
Work
by Jeffreys Copeland and Haemer

42 SW Expert ■ November 2000

MM
ore than a year ago, we got
a note from our friend John
McMullen, Canada’s best

technical writer, which we still haven’t
gotten around to answering properly.
John had just written an awk program
that converts input for the troff table
preprocessor tbl into HTML. This is a
useful tool when you want to generate
Web pages from your troff input. One
of the things John told us at the time
was, “I’m kind of a brute-force guy, so
when you rewrite it in Perl (which I’m
sure you will) you can make it elegant.
However, considering that program-
ming is not my first language (innuendo
is), I’m pleased to have it work.”

We won’t claim that this is elegant,
and indeed, it doesn’t handle some of the
odd cases of the tbl input language, but
it does generate reasonable HTML for
the mainstream cases.

Since we’re some of the few people
left in the Western Hemisphere who still
use troff as our principal text processing
language, you may wonder why you’d be

interested. Because we’re exploring a
general trick here of processing a whole
chunk of text from one language into
another, and you may be able to adapt
it for something a little closer to home.
Since you probably don’t use tbl, let’s
quickly review what its input looks like.

To begin with, tbl only looks at input
lines between the TS and TE macros; all
other lines are passed through unmolest-
ed. Within that TS/TE pair, the table
specification begins with a set of global
options, ending with a semicolon. The
three most common options center the
table, enclose each entry in a box, and
change the character to separate columns
(the default is horizontal tab).

.TS

center allbox tab(#);

...

.TE

The table itself begins with rules for
aligning each column, called the “for-
mat section,” and then the data. A very

simple example, showing each child’s
earnings from household chores this
week, would be:

l n .

Allie#15.75

James#8.50

The possible column’s alignments
are left, right, center and numeric, all
specified by their initials. In numeric
columns, the data is aligned by its deci-
mal points. You can provide more than
one column specification if you wish,
separating them with commas or new-
lines, and you can provide a rule across
the table. The last specification is reused
as necessary.

c c , l n .

child#earnings

_

Allie#15.75

James#7.50

All this together would produce:

One satisfactory answer …
is to use a table to show the
numbers. Tables usually
outperform graphics in
reporting on small data
sets of 20 numbers or less.
– Edward Tufte, “The
Visual Display of Quanti-
tative Information”

Talent imitates, but
genius steals.
– Thomas Stearns Eliot

SC
OT

T
RO

BE
RT

S

Weighting Tables

Work

child earnings

Allie 15.75

James 8.50

(The horizontal rule is redundant if you’ve specified
allbox, so we took the latter out of the example above.)

There are additional wrinkles, but we’ll discuss them as we
handle them in our code.

The Basic Processor
We begin our Perl script in the usual way, with a prolog

and some global variables:

#! /usr/bin/perl -w

tbl-to-html converter: a strict filter

$ID: htbl,v 1.9 2000/09/02 00:38:41 ...

use strict;

my @table_options;

my @fmt_lines;

my $tabchar;

(Okay, they aren’t really global variables. Because they are
introduced with the keyword my, they have scope only in this
module, but that’s a nit.)

Where to from there? If you get stuck in the minutiae of
column specifiers and spanned columns and rows and text
blocks and partial rules, and lions and tigers and bears (oh,
my), you quickly get bogged down in details and the prob-
lem looks intractable. However, on the surface, handling a
troff file with embedded tbl is really quite simple:

First, read the file, processing only the lines between TS and
TE; pass everything else unchanged. Next, within a TS/TE pair:
process the global options ending with a semicolon, collect the
format section, and process each line of the table based on the
format section.

Pretty simple, right? Let’s begin with the first item:

while (grab_non_tbl()) {

parse_tbl(grab_tbl());

}

In other words, grab the stuff up to a TS macro, then pass
the text up to the next TE macro to parse_tbl().

