
Work
by Jeffreys Copeland and Haemer

JA
NE

M
AR

IN
SK

Y

Simplify, Simplify
LL ast month, we wrote about our

struggles with Expect.pm. To
summarize our chief points:

• Expect is a wonderful tool for
automating interactive programs, which
lets you do lots of surprisingly interest-
ing things.

• If you feel uncomfortable in Tcl,
Expect.pm lets you do those things
in Perl.

• Expect.pm offers completeness
and object-orientation. It would be very
useful to have an Expect::Simple
subclass that gave you some simple calls
to let you do common tasks.

• Some days, it doesn’t pay to get out
of bed.

To explore the third point, we began
with this simple program to automate
an anonymous ftp session:

#!/usr/bin/perl -w -s
$Id: get_file,v 1.1 2001/04/08 …

use File::Basename;
our $debug;
use Expect;
@ARGV == 1 or
die "usage: $0 " .

"ftp-site file\n";
my ($host, $path) =
split ':', shift;
die "usage: $0 host:path"
unless defined $path;
my ($file, $dirname) =
fileparse $path;

my $t = 30;
my $ftp_prompt = 'ftp> ';

if ($debug) {
$Expect::Debug=1;
$Expect::Exp_Internal=1;
}

my $ftp =
Expect->spawn ("ftp", $host);
$ftp->expect($t, "Name") or
die "Never got " .
"username prompt " .
"on $host, " .
$ftp->exp_error() .
"\n";

print $ftp "anonymous\r";
$ftp->expect($t, '-re',
'Password:\s*') or
die "Never got " .

"password prompt " .
"on $host, " .
$ftp->exp_error() .
"\n";

print $ftp $ENV{USER} .
'@' . 'dnsdomainname' .
"\r";
$ftp->expect($t, '-re',
$ftp_prompt) or
die "Never got ftp prompt " .
"after sending username and " .
"password, $ftp->exp_error()\n";

print $ftp "cd $dirname\r";
$ftp->expect($t, '-re',
$ftp_prompt) or
die "Never got ftp prompt " .
"after attempting to change " .
"directories, " .
$ftp->exp_error() .
"\n";

$ftp->expect($t, '-re',
$ftp_prompt) or
die "Never got ftp prompt " .
"afterattemptingto get $file,".
$ftp->exp_error() . "\n";

‘Tis the gift to be simple,
‘tis the gift to be free; /
‘Tis the gift to come down
where we ought to be
– Traditional Shaker hymn,
which bears no relation to
the complicated, expensive,
up-in-the-air lives of your
correspondents

Simpler is Better
– Dick Dunn

28 SW Expert ■ July 2001

Work

$ftp->expect($t, '-re', "Goodbye.") or
die "Never got 'Goodbye.', " .
$ftp->exp_error() . "\n";

$ftp->hard_close();

After a little boilerplate, some argument processing, and
some good housekeeping, the line beginning my $ftp spawns
an ftp process and creates an expect object to talk to it.

The next three lines show a pattern that repeats itself
through the rest of the program. The first of these lines looks
for the string “Name” from the spawned ftp within 30 seconds.
If it times out, the next two lines print an error message and
exit. This at least cries out for subroutines.

We decided what we really wanted was a module that would
let us write the same thing like this:

#!/usr/bin/perl -w -s
$Id: goal2,v 1.1 2001/04/08 …

use Expect::Simple;
use File::Basename;
our $debug;

@ARGV == 1 or die "usage: $0 ftp-site file\n";
my ($host, $path) = split ':', shift;
die "usage: $0 host:path" unless defined $path;
my ($file, $dirname) = fileparse $path;

timeout(30);
verbose if $debug;
spawn(cmd => 'ftp $host', ok => 'Name',
prompt => 'ftp> ');

request(send => 'anonymous',
ok => 'Password:\s*');
my $email = $ENV{USER} . '@' . 'dnsdomainname';

all unusual prompts complete
request($ENV{USER} . '@' . 'dnsdomainname');
request "cd $dirname";
request "get $file";

Our Subclass
The tricky part, it turns out, was finding a good mental

model. The last listing above came from our fourth or fifth.
We spent about a week trying half a dozen designs that

didn’t work on various simple tasks. Several of them had fun-
damental misunderstandings about what you can do when
talking to a pty or a child process. Having our programs
spawn subprocesses while trying to debug them did not
exactly help, either.

