
Work
by Jeffreys Copeland and Haemer

32 SW Expert ■ March 2001

JA
NE

M
AR

IN
SK

Y

Squishing Data
LL

eafing through a book on Linux
system administration, we have
learned that many compressed

kernels are now bzimage instead of the
older zimage, because they’re now
compressed with bzip2.

bzip2?
One wonderful thing about UNIX

is that there’s always some useful little
corner of it that we haven’t visited. We’d
never heard of bzip2; discovering it
gave us a few pleasant hours playing
with compression.

Abstract Compressionism
A little voyage into abstract thinking

about compression lands you squarely
on an interesting conclusion: compres-
sion algorithms don’t compress.

Let’s do a gedanken experiment.
Imagine that you have a compression fil-
ter that reads and writes a byte stream
(I/O is done in bytes). You also have a
decompression filter–the compression is
reversible. Finally, someone has given
you a collection of all possible files two

bytes or shorter. This means 256 dis-
tinct, one-byte files, and 65,536 dis-
tinct, two-byte files.

OK, run each two-byte file through
the compression filter. First, the 256 one-
byte files can’t be compressed. You can’t
get shorter than a byte. Second, only 256
of the two-byte files could compress. If
more compressed into a single byte, two
files would have the same one-byte out-
put and the compression wouldn’t be
reversible. Finally, every two-byte file that
compresses into a single byte removes a
possible compression target for a one-
byte file.

This same reasoning extends to larger
files. No matter what filter you use, for
every file it compresses, there is another
file that the same filter will expand.

So why do compression algorithms
seem to work? Only because they’re
designed to preferentially compress the
files we want to compress.

To help see that, let’s build an example.
Here’s a trivial run-length-compression
filter, which compresses runs of characters

into a NUL + a count plus the character.

/* $Id: rl.c,v 1.6 … jsh Exp $ */
#include <stdio.h>

#define NUL ‘\0’

main() {
int c, runc;
int n = 1;

for (runc = getchar();
runc != EOF; runc=c) {

c = getchar();
if ((c == runc) &&

(n < 256))
n++;

else if (n==1)
putchar(runc);

else {
putchar(NUL);
putchar(n);
putchar(runc);
n = 1;

}
}

}

In small proportions
we just beauties see, /
And in short measures
life may perfect be.
– Ben Jonson, “To the
Immortal Memory of
Sir Lucius Cary and
Sir Henry Morison”

In the universe great acts
are made up of small deeds /
The sage does not attempt
anything very big, /
And thus achieves greatness.
– Lau Tsu, Tao Te Ching

And here’s the corresponding decompression filter:

/* $Id: url.c,v 1.1 2001/01/06 … jsh Exp $ */
#include <stdio.h>

#define NUL '\0'

main() {
int n, c, runc;

while((c = getchar()) != EOF) {
if (c != NUL)
putchar(c);

else {
n = getchar();
runc = getchar();

while(n-- > 0)
putchar(runc);

}
}

}

Now let’s put it to work:

$ echo -n 'aaaabbbb' | rl | od -bc
0000000 000 004 141 000 004 142
\0 004 a \0 004 b

0000006

Is this a useful compression scheme? Sometimes.

$ man unexpand | wc -c
2240
$ man unexpand | rl | wc -c
1991
$ echo 1991/2240 | bc -l
.88883928571428571428

(Here, and later, we’ll use wc -c to count characters and bc -
l to do floating-point calculations; the -l flag to bc tells it to
use an arbitrary-precision math library. Without this flag, the
division of two integers would do an integer divide and give us
the answer “0.” Both are good command line filters for play-
ing around like this.)

Compressing the man page for unexpand gives us about an
11% space savings. But not everything compresses as nicely.

$ wc -c url.c
303 url.c
$ rl < url.c | wc -c
298
$ wc -c rl.c
366 rl.c
$ rl < rl.c | wc -c
366
$ rl < rl.c | diff - rl.c
Binary files - and rl.c differ
$ rl < url | wc -c
11001

$ wc -c url
11861 url

So the source for our decompression filter, url, barely
compresses the source for our compression filter itself, rl
doesn’t change in size at all (even though it does change in
content!), and the binary for the decompression filter actually
grows by about 8%.

Much worse, the careful reader will have noticed that our
simple-minded compression scheme will mishandle input files
that contain embedded NUL (‘ ’) characters. Compressing the
three-character file ‘\0’, ‘X’,‘Y’ will leave it unchanged. The
decompressor, thinking the NUL is a flag, will produce a file of
88 ‘Y’ characters. (‘X’ in ASCII is decimal 88.) To fix this, we’d
need to add code to escape our special character. So, our simple-
minded compressor is OK for ASCII, but not great for binaries.