It turns out that grab_non_tbl() and grab_tbl() are
pretty simple given that we can set Perl’s record separator.

sub grab_non_tbl {

$/ = ".TS\n";

$_ = <>;

print if($_);

return ! eof STDIN;

}

sub grab_tbl {

$/ = ".TE\n";

$_ = <>;

}

In the first routine, we set the record separator, $/, to
the table introducer, read a single record–that is, the text up
to a TS line–and emit it. If we read to the end of the file,
return false.

We get to the second routine when we know we’ve seen a
table beginning, so we change the record separator to TE, and
then read and return a single record containing the whole table.
We’re assuming that the input actually contains a TE macro.
What if it doesn’t? We leave a fix for graceful recovery as an exer-
cise for the reader. You’ll need to fix the code that puts a
TE into the output, too.

What happens next? That’s the job for parse_tbl(),
which is where we start to really worry about the details.

Inside a Table
Starting the routine is (as always) simple.

sub parse_tbl {

my $tbl = shift;

my $options = "";

my $htmlopt = "";

my $fmt = "";

We get the whole table body as the argument, and we set up
variables for the options (both in tbl and HTML forms) and for
the format lines.

We need to begin the code by stripping the options off
the table, and storing them in an array.

get the options for the table, if any

$options = $1

if(($tbl =~ s/(^.*);\s*\n//));

@table_options = split /[,]+/, $options;

We immediately check that array to see if the table’s global
options have changed the tab character.

and now parse the options

if((my @tabchar =

grep(/tab/, @table_options))) {

only the last tab spec counts

($tabchar = $tabchar[-1]) =~ s/tab\((.)\)/$1/;

44 SW Expert ■ November 2000

We’re some of

the few people

in the Western

Hemisphere who

still use troff.

} else {

$tabchar = "\t";

}

Notice that we’ve carefully allowed for the possibility of
multiple tab(x) entries in the options; we only look at the
last one. (Remember that Perl’s $foo[-1] gives us the last
entry in the array, and that we can have an array and a scalar
with the same name.)

Continuing the same thought, we check for the allbox
and center options, converting these to the appropriate
HTML clauses, and then outputting our first HTML direc-
tives, including the opening <TABLE> tag.

$htmlopt .= " BORDER=\"2\""

if(grep(/allbox/, @table_options));

print "<CENTER>"

if(grep(/center/, @table_options));

table setup

print "<TABLE$htmlopt>\n";

One of the interesting features of tbl is that you can provide
multiple segments in the table, each with a new set of format
specifications, but separated by .T& lines. In other words, our
example above could have been rendered as the following:

.TS

center tab(#);

c c .

child#earnings

_

.T&

l n .

Allie#15.75

James#8.50

.TE

This means that within our table processing code, we want
to only grab the current segment for processing. That is, we
peel off the part of the table up to the next TE or T& macro.

grab each segment separated by .T&

while($tbl =~ s/^(.+?)\n\.T[\&E]\n//s) {

tbl_segment($1);

}

Our first regular expression to perform this task was
s/^(.+)T[E]//s. The s qualifier is correct: it spans lines,
allowing the dot in a regular expression to match newlines. The
fatal error was the (.+) clause, which is, in regular expression
parlance, “greedy.” This means that it matches everything until
the part of the regular expression following it is matched, includ-
ing intervening instances of the closing clause. To give a con-
crete example, in our last rendition of the table a few paragraphs
back, (.+) would happily have matched the T& in the middle
of the table, leaving the \n\.T[\&E]\n to be matched only
against the TE that closes the table. To prevent this, we use the
question mark modifier, saying (.+?). This only matches until
the following part of the expression is matched the first time.

(OO guru Dave Taenzer claims that the difference between
developing in C++ and Perl is that C++ programmers say, “I
wonder why that didn’t work,” while Perl programmers say, “I
wonder why that worked.”)

What do we do with the part of the table we’ve stripped off
this way? We send it on, without the trailing macro, to our rou-
tine table_segment(), which we’ll discuss shortly.

After as many calls to table_segment() as we need, we
finish up our table by adding the closing HTML tags to our
output stream:

table cleanup

print "</TABLE>\n";

print "</CENTER>"

if(grep(/center/, @table_options));

print ".TE\n";

}

Note that we’ve output both the opening TS and the closing
TE. Why? We’re presumably going to turn this file into HTML,
so why would we want to maintain these macros? Because the
macro package we use to do the conversion may want to do
some special handling for the TS/TE pair. If not, the down-
stream programs can strip them out without further action.