Our biggest “Aha?” Instead of trying to create interfaces
that waited for prompts and responded to them, like this:

reply(Name => 'anonymous');

we needed calls that issued commands and watched for
acknowledgements, like this:

request(cmd => 'anonymous',
ok => $password_prompt);

Why? Mostly because it lets our applications be in the

driver’s seat. If we send a request and define the format of a
proper response, we get the luxury of parsing everything in
between. With a “reply” style design, we’re sending data-
grams, and we have no idea what the response is without
another call. We lost a lot of sleep learning that there’s a
profound difference.

If you’ve been reading our columns for a while, you will
realize we also like testing our code. Here is our test suite.

#!/usr/bin/perl -w -s
$Id: test.pl,v 1.1 2001/04/08 …

use Expect::Simple;
use strict;

sub print_tnp {
print "timeout is " .
(timeout || "undef") . "\n";
print "prompt is " .
(prompt || "undef") . "\n";

}

sub header {
print "\n== @_ ==\n\n";
}
header "manipulate timeouts and prompts";
timeout(-1);
print_tnp;
timeout(10000);
prompt('foo? ');
print_tnp;
simple_reset;
print_tnp;
timeout(1);
prompt('bar! ');
print_tnp;

header "simple spawns";
verbose;
spawn(cmd => "date", timeout => 30,
prompt => '$');
print_tnp;
spawn("date");
print_tnp;
taciturn;

header "requests";
simple_reset;
spawn("bash");
my $x = request("date");
print "$x\n";
my @x = request("ls");
foreach (@x) {
print $_, "\n";
}

header "fancy stuff";
use File::Basename;

@ARGV = ("woodcock:/pub/foo/foo.notes");
@ARGV == 1 or die "usage: $0 ftp-site file\n";
my ($host, $path) = split ':', shift;
die "usage: $0 host:path" unless defined $path;
my ($file, $dirname) = fileparse $path;

SW Expert ■ July 2001 29

Work

spawn(cmd => 'ftp host', ok => 'Name',
prompt => 'ftp> ');
request(send => 'anonymous',
ok => 'Password:\s*');
my $email = $ENV{USER} . '@' . `dnsdomainname`;
request(send => $email, ok => 'ftp> ');

request "cd $dirname";
request "get $file";
request "quit";
system "ls $file";

The header() commands state, simply, the intent of
each section.

These test cases were an integral part of the development.
Like our programs, we designed the test cases before we imple-
mented the module and modified them as we realized we were
asking the wrong questions.

Once these passed, we knew we had a solid design and
implementation.

Here is our passing module, complete with documentation.

#!/usr/bin/perl -w
$Id: Simple.pm,v 1.3 2001/05/05 …

package Expect::Simple;

use Carp;
use Expect;
require Exporter;
@ISA = qw(Expect);
@EXPORT = @Expect::EXPORT;
push @EXPORT, qw(timeout prompt verbose);
push @EXPORT, qw(taciturn simple_reset);
push @EXPORT, qw(spawn request wait_for);
@EXPORT_OK = @Expect::EXPORT_OK;
$VERSION = '0.1';
$Expect::Log_Stdout = 0;

everything in a block just
for safety's sake
{
use strict;

internal routine to set defaults
from an argument hash
sub set_defaults {
my @defaults = (
prompt => $Expect::Simple::prompt,
timeout => $Expect::Simple::timeout,
);
unshift @_, "cmd" if @_ == 1;
my %defaults = (@defaults, @_);
$Expect::Simple::prompt = $defaults{prompt};
$Expect::Simple::timeout = $defaults{timeout};
%defaults;
}

set timeout, return old timeout
sub timeout {
my $oldtimeout = $Expect::Simple::timeout;
my $timeout = shift || $oldtimeout;
$timeout = undef

if defined($timeout)
&& ($timeout < 0);