Squishy History
When someone mentions early compression schemes,

many of you will think of compress/uncompress (or maybe
even pack/unpack), which was used for compression on
AT&T's System V UNIX releases.

The Open Group’s Single UNIX Specification man page
for pack (http://www.opengroup.org/onlinepubs/
007908799/xcu/pack.html), notes that “Typically, text files
are reduced to 60-75% of their original size. Object files,
which use a larger character set and have a more uniform dis-
tribution of characters, show little compression, the packed
versions typically being about 90% of the original size.”

Real old-timers will, instead, think of unexpand/expand,
which used the radical idea of saving space by turning runs of
fixed numbers of blanks into a special character: the tab. This
is not to be sneezed at.

$ wc -c rl.c
366 rl.c
$ expand rl.c | wc -c
443
$ echo 366/443 | bc -l
.82618510158013544018

Notice that using tabs instead of spaces saved us more space
than our run-length encoding did. The savings are independent
(we ran our rl filter on the version with tabs), but a surprising
number of non-UNIX systems (and even now, a few badly run
UNIX development organizations that we’ve passed through)
require all leading whitespace be blanks.

Here, too, the filter is very specific: unexpand is tailored for
ASCII sources with a lot of leading blanks. Still, being able to
compress your source and text files by 20% or so can help a lot.

Binary
So how about compression schemes that aren’t ASCII-spe-

cific? Let’s look at four that are widely available: compress,
zip, gzip, and bzip2.

The oldest, compress, implements Lempel-Ziv-Welch
(LZW) compression. This is a particular flavor of the LZ family
of compression algorithms also used by zip and gzip. Two
things make it special: (1) It was the first widely distributed,
general compression algorithm in the UNIX world; (2) It was
patented by Unisys.

The first made it successful. The second killed it off. In the

SW Expert ■ March 2001 33

Work

http://www.opengroup.org/onlinepubs/007908799/xcu/pack.html

Work
early ‘80s, everyone used compress to squish files and ship
them around. The popular image format, GIF, used LZW. The
program tar even added a -Z flag to compress and uncompress
its output automatically: tar -Zcvf foo.tar.Z

By the early ‘80s, the IEEE 1003.2 Committee considered
adding it to the POSIX shell-and-tools standard. Then Unisys
started talking about “liberal licensing terms.” A lot of people,
including corporations like IBM and Sun, had trouble with
that. To see whether you would, too, take a look at http://
www.unisys.com/unisys/lzw/.

Unisys hasn’t helped the situation by changing their internal
policy on this patent several times. They only have a limited
amount of time to extract money from the technology, though:
the original Lempel-Ziv patent expires on Aug. 7 this year, and
the LZW patent expires next December.

The FSF (Free Software Foundation) was also uncomfort-
able; however, it actually did something: it produced and began
giving away a better LZ-compression program named gzip.

$ man compress | wc -c
8435
$ man compress | compress | wc -c
4082
$ man compress | gzip | wc -c
3177

tar added a -z flag, and the world was quickly filled with
.tar.z (or .tgz) files–gzipped archives.

In the Microsoft world, a similar program, PKZIP, devel-
oped by the late Phil Katz, spread around. It combines the
functions of tar and gzip, though it doesn’t provide either
separately. On UNIX systems, the zip/unzip pair can pro-
duce and interpret this format. It’s not quite as efficient as
gzip. If you think for a moment, you’ll realize that zip/
unzip can’t be as efficient as separate tar/gzip because
in the former the compression is done to each file in the
archive, not to the archive as a whole. This means that you
don’t get the economies of collapsing common sequences in
the larger file because there is extra header information to
provide the tar-like functionality.

$ man compress | zip | wc -c
adding: - (deflated 63%)

3275

And how about bzip2? Built around an algorithm from a
different family, Burroughs-Wheeler compression, bzip2 is
even more efficient.

$ man compress | bzip2 | wc -c
3050

The man page says that bzip2 is faster and produces files
typically 10-15% smaller than gzip.

As with compress and gzip, there’s even a tar flag, -I, to
produce and recognize bzip2 files on-the-fly.

But does it always compress? We know the answer is no.
But how can we look at this conveniently? Let’s just feed it
random bit patterns and look at the size change.

First, we need a random file of a known size. We can get that
by using dd to copy from /dev/urandom to a scratch file.

