
Work
by Jeffreys Copeland and Haemer

34 SW Expert ■ May 2001

JA
NE

M
AR

IN
SK

Y

Commonplace Book
BB

ack in our grandfathers’ day, a
well-read gentleman always kept a
“commonplace book” in which he

copied out interesting passages he found
in the various things he’d read. He could
find them again later and share them
with his children and grandchildren.

In our modern age, this is a habit
that’s nearly fallen by the wayside. A
pale reflection survives in the habit of
some folks who post lists of interesting
quotations on their Web sites. We keep
an online file of quotations, too, some of
which you have seen as epigrams at the
top of this column. However, we’re some-
times dead tree guys. While we appreci-
ate the electronic forms of things, as you
know from reading last month’s column
on preparing text for an electronic reader,
occasionally we want to have a nice print-
ed thing on paper to curl up with in our
wing-back chairs and hold in our hands.
So this month, we’re going to talk about
turning your online collection of quota-
tions into paper, complete with nice for-
matting and index. We’ll get to explore

some subtleties of formatting with TeX,
and some tricks for making an index.
We’ve got three distinct sub-problems to
solve: formatting the quotations, prepar-
ing the index as we go, and printing the
index from the “notes” we’ve taken. If
you’re not familiar with TeX, we point
you at the original reference by Donald
Knuth, TheTeXbook, (Addison-Wesley,
1984, ISBN 0-201-13448-9). Let’s dig in.

A Basic Quotation
Let’s begin with the basic form of a

quotation in our file.

\quote{I wondered what a savoury

scandal would be: a scandal

fried on toast, perhaps, with an

anchovy and a dash of Worcester

Sauce?}{\q{Rumpole and the Case

of Identity} by John Mortimer}

in \em{The Trials of Rumpole},

1979.

We’ve postulated a two argument TeX
macro \quotewhich takes the quotation

and the attribution. We’ve even added a
little notation after the quotation–some-
times it will be a witty aside. We choose
to do this in TeX, rather than troff,
because some of the indexing turns out to
be easier. Those of you fluent in both text
formatting languages can follow along
and translate as you go. For example, if
we were going to do this in troff, we’d
have a macro to start the quotation, one
to signal the attribution start, and one to
complete it. We’d say something like:

.Quote

I wondered ...

.Quote-attr

''Rumpole and ...

.Quote-end

What’s the definition of our \quote
macro?

\long\def\quote#1#2{

\filbreak\bigskip

\noindent

\hrule height 1pt\smallskip

It is necessary that practice
accompany knowledge.
– Gottfried Wilhelm Leibnitz

Ah, it’s a lovely thing, to
know a thing or two.
– Moliére

#1\par

\def\z{#2}

\ifx\z\empty \else

{\leftskip .3\hsize\relax

\item{—-}#2\par}\fi

\smallskip\noindent\hrule

\smallskip\noindent

}

\def\empty{}

First, notice that it is a long definition, so that our
quotation can include a paragraph break. We begin with
a filbreak. If you’re not familiar with it–and it’s one of our
favorites–this macro says “here’s a good place to break the page,
but do not bother if you can get up to the next filbreak on
this page, too.” This means that quotations, unless they’re more
than a page long, will be on a single page. We offset the quote
with a one point rule–slightly thicker than the default–then set
the first argument (the quotation itself). If the second argument
is not empty, we set it with a large indent preceeded by an
em-dash. We finish up with a less-heavy rule at the default
thickness of 0.4 points. Our extra notations appear after the
closing rule, in the space before the next quotation.

Why the hand-wave of assigning the second argument to
\z? Because we want to test the expanded values of the second
argument and \empty with \ifx, and to do that they have
to be at the same level of reference.

Notice that rather than a double quotation mark around
the title of the Rumpole story in our example, we’ve used a
\q{...} macro. This allows us to nest quotes easily. Similarly,
we’ll be using a \em{...} macro (the idea for which we stole
from LaTeX) to set emphasized text, such as titles, usually in
italics. By making features of the structural markup–quote and
attribution, quotation marks, titles–into macros, we can
change the rendition of our printed version much more easily.
As a quick example, if we wanted to produce a British version,
in which the outer quotation marks were single and the inner
quotation marks were double–‘She asked “Why did you only
shoot him seven times?” with a tear in her eye.’–this would
involve a quick rework of the macros, not a complete edit.
The quotation mark macros have some interesting features:

%% quotation mark macro

\newcount\qm \qm=0

\def\q#1{\advance\qm by 1

\ifodd\qm "#1"\else

'#1'\thinspace\fi

\advance\qm by -1\relax}

We increase the counter of active quotation marks every
time we see the macro. If we have an odd number, we use
double quotation marks; an even number produces singles.
This allows nested quotation marks through a nested use of
the macro to work as well. We have to be careful to not let
any white space drift in after the quotation marks, so that

\q{foo}—-he exclaimed.

will not have spurious interword spacing. However, we need
the \thinspace in the single-quote case to properly space
when we want a single quote followed by a double. The
inverse case–double followed by single–is handled by TeX’s
normal kerning rules.