$Expect::Simple::timeout = $timeout;
$oldtimeout;
}

set default prompt, return old prompt
sub prompt {
my $oldprompt = $Expect::Simple::prompt;
my $prompt = shift || $oldprompt;
$Expect::Simple::prompt = $prompt;
$oldprompt;
}

debugging info
sub verbose {
push @_, "1" unless @_;
my $v = shift;
$Expect::Log_Stdout = $Expect::Exp_Internal =
!($v == 0 || $v =~ /off|no|false/i);

}

no debugging info
sub taciturn { verbose(0); }

defaults
sub simple_reset {
$Expect::Simple::prompt = '^.*[$>#%]\s*';
$Expect::Simple::timeout = undef;
taciturn;
}

spawn a process
sub spawn {
my %args = set_defaults(@_);

my @cmd = split /\s+/, $args{cmd};
$Expect::Simple::handle->close()
if (defined $Expect::Simple::handle);
my $self =
$Expect::Simple::handle =
Expect->spawn(@cmd);
return undef unless defined $self;
$self->expect($Expect::Simple::timeout,
-re, $args{ok} || $Expect::Simple::prompt);

}

send a request, wait on an ack,
return the requested stuff
sub request {
unshift @_, "send" if @_ == 1;

my $h = $Expect::Simple::handle;
my @defaults = (
timeout => $Expect::Simple::timeout,
ok => $Expect::Simple::prompt,
);
my %f = (@defaults, @_);

print $h ($f{send}, "\r") if defined $f{send};

my $t = $f{timeout};

30 SW Expert ■ July 2001

$h->expect($t, '-re', $f{ok})
or return $h->exp_error();
my $resp = $h->exp_before();
if ($f{send}) {
my $leader = "^" . $f{send} . "\r\n";

$resp =~ s/$leader//ms;
}
return $resp unless wantarray;
return split /[\r\n]+/, $resp;
}

wait for a particular event
sub wait_for {
unshift @_, "ok" if @_ == 1;
request(@_);
}

simple_reset;

}

1;

=head1 NAME

Expect::Simple - Simplified Expect interface

=head1 SYNOPSIS

use Expect::Simple
timeout(10);
prompt('ftp> ');
spawn(cmd => "date", timeout => 30,
prompt => '$');
@x = request("ls -l");
wait_for "->Idle";

simple_reset;
verbose;
taciturn;

=head1 DESCRIPTION

This module provides a simplified
interface to C<Expect.pm>.

The following functions are
exported by this module:

=over 3

=item timeout($time)

Set timeout, return old timeout.

Default timeout is C<undef>.

=item prompt($prompt)

Set default prompt, return old prompt.
Throughout this module, a "prompt"
is something that

a call waits for from the spawned process.
In all cases, the prompt is specified
as a regular expression.

The default prompt is C<^.*[$>#%]\s*>.

=item verbose()

Turn on debugging info.
=item taciturn()

Turn off debugging info.

=item simple_reset()

Reset the prompt and timeout to default values.
Turn off debugging.

=item spawn(cmd => $process,
timeout => $t, prompt => $p)

Spawn a process. Overloads L<Expect::spawn>.
Guarantees a single subprocess,
waits for a prompt to check for success.
Returns C<undef> on failure.

Called with a single argument,
assumes that argument is the process
to spawn, uses the default timeout and prompt
(C<Expect::timeout> and C<Expect::prompt>).