46 SW Expert ■ November 2000

Work

Processing the table segment in tbl_segment() is simply
a matter of splitting the formatting section from the lines of
the table, and then regurgitating the lines of the table in
HTML form.

sub tbl_segment {

my $seg = shift;

strip off the column formats

$seg =~ s/^([^.]+)\.\s*\n//s;

The column formats end on a line with a period as its last
text character. We strip them off from our scalar variable $seg
for the moment.

associate vert rules with columns

(my $fmt = $1) =~ s/\s+\|/|/g;

my @fmt = split / *[\n,] */, $fmt;

Once we’ve got them, we simultaneously assign them into a
variable $fmt and convert lines like

c | l | r

into

c| l| r

What does this mean? tbl allows us to use | to represent a
vertical line between columns. We want to associate it with
the column it follows. This means that the count of elements
in the array @fmt is the same as the number of columns we
expect to produce. Of course, HTML’s table mechanism does
not actually support arbitrary vertical rules, so we’ll ignore the |
specifiers as we proceed.

(This omission of rules doesn’t bother us: On matter of style,
we defer to the opinion of George Bernard Shaw, who once
complained, “The only one thing that never looks right is a
rule. There is not in existence a page with a rule on it that can’t
be instantly and obviously improved by taking the rule out.”)

Now we’ve got the format in @fmt and the remainder of
the table segment in $seg. Each line in $seg represents a line
in the table, and we have one format in @fmt per line of the
table–repeating the last one if necessary–so the processing is
really very simple.

table body

foreach (split /\n/, $seg) {

chomp;

tbl_line($fmt[0], $_);

shift @fmt if($#fmt > 0);

}

}

Well, maybe it’s not so simple. What happens in
tbl_line()? Pushing our problems away until later has
become a nasty habit in this project.

The Hard Part
This brings us down to what, at least at first glance, seems

complicated. We’ve got a format specifier, such as r n and a
line of text such as Allie#15.50, out of which we want to
generate a row of an HTML table, such as,

<TR><TD ALIGN="right"> Allie

<TD ALIGN="char" CHAR="."> 15.50

</TR>

Why the HTML non-breaking space characters? Because we
need a little extra side bearing on the table entries, otherwise
they mush together on the screen.

There’s another variation we need to take care of. It’s possible
to have data span columns. We use this, for example, if we want
to have a heading bridge several columns. We’ll have to deal
with this if we see a column format of s. Similarly, we may see
a data item containing \̂ , which is a column that’s spanned
vertically, that is, a data item that takes up more than one row.
We’ll handle these as we come to them in the input data.

From here, we’ll take the problem in bite-sized pieces, and
make it simple again.

We begin tbl_line() by taking the format $fmt and the
row $line off the stack. We also reset the array that will con-
tain the formatting information.

sub tbl_line {

my $fmt = shift;

my $line = shift;

my @fmt = { };

We make some changes to the format specifier before we
split it into its array. First, we completely remove the vertical
rules we discussed earlier. (Why not elide them sooner? Because
we may later figure out how to handle them with the limited
facilities in HTML, or we may decide to process them in some
other way. Anticipating either possibility, it’s better to remove
them at the last moment.) Next, we collapse the spanned
columns so they are attached to their predecessors. After that,
we have a variable with one “word’’ for each column, and we
can split it into the @fmt array.

get the format specifier...

