section is done, conceptually, in two steps:
tokenizing and parsing.

http://www.xml.com/pub/a/2000/11/08/perl
http://swexpert.com/C9/SE.C9.AUG.00.pdf
http://swexpert.com/C9/SE.C9.SEP.00.pdf

Work
The first, also called “lexical analysis,” just breaks the source

up into words. In the code fragment

if (year==2001) { riley=16 }

the tokens are if, (, year, ==, 2001,), {, riley, =, 16,
and }. Lexical analysis actually can be done by the program

perl -pe 's/$RE/\n/'

where RE is some tedious, incredibly complex, Perl regular
expression. You can get from the grammar of the language to
the correct Perl regular expression by buying enough beer for
some nearby Automata Theorist.

The second step, parsing, verifies that the tokens are in the
right order. In the code fragment

} { year riley if = == 2001 16) (

the tokens are the same, but they aren’t arranged into syntacti-
cally valid C. This step actually can’t be done by any tedious
Perl regular expression, no matter how complex it is or how
much beer you’re willing to buy.

The distinction here is that regular expressions are a way to
describe, in a single string, a kind of “machine” called a finite
automaton, and you can prove that finite automata are not able
to do paren matching, or brace matching, or anything that
requires matching the beginnings of nested structures with
their ends. Such jobs are handled by more powerful machines
called parsers. Parsers can also tokenize, but that’s using a hand
grenade for a hand-ax.

Early on, all tokenizers and parsers were hand-crafted, but
that was tedious. Before long, at Bell Labs, Mike Lesk and E.
Schmidt wrote lex, a program that writes tokenizers, and Steve
Johnson wrote yacc, “yet another compiler-compiler,” which
writes parsers.

Lex takes an input file full of regular expressions and writes
C that compiles into a tokenizer. Yacc takes an input file full of
rules that look sort of like a BNF grammar and writes C that
compiles into a parser. (If you don’t know what a BNF gram-
mar is–it stands for “Backus-Naur Form,” after its inventors–
it’ll be obvious from the example below.)

These or their GNU replacements, flex and bison, have been
distributed with UNIX systems since the mid-to-late 1970s.

Rubber and Road
By now, you’ve undoubtedly noticed that validating an

XML file requires two steps: breaking it apart into valid
tokens, like </address>, and ensuring they’re correctly
nested and in the proper order. This, then, is what brought
lex and yacc to mind.

Writing yacc grammars and lex source files is straightfor-
ward, so without further ado, here’s our lex input file.

/* $Id: lexer.l,v 1.8 2001/06/02 22:10:45 jsh Exp $ */

%{

#include "y.tab.h"

%}

WS [\t\n\r]+

OTHER [^<>]+

%%

{WS} /* eat white space */

\<\?xml[^>]*\?> return XML;

\<order> return ORDER;

\<\/order> return _ORDER;

\<customer> return CUSTOMER;

\<\/customer> return _CUSTOMER;

\<name> return NAME;

\<\/name> return _NAME;

\<shipping_info> return SHIPPING_INFO;

\<\/shipping_info> return _SHIPPING_INFO;

\<address> return ADDRESS;

\<\/address> return _ADDRESS;

\<item> return ITEM;

\<\/item> return _ITEM;

\<city> return CITY;

\<\/city> return _CITY;

\<state> return STATE;

\<\/state> return _STATE;

\<zip> return ZIP;

\<\/zip> return _ZIP;

\<product[^>]*> return PRODUCT;

\<\/product> return _PRODUCT;

\<quantity[^>]*> return QUANTITY;

\<\/quantity> return _QUANTITY;

<<EOF>> return 0;

{OTHER} return STRING;

%%

We won’t drag you through the lexical dirt, but you can see
that the file has a rule for each kind of token that needs to be
recognized, including a rule to throw away white space:

{WS} /* eat white space */

which refers to an earlier rule that defines white space precisely,
as one or more white-space characters (blanks, tabs, newlines,
or carriage returns) in a row:

WS [\t\n\r]+

Next, we trot out our yacc input file:

/* $Id: parser.y,v 1.9 2001/06/02 22:24:03 jsh Exp $ */

%token ORDER _ORDER CUSTOMER _CUSTOMER NAME _NAME

%token SHIPPING_INFO _SHIPPING_INFO

%token ADDRESS _ADDRESS

%token CITY _CITY STATE _STATE ZIP _ZIP

%token ITEM _ITEM PRODUCT _PRODUCT

30 SW Expert ■ August 2001

SW Expert ■ August 2001 31

Work
%token QUANTITY _QUANTITY

%token STRING XML

%% /* Grammar rules and actions follow */

input: /* empty */

| input xml order

;

xml: XML ;

order: ORDER customer items _ORDER ;

customer: CUSTOMER name shipping_info _CUSTOMER ;

name: NAME string _NAME ;

shipping_info: SHIPPING_INFO address city state

zip _SHIPPING_INFO ;

address: ADDRESS string _ADDRESS ;

city: CITY string _CITY ;

state: STATE string _STATE ;

zip: ZIP string _ZIP ;

items: item

| items item

;

item: ITEM product quantity _ITEM

| ITEM quantity product _ITEM

;

product: PRODUCT string _PRODUCT ;

quantity: QUANTITY string _QUANTITY ;

string: STRING ;

%%

/* Lexical analyzer returns a double floating point

number on the stack and the token NUM, or the

ASCII character read if not a number. Skips all

blanks and tabs, returns 0 for EOF. */

#include <stdio.h>

#include <ctype.h>

main ()

{

yyparse ();

}

#include <stdio.h>

yyerror (s) /* Called by yyparse on error */

char *s;

{

printf ("%s\n", s);

}

And, looking back at Kip’s code, which do we like better? His.

Reflections
So what did we learn from this exercise?
Well, first, figuring out how to bend lex and yacc to our

will was a lot of work. Unlike Perl, lex and yacc are tools that
we rarely use. But, as with Perl, wielding them efficiently
requires practice.

Perl also has modules, syntax-checking, and a debugger,
all of which ease development. If we were writing a lot of
parsers, or one really big one, we’d probably use yacc, but
we’d write tools to make our work easier. Normally, each
grammar rule would have an action associated with it, so
the parser could generate code. We would build C++ classes
so the generation of code from disparate actions could be
insulated.

Second, we think that Kip’s Perl example is clearer and easier
to modify. Some of this is for reasons we already mentioned,
but some of it is that the modules he uses are tailored to the job
of parsing XML. Like SGML, lex and yacc are general tools,
with more power than this job needs. When we see that much
power walking down the road, verbosity and syntactic complex-
ity are often walking on either side.

Third, we are impressed, in retrospect, by a few tools
that seem to have clean-burning, easy-to-use power. Regular
expressions are a great example. To underscore this, can any-
one suggest a clean, simple syntax that would let a Perl pro-
grammer specify context-free grammars as easily as we can
specify regexes?

Fourth, we offer a tiny piece of psychological insight: to wit,
when we finished writing our parser and lexer, we knew we
were done because feeding our test case to the validator just
gave us back a prompt and nothing else. This is, we discovered,
mildly depressing. Wedded for hours to this little project, in the
end we’d brought together something old (yacc and lex), some-
thing new (XML) and something borrowed (Kip’s example),
and wound up blue.

Fortunately, there’s plenty of fun to be had around every
corner, and we’re certain you’ll spend the next month having
some of it.

But do we now feel more comfortable with XML? Well …
yeah, actually, we do.

So, until next time, happy trails.
PS: This column was written on June 2, 2001. On this

occasion, the Jeffs wish JSH’s alienated first-born, Riley
Sherman Haemer, a happy birthday. Though she is lost for-
ever to the Boulder, CO, divorce courts, we both love her
and will forever miss her more than words or tears will tell.

Happy trails, little Riley. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) is cur-
rently living in the Pacific Northwest, where he spends his time
writing UNIX software in a large development organization and
fighting damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at Minolta-QMS
Inc. in Boulder, CO, building laser printer firmware. Before he
worked for QMS, he operated his own consulting firm and did
a lot of other things, much like everyone else in the software
industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/~copeland/work or
alternately at ftp://ftp.cpg.com/pub/Work.

ftp://ftp.cpg.com/pub/Work

	The Nesting Instinct
	XML is a Good Idea
	Validating XML
	Rolling Our Own
	Lack and Yecchs
	Rubber and Road
	Reflections