After that, the emphasis macro is downright simple:

\def\em#1{{\it #1}}

Embedding Index Entries
It makes this collection of quotations much more useful if

we can provide an index of the sources. It would be useful to
be able to find all the references to barrister Horace Rumpole,
all the passages from Molly Ivins Can’t Say That, Can She?, or
all the Donald Knuth quotations we have.

It will serve us well to think for a few moments about the
design before we delve in. We will want to index names and
titles in different fonts. Even among the names, it would be
nice to index character and author names, and perhaps even
actor names if we’ve been collecting movie quotes, differently.
So we’ll want not only a name, but a tag, so that we can distin-
guish the fictional character Rumpole, Horace from the writer
Mortimer, John.

Let’s try this:

\idxi{The Trials of Rumpole}

\idx{Mortimer, John}

\idxc{Rumpole, Horace}

What happens to these additions under the covers? We add
a one-character tag, as we discussed, to each one and pass it on
to another macro:

\def\idx#1{\IDX{#1}{n}}

\def\idxc#1{\IDX{#1}{c}}

\def\idxi#1{\IDX{#1}{i}}

You can envision generalizing this scheme, we’re sure, not
only for actors’ names as we mentioned above, but also to
provide entries in a typewriter-like font for entries such as
rec.humor.funny or jsh@usenix.org.

The underlying (and more general) IDX macro presumes
a file into which we write the index entries, so we name and
open it first.

\newwrite\idxfile

\openout\idxfile=quotes.idx

\def\IDX#1#2{\write\idxfile{#1;#2;\the\pageno}

}

We don’t have to worry about the page number on which
the index entry appears because the filbreak in the quote
macro ensures that the end of the quotation is almost always
on the same page as the beginning.

So far, this has been simple, but wouldn’t it be much easier
if we could get most index entries directly out of the text? Yes,
we’ll still be able to use the {co \idx} macros but what if we

SW Expert ■ May 2001 35

Work

Work
could make a macro that both typeset the argument and put it
in the index? Something like:

\quote{ ... It was, carried to the extreme,

as though someone had put a Brooks Brothers

suit on a gorilla.}{\!Naked Came the

Stranger!, by Penelope Ashe}

That turns out to be pretty simple. All we have to do is add
another wrapper macro like

\def\!#1!{\textset\em{#1}\endgroup\idxi{#1}}

In this, the textset...endgroup surrounds our index
entry when we set it as part of the body text. To see why, we
have to consider how we’d index “Penelope Ashe” out of the
running text. Clearly, we want to make an index entry for
“Ashe, Penelope” from this. If we used \(and) as delimiters
and encoded this as

\(Penelope\\Ashe)

we’d be halfway there. We could use the double backslash
and closing parenthesis as delimeters to the macro. In run-
ning text, the double backslash would turn into a space; for

the index entry, it would be a marker to invert the names at
this point. That scheme falls apart if we want a name index
entry that we want in multiple places, such as

\(HRH\\Charles Philip Arthur

George, the\\Prince of Wales)

which we want to index under both “Charles ...” and “Prince
of Wales.” Remember that we’re going to have to alphabetize
the index anyway, so if we just copy the double backslash to
the index file, we can deal with inverting the names later. We
insert the double backslash in the index with the following
macro snippet:

\chardef\SP='\\ \let\\=\SP

\def\textset{\begingroup\def\\{ }}

We begin by defining the character SP to be double back-
slash, and then letting the macro \\ stand in for that definition.
The net effect is when this definition is active, the argument-less
double backslash macro is rendered as itself. In the textset
macro, on the other hand, the begingroup pushes the

context, so that when we reach an endgroup, the original
context–with the original definition–returns. The one odd note
is that the “normal” definition of double backslash is active
when the index entry is being written into its file; the definition
in the alternate context inside the begingroup is used for the
running text. Thus, we can add a definition

\def\(#1){\textset{#1}\endgroup\idx{#1}}

which will turn our Ashe entry above into “Penelope Ashe”
in the running text, and “Penelope\\Ashe” in the index file.

However, there is another wrinkle: In the text, we will often
want to credit “P. J. O’Rourke” and then in the index refer to
“Peter John O’Rourke.” We do this with an extension of the
trick we just used, and invent the \[...] macro.