=item request(send => $string,
ok => $ack, timeout => $t)

Send a request to the spawned process,
wait for an acknowledgement.
Returns the entire response either
as a single string
with embedded newlines, or as an array of lines.

Uses default prompt and timeout if unspecified.

Called with a single argument,
sends that string as a request.

Appends carriage returns to the send string.

=item wait_for($prompt)

Wait for a prompt.
Returns all text leading up to the prompt.

=back

=head1 AUTHORS

Jeff Copeland <jeff@alumni.caltech.edu>

Jeffrey S. Haemer <jsh@usenix.org>

=head1 SEE ALSO

Work

SW Expert ■ July 2001 31

Work

Expect.pm

=cut

As proof that we were where we wanted to be, we spent a
few minutes writing a Perl version of a program we’d written
long ago in Expect, which times the progress of print jobs by
watching a telnet session to a printer.

#!/usr/bin/perl -w
$Id: click2clunk,v 1.2 2001/05/05 …

use Expect::Simple;
use strict;

sub parse_opts {
use Getopt::Long;
use Pod::Usage;
my ($help, $man, $printer);

my $usage = "usage: $0 [-p printer] file ...";

GetOptions('printer=s' => \$printer,
'help|?' => \$help, man => \$man)
or pod2usage(2);
pod2usage(1) if $help;
pod2usage(-exitstatus => 0,

-verbose => 2) if $man;

@ARGV && ($printer ||= $ENV{PRINTER})
or pod2usage(2);

-r or die "can't read $_\n" foreach @ARGV;
$printer;
}

my $printer = parse_opts;

my $printcmd = ">/dev/null 2>&1 " .
/rd/local/bin/hpsend -h $printer";

spawn(cmd => "telnet $printer",
prompt => '->Idle');

foreach (@ARGV) {
system "$printcmd $_";
$? == 0 or die "$printcmd: $@";
wait_for "Starting job";
my $t = time;
wait_for "->Idle";
print "$_: ", time - $t, "\n";
}
=head1 NAME

click2clunk -- time a print job

=head1 SYNOPSIS

click2clunk [--printer printername]
file [file ...]

=head1 DESCRIPTION

=over 2

Times print jobs using Minolta-QMS
remote console.

=back

=head1 OPTIONS AND ARGUMENTS

=over 2

=item I<--printer|-p>

The printer to use.
If unset, uses C<$PRINTER>.

=item I<file>

The file(s) to print.

=back

=head1 AUTHORS

Jeff Copeland <jeff@alumni.caltech.edu>

Jeffrey S. Haemer <jsh@usenix.org>

=head1 SEE ALSO

Expect::Simple

=cut

An earlier version replaced a platoon of interns with
stopwatches and blistered thumbs.

Finishing up
Whew! It took us two months, but we now have a nice,

reasonably intuitive interface to Expect through Perl.
Next time, we’ll think about parsing XML. In the mean-

time, we leave you with a non-programming exercise for the
reader. Assuming you were a Russian cosmonaut, and had a
ready supply of potatoes on board your space station, how
would you build a still in zero-gravity so you could have
vodka? (Which leads to the punchline, “hey, don’t try to
dock the supply ship if you’ve been drinking.”) We thank
our friend Jason Zions, standards geek extraordinare, for
this one.

Until next time, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) is cur-
rently living in the Pacific Northwest, where he spends his time
writing UNIX software in a large development organization and
fighting damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at Minolta-QMS
Inc. in Boulder, CO, building laser printer firmware. Before he
worked for QMS, he operated his own consulting firm and did a
lot of other things, like everyone else in the software industry.

Note: The software from this and past Work columns is available
at http://alumni.caltech.edu/~copeland/work or alternately
at ftp://ftp.cpg.com/pub/Work.

32 SW Expert ■ July 2001

ftp://ftp.cpg.com/pub/Work

	Simplify, Simplify
	Our Subclass
	Finishing up