$ dd if=/dev/urandom ibs=1024k/
count=1 > /tmp/random_bits
1+0 records in
2048+0 records out
$ wc -c /tmp/random_bits
1048576 /tmp/random_bits

The file /dev/urandom, contains random bit patterns
generated by the kernel’s random-number generator. A cou-
sin of /dev/null, it will return as many random bits as you
ask for. See random(4) man page for more details. We use
the command dd to grab the number of bits we want–one
1,024k block.

We suggest you not let the output go to your screen,
because arbitrary bit patterns can do very odd things to ter-
minal emulators. If you’re curious about what random noise
looks like, you can peruse /tmp/random_bits with either a
text editor or od, both of which convert the bytes to safer
representations.

We tried running /tmp/random bits through strings,
(which extracts all printable strings), and then discovered
ours contained the complete works of Shakespeare, but only
the first time. Every other time it looked like it was either
random garbage, or the complete works of Shakespeare–in
Klingon.

Now let’s use that random file to see how good the compres-
sion schemes are. Here’s a shell script to test them.

1 #!/bin/sh
2 # $Id: compression ratios,v 1.3 … jsh

Exp jsh $

3 # find the size of the compressed file
4 csize() {
5 dd if=$source ibs=${kb}k/

count=1 2>/dev/null |
6 $filter |
7 wc -c
8 }

9 # calculate how much we compressed
10 cratio() {
11 echo "
12 scale=4
13 $(csize)/(${kb}*1024)
14 " |
15 bc -l
16 }

17 # calculate compression ratios
18 # for $kb Kb file,
19 # $samples times
20 # for each filter
21 source=${1:-/dev/urandom}

22 kb=${2:-1}
23 nsamples=${3:-5}

34 SW Expert ■ March 2001

http://www.unisys.com/unisys/lzw/

24 for filter in compress 'zip -q' gzip bzip2
25 do
26 echo $filter:
27 for j in $(seq 1 $nsamples)
28 do
29 echo -ne '\t'
30 cratio $filter
31 done
32 done

This may require a little explanation.
Lines 1 and 2 are our usual: line 1 tells the kernel that

this is a POSIX shell script; line 2 is a bookkeeping line for
RCS, because we keep everything under source-code control.
We think these two lines are a must for professional shell
programming.

Lines 4 to 8 are a shell function, csize, that generates a
random file of a fixed size, compresses it, and returns the num-
ber of characters in the compressed file. Line 5 generates the
file (in the same way we did earlier, though we’ve parameter-
ized the file size), line 6 compresses it, and line 7 gives us the
character count.

Lines 9 to 16 are a second function, cratio, that
calculates the ratio of compressed file size to original file size.
Here, we’re using echo to feed a full program to bc -l. Line
12 truncates output to four decimal places, and line 13 says
to divide the size of the compressed file by the original file
size. We put the program in double quotes to protect bc’s
syntactic elements, such as ‘)’, from the shell.

Lines 21, 22, and 23 set parameters used elsewhere in the
program: the source of the input bits, the number of kilo-
bytes to use from the source, and the number of times to try
each filter. Each can be set from the command line, but has a
default value. For example, the source is the first command-
line argument, but the first argument is missing (or empty),
the default source to compress is /dev/urandom.

The remainder of the program is a pair of nested loops.
The inner loop, lines 27 to 31, prints the compression ratio
for $nsamples (default = 5) samples from $source. Line 29
indents this output by a tab stop to make it easier to read.
The outer loop does this for each compression filter. (The
zip filter chatters needlessly to standard error, and we shut it
up with its -q switch.) So, running this, what can we see?
First, with the defaults.

$ compression_ratios
compress:
1.2441
1.2470
1.2402
1.2441
1.2412

zip -q:
1.1181
1.1181
1.1181
1.1181
1.1181

gzip:

1.0224
1.0224
1.0224
1.0224
1.0224

bzip2:
1.2958
1.2832
1.2919
1.2832
1.2880

That’s correct. All four compression schemes are actually
expanding the random, 1 Kb bit patterns that they get from
/dev/urandom. The gzip algorithm seems to do the best,
and the bzip2 algorithm the worst. Increasing the size of the
input to a megabyte dramatically improves the performance
of everything but compress.

$ compression_ratios /dev/urandom 1024
compress:
1.2377
1.2382
1.2383
1.2389
1.2398

zip -q:
1.0002
1.0002
1.0002
1.0002
1.0002

gzip:
1.0001
1.0001
1.0001
1.0001
1.0001

bzip2:
1.0045
1.0046
1.0045
1.0046
1.0046

A quick look with od makes the reason clear. Using gzip as
our example gives us the results found in Listing 1 (Page 36).

These filters are smart enough not to try to compress
random data; they simply wrap the original file in a small
header and trailer. The larger the input file, the lower the
overhead.