\def\[#1]{#1}

We need to change our definition of textset to

\def\textset{\begingroup

\def\[##1]{\relax}

\def\\{ }}

(We’ll pause for a moment to air some dirty laundry: The
Jeffreys have an ongoing battle about the use of periods in ini-
tials and abbreviations. Haemer prefers the strictly American
approach of always following initials and abbreviations with a
period. He’s willing, however, to tolerate the British preference
for periods after initials but eliding them after abbreviations that
end with the final letter of the word being abbreviated. Thus,
“Mr.” in American, but “Mr” in British. Copeland prefers the
more idiosyncratic usage of eliding the period in all cases, as in
“Mr P J O’Rourke.” The macro definition above is arranged for
Copeland’s preference. We leave it as an exercise to the reader
to rearrange the macros to substitute a period as appropriate.
Remember that sometimes we’ll want to have an entry like

\(Groucho\[(Julius)]\\Marx)

where the elided text won’t be the back half of an abbreviation.)
Given these steps, you can generalize the indexing process

and provide index entries for typewriter-like fonts (as we dis-
cussed before), variations for characters and actors, and so on.
We’ve provided our versions of those extras in the software
bundle at the usual Web sites, listed at the end of the column.

When we run the file we’ve prepared this way through TeX,
we’ll be left with an auxillary file quotes.idx containing
lines such as

The Soul of a New Machine;i;1

Alistair\\MacLean;n;3

Sharyn\\McCrumb;n;23

The Soul of a New Machine;i;29

John\\McMullen;n;73

The New Yorker;i;80

Ulrika\\Anderson\\O'Brien;n;106

36 SW Expert ■ May 2001

Wouldn’t it be much
easier if we could
get most index
entries directly out
of the text?

James Abbott McNeill\\Whistler;n;113

Groucho [Julius]\\Marx;n;117

Ulrika\\Anderson\\O'Brien;n;120

The (London) Times;i;129

The (London) Times;i;140

Ulrika\\Anderson\\O'Brien;n;143

2001: A Space Odyssey;i;156

We’ll want to turn this into entries for the index pages such as

\idxp {{\it 2001: A Space

Odyssey}}{}{156}.

\idxp {Anderson O'Brien, Ulrika}{n}{106,

120, 143}.

\idxp {Charles Philip Arthur George, the

Prince of Wales, HRH}{n}{12}.

\idxp {{\it The (London) Times}}{}{129,
140}.

\idxp {McCrumb, Sharyn}{n}{23}.

\idxp {MacLean, Alistair}{n}{3}.

\idxp {McMullen, John}{n}{73}.

\idxp {Marx, Groucho [Julius]}{n}{117}.

\idxp {{\it The New Yorker}}{}{80}.

\idxp {O’Brien, Ulrika Anderson}{n}{106,

120, 143}.

\idxp {Prince of Wales, HRH Charles Philip

Arthur George, the}{n}{12}.

\idxp {{\it The Soul of a New

Machine}}{}{1, 29}.

\idxp {Whistler, James Abbott

McNeill}{n}{113}.

Notice that we want to alphabetize the entries. We’ll even
use a librarians’ sort, ignoring articles such as “the” and folding
“Mc” into “Mac.” We also need to collect all the disparate pages
on which a name appears into a single entry. Other than noting
that we need to actually run TeX twice–once to generate the
index data, and then once with that data sorted and marked
up, how do we do it?

Preparing the Index
Fred Brooks says “Show me your flowcharts and conceal

your tables, and I shall continue to be mystified. Show me
your tables, and I won’t usually need your flowcharts; they’ll
be obvious.” Or as Elizabeth Schwarzin used to put it, “The
secret of life is data structures.” Thus, two words should tell
you everything that is about to come: “Perl hash.”

If we grab each line in turn and make a hash entry for all the
variations of names on the line, we’ll end up with the list we
want. Sort of.

while(<>) {

chomp;

($name,$type,$page) = split /;/;

(Because of space considerations, we’re not going to show you
the usual set up and declarations. Take these as read, and pick

up the full script from one of the Web sites.)
Once we’ve got the name, tag and page number, it’s simple to

store them away. We can even make a subroutine to do it for us:

sub makeentry() {

my ($name, $type, $page) = @_;

$name .= $type;

if(exists $entries{$name}) {

$entries{$name} .= " , " . $page;

} else {

$entries{$name} = $page;

}

}

Notice that we’re just tacking the type onto the end of the
name. This means that we can distinguish between an entry
where a writer and a character in a book have the same name.
Also notice that if the hash already exists, we’re appending the
page number to it. Since the raw index input is presented in
the same order as the quotations themselves–that is, in page
order–we end up with the page list already sorted.