$fmt =~ s/\|//g; # elide vertical rules

$fmt =~ s/ s/s/ig; # collapse spanned cols

@fmt = split / +/, $fmt;

From there, we need to convert the format keywords into
HTML specifiers by looping over each item in @fmt.

foreach (@fmt) {

my $l;

s/[^rlcns]+//i;

s/r/ALIGN="right"/i ||

s/l/ALIGN="left"/i ||

s/c/ALIGN="center"/i ||

s/n/ALIGN="char" CHAR="."/i;

SW Expert ■ November 2000 47

Work

Work
s/(s+)/length($1)+1/e;

s/\d+$/ COLSPAN=\"$&"/;

}

There are several things to note in this code, which is really
the heart of the conversion. First, we remove the format speci-
fiers we don’t recognize. This means that
when we’re done, there is no leftover cruft
in the new HTML specifier. Next, the basic
substitution lines are joined by logical ORs.
This means that our substitution for n does
not act on ALIGN= generating an HTML
tag that begins ALIGALIGN=… The last thing
to note is the way we count up the spanned
column specifiers to create the COLSPAN
keyword. That needs to be handled in two
stages because the COLSPAN= confuses Perl
when we are using it in conjunction with
the e modifier to expand the right-hand
side of the substitution.

What next? We check for the very special
case of a horizontal rule in the middle of the table. If the line
contains only an underscore, we make a table row containing
a rule that spans all the columns.

special case of a line just containing _

if($line eq "_") {

print "<TR><TD COLSPAN=\"",

$#fmt+1, "\"><HR></TR>\n";

return;

}

We need to split up the line from the scalar $line into an
array @line, based on the tab character we discovered among
the global options.

get the items

my @line = split /$tabchar/, $line;

After that, we’re home free: we generate the actual row in
the HTML version of the table.

now generate the table row:

print "<TR>";

while($#fmt >= 0 && $#line >= 0) {

my $colfmt = shift @fmt;

my $colitem = shift @line;

ignore elements from spanned rows

next if($colitem eq "\\\^");

a horizontal rule item

if($colitem eq "_") {

print "<TD><HR>\n ";

next;

}

print "<TD $colfmt>",

" $colitem \n ";

}

print "</TR>\n";

}

The row is bracketed by HTML <TR> and </TR> tags, and
each column is introduced by a <TD> tag. If the column data
represents a vertically spanned row, that is, the data item is \̂ ,

we ignore it. For our purposes here, rather than
being vertically centered, those items will be
aligned at the top. (We have a sketchy solution
to this problem, which is too large to show in
the margins of this column: it takes as much
code as the rest of this routine combined. We
leave a better solution as an exercise for the
reader.) We also do some special handling if
there is a horizontal rule in the column. Other-
wise, we just use the column format we gener-
ated in our ganged substitution above.

While it would be an efficiency improve-
ment to convert the format section to HTML
immediately after we read it, we like having the
format conversion happening right before the

generation of the HTML row. This means that we have format
specifiers that are being converted repeatedly, but that’s a small
price to pay. What’s the overall result? The table we showed
you at the beginning of the column ends up in HTML as:

<CENTER><TABLE>

<TR><TD ALIGN="center"> child

<TD ALIGN="center"> earnings

</TR>

<TR><TD COLSPAN="2"><HR></TR>

<TR><TD ALIGN="left"> Allie

<TD ALIGN="char" CHAR="."> 15.75

</TR>

<TR><TD ALIGN="left"> James

<TD ALIGN="char" CHAR="."> 8.50

</TR>

</TABLE></CENTER>

That’s all there is to it. One hundred-thirty-odd lines of
code to match the functionality of a troff preprocessor, avail-
able in the lobby on your way out, or from the usual Web
page. As we tuck our HTML code into our saddle bags, we’ll
tell you that next month we’ll be talking about reading again.
Until then, we wish you happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) is currently
living in the Pacific Northwest, where he spends his time writing
UNIX software in a large development organization and fighting
damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at Minolta-QMS Inc.
in Boulder, CO, building laser printer firmware. Before he worked for
QMS, he operated his own consulting firm and did a lot of other
things, like everyone else in the software industry.

Note: The software from this and past Work columns is available
at http://alumni.caltech.edu/~copeland/work or alternately at
ftp://ftp.cpg.com/pub/Work.

48 SW Expert ■ November 2000

http://www.alumni.caltech.edu/~copeland/work

	Weighting Tables
	The Basic Processor
	Inside a Table
	The Hard Part