In contrast, bzip2 is actually doing a little work–the
ratios vary a little from run to run–but not too much. The
overhead on a 1 MB file of random data is typically around
5,000 bytes.

So what are these filters good for? Ordered data. Instead of
taking input from /dev/urandom, let’s take it from /dev/
zero, which emits a stream of all zeroes.

SW Expert ■ March 2001 35

Work

Work

36 SW Expert ■ March 2001

$ compression_ratios /dev/zero 1024
compress:
.0017
.0017
.0017
.0017
.0017

zip -q:
.0010
.0010
.0010
.0010
.0010

gzip:
.0010
.0010
.0010
.0010
.0010

bzip2:
0
0
0
0
0

Wait … the ratio for bzip is zero? Remember, we only
asked for four significant digits.

dd if=/dev/zero ibs=1024k count=1 2>/dev/null |
bzip2 | wc -c
45

In other words, bzip2 turns a megabyte of zeroes into a 45
byte file.

Further
The field of data compression is rich. On the other hand,

we didn’t really write this column to teach you about data
compression: we wrote it to show you how easily we could
amuse ourselves using UNIX tools to expand our knowledge.
Until a week ago, we’d never heard of bzip2. The first few
folks we talked to about this had never even heard of either
/dev/urandom or /dev/zero. There may be other things in
here that are new to you, too. Meanwhile, here are some sites
you can go to for further reading about the specific algo-
rithms:

• gzip: http://www.gzip.org; http://www.cdrom.
com/pub/infozip/zlib/.

• zip: http://ftp.freesoftware.com/pub/
infozip/ index.html/.

• bzip2: ftp://sourceware.cygnus.com/pub/
bzip2/docs/manual_toc.html/.

For both gzip and bzip2 there are libraries you can link
into your program to call the associated functions directly.

Until next time, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) is currently
living in the Pacific Northwest, where he spends his time writing
UNIX software in a large development organization and fighting
damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at Minolta-QMS Inc.
in Boulder, CO, building laser printer firmware. Before he worked
for QMS, he operated his own consulting firm and did a lot of
other things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/~copeland/work or alter-
nately at ftp://ftp.cpg.com/pub/Work.

Listing 1. Results of gzip

$ od -c /tmp/random_bits | head
0000000 331 q % _ H 264 b m , 373 315 370 221 354 330 252
0000020 ~ b 245 \v 275 \ 341 \n 362 304 205 212 \v 261 B 020
0000040 200 (345 9 336 2 244 a e 327 @ 370 333 377 373 0
0000060 \ 221 352 006 \r 177 326 301 227 337 C 205 d 020 \b 001
0000100 367 272 \0 024 376 352 200 A 345 226 \r 037 | x 312 \
0000120 202 025 326 245 226 355 232 s 373 B 355 333 2 ^ 312 M
0000140 020 031 | 232 \b 341 V * 016 g t 3 I 210 020 325
0000160 210 { 331 335 333 t 342 J 306 q 207 343 305 243 E s
0000200 237 Y 304 370 b 003 332 322 363 1 \0 276 253 251 ? k
0000220 g u 204 W 234 ‘ 222 230 263 017 h 346 4 364 S
$ gzip < /tmp/random_bits | od -c | head
0000000 037 213 \b \0 020 001 Y : \0 003 001 \0 004 377 373 331
0000020 q % _ H 264 b m , 373 315 370 221 354 330 252 ~
0000040 b 245 \v 275 \ 341 \n 362 304 205 212 \v 261 B 020 200
0000060 (345 9 336 2 244 a e 327 @ 370 333 377 373 0 \
0000100 221 352 006 \r 177 326 301 227 337 C 205 d 020 \b 001 367
0000120 272 \0 024 376 352 200 A 345 226 \r 037 | x 312 \ 202
0000140 025 326 245 226 355 232 s 373 B 355 333 2 ^ 312 M 020
0000160 031 | 232 \b 341 V * 016 g t 3 I 210 020 325 210
0000200 { 331 335 333 t 342 J 306 q 207 343 305 243 E s 237
0000220 Y 304 370 b 003 332 322 363 1 \0 276 253 251 ? k g

http://www.gzip.org/
http://www.cdrom.com/pub/infozip/zlib/
http://www.cdrom.com/pub/infozip/zlib/
http://ftp.freesoftware.com/pub/infozip/index.html
ftp://sourceware.cygnus.com/pub/bzip2/docs/manual_toc.html
http://alumni.caltech.edu/~copeland/work
ftp://ftp.cpg.com/pub/Work

	Squishing Data
	Abstract Compressionism
	Squishy History
	Binary
	Listing 1. Results of gzip

	Further