Except, it’s not that simple. If we have a raw index entry like:

Ulrika\\Anderson\\O'Brien;n;106

we have to invert the names. Twice. So we need a little wrap-
per code to call the makeentry subroutine.

@names = split /\\\\/, $name;

if(@names > 1) {

we need to reverse the subfields

of the index entry

$opt_tail =

($names[-1] =~ s/(.*)(, \w+)/$1/) ?

$2 : "";

$names[-1] =~ s/$/,/;

foreach (2..@names) {

push(@names, shift(@names));

$name = join(" ", @names) . $opt_tail;

makeentry($name,$type,$page);

}

} else {

basic, simple output

makeentry($name,$type,$page);

}

}

The simple case–we have no double backslash–is handled in
the else clause. The more complicated case is handled in the
then: We take the names, split at the double backslash, and
shift through them, making a hash entry for each rotation, that
is, for both “Anderson O’Brien, Ulrika” and “O’Brien, Ulrika
Anderson.” In the simple version, that inner for loop will only
execute once and we’ll end up with John\\McMullen becom-
ing the single hash key “McMullen, John.”

SW Expert ■ May 2001 37

Work

Work
What’s the opt_tail all about? We’ll occasionally have a

name with an ending that we don’t want to invert, such as, \
(Jeffrey S\[herman]\\Haemer, PhD). Any appendage
delimited by a comma should remain at the end: “Haemer,
Jeffrey Sherman, PhD.”

Sorting the Results
Oddly enough, that was the easier part of the task. We can’t

just print the hash entries in their natural order, that is, in no
order at all. We have to provide some sort of sorting for them.
For this, we turn to a trick invented by Randall Schwartz, which
has come to be known as the Schwartzian Transformation. (See
recipe 4.16 in Tom Christiansen and Nat Torkington’s The Perl
Cookbook, O’Reilly, 1998, ISBN 1-56592-243-3, for an in-
depth discussion of this trick.)

In the normal course of events, we can produce a hash in
sorted order with a loop of the form:

foreach (sort keys %hash) {

....

}

The normal {$a cmp $b} comparison in the sort is implied.
This time, though, we have a more complicated sorting we want
to accomplish. We want to compare with case folding, eliding
articles, and with Scots name conversion (folding together “Mc”
and “Mac”). To do this, we can map the data beforehand.

A Perl map takes an array as input, transforms the data
through a little program, and produces another array as
output. For example:

my @keys = map {

s/\b(the|a|an)\s//gi;

} keys %entries;

will give us an array keys composed of the article-stripped
keys of my hash. I can then sort this array, and then ... Oops!
I’ve lost information by stripping the articles, and cannot
recover the original keys. The solution is to make an array
of anonymous arrays:

my @keys = map {

(my $x = $_) =~ s/\b(the|a|an)\s//gi;

[$x, $_]

} keys %entries;

which produces an array of arrays containing the sortable key
and the original hash key. After the sort, I strip off the sortable
key, leaving only the hash key with a new map transform,

my @keys = map { $_->[1] };

We combine this into a single statement for the case-in-point:

my @keylist =

map { $_->[1] }

sort { $a->[0] cmp $b->[0] }

map { (my $x = $_) =~ s/\b(the|a|an)\s//gi;

$x =~ s/\bMc/Mac/gi; # Scots names

$x =~ s/[^\w\s]//g; # elide non-alphanums

[uc($x), $_] }

keys %entries;

Once we’ve got a sorted list of the keys, we can format the
hash array indexed by them.

foreach (@keylist) {

($name,$type) = /(.*)(.)/;

if($type eq "i") {

$type = ""; $name = "{\\it $name}";

}

print "\\idxp

{$name}{$type}{$entries{$_}}.\n";

}

(We’re indexing the hash of the index with the index keys.
You can see how confusing it can be by using “index” in differ-
ent senses in the same sentence.) Remember we have com-
bined the tag into the key, so we separate $name and $type
with a multiple assignment. If the tag is relevant, we strip it,
and insert a font change into the name string to be printed. As
output we produce a line of text with TeX encoding in place.

Once we encapsulate this Perl code in a script called DO.idx,
we have to figure out how to format the index on the output side.

Formatting the Index
Producing a pretty index is a fairly simple matter. We finish

our file of quotes with an invocation of

\indexprint

If we haven’t run DO.idx over the raw index data yet, we
want the indexprint macro to fail gracefully. If we do have
sorted index data, we want it to produce a two-column list of
the entries of the idxp lines in that file.

We can begin by postulating a simple idxp,

\def\idxp #1#2#3.{\def\z{#2}

\hangp\rm #1

\ifx\z\empty\else\thinspace(#2)\fi,

#3.\par}

We’re producing the index line as a hanging paragraph,
using a definition of

\def\hangp{\par\noindent\hang}

We’re also checking if the type tag is non-empty before we
print it–we may have elided the tag in favor of font change
already in DO.idx. We need one extra definition,

\newread\indextest

which will allow us to read the first line of the sorted index file.
Given those, the wrapping in the indexprint macro is,

again, straightforward.

38 SW Expert ■ May 2001

\long\def\indexprint{

\vfill\eject

\let\bf=\Ibf \let\rm=\Irm \let\it=\Iit

\baselineskip=\idxbaseline \rm

\centerline{{\bf Index}}

\message{[Index]}

\input double \raggedright

We make this a long definition because each index entry
we are printing begins a new paragraph. We finish the last
page of quotations with \vfill\eject so we can begin
the index on a fresh page. We set up some fonts–we alias
earlier font definitions Ibf, Irm, and Iit to be the current
bold, roman, and italic fonts. We similarly reset the line-
spacing. (Again for space, we’ve skipped the font definitions
in these macros; there are parallel definitions for the fonts in
the running text and index which we swap as appropriate.
By carefully encapsulating the font definitions, we can
change the look of our printed version by swapping just a
few lines. It’s why when working with troff, you should
refer to fonts by position, not name.) We print out a header
and a console message. We finish the setup by reading in the
macros for two-column output, double.tex, and setting
the “paragraphs” to be set unjustified (raggedright).

We want to check if the index file exists so we can act
appropriately if it doesn’t. Here’s where we use the definition
of indextest from above:

\openin\indextest=quotes.srt

\read\indextest to \hitreturn

\ifeof\indextest

\centerline{{\it No index file available.}}

\message{[No index file]}

We open the sorted file and read the first line into
\hitreturn. If the read fails, eof is set for the file, and we
print messages on the page and the console. (In principle,
opening a non-existent file should set the end-of-file indicator,
but we’ve seen at least one TeX port in which you have to
attempt a read before that actually happens. We’ve gotten in the
habit of writing this code defensively as a result.)

The else clause, when the file does exist, is also simple,
and finishes up the macro.

\else

\closein\indextest

\begindoublecolumns

\input quotes.srt

\enddoublecolumns

\fi

}

We read the sorted index file quotes.srt with an
\input statement, surrounding it with begindouble
columns and enddoublecolumns. (We don’t have time
or space to explore the double-column macros. We use
essentially a modified version of the ones from the TeX

manmac package, though. Others exist at the Comprehensive
TeX Archive Network, http://ctan.tug.org.)

There You Have It
All that remains is to wrap the process in a few lines of

shell command, such as,

$ tex quotes

$ DO.idx quotes.idx >quotes.srt

$ tex quotes

$ dvips quotes

$ lpr quotes.ps

We’ve covered a lot of ground, developing multiple tech-
niques for burying indexing data in a document, showing
how to do a complicated transformation (including sorting)
of a file in Perl, and learned some new formatting tricks in
TeX. Maybe one of these techniques can be transplanted into
a problem sitting on your desk right now. Let us know how
you use them.

There’s still some room for improvement here. We’ve talked
about distinguishing different types of index entry, but it might
also be helpful to incorporate mini-indexes: When we’re prepar-
ing the main index, it might also be helpful to show the current
index entries after each quotation, either in a small font in-line,
or in the margins. How would you do this?

An alternate solution to all of this would be to use a very
general system, for example BiBTeX. While BiBTeX is opti-
mized for bibliographies, it could also be used for managing
our quotation file. We didn’t do this for two reasons: not only
don’t we like LaTeX, but we always want to talk more about
techniques rather than tools.

That’s all for this month. Until next time, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) is cur-
rently living in the Pacific Northwest, where he spends his time
writing UNIX software in a large development organization and
fighting damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at Minolta-QMS
Inc. in Boulder, CO, building laser printer firmware. Before he
worked for QMS, he operated his own consulting firm and did a
lot of other things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/~copeland/work or alter-
nately at ftp://ftp.cpg.com/pub/Work.

SW Expert ■ May 2001 39

Work

Maybe one of these

techniques can be

transplanted into

a problem sitting on

your desk right now.

http://ctan.tug.org
ftp://ftp.cpg.com/pub/Work

	Commonplace Book
	A Basic Quotation
	Embedding Index Entries
	Preparing the Index
	Sorting the Results
	Formatting the Index
	There You Have It

