
Work
by Jeffreys Copeland and Haemer

SW Expert ■ September 2000 39

WW
ell buckaroos, we’re back.
Last month, we talked about
eXtreme Programming (XP),

particularly about eXtreme Testing (XT),
–writing tests as you code, or even
before, instead of after you’re done.

This month, we want to drive the
point home with an example.

Our first problem is how to find a
good example.

We need a problem that we can
explain, and write tests for before we
start on the code. We also need to be
able to show and explain both the tests
and the code when we are done. All
this needs to fit in our 2,000-word
column limit.

Our solution? Theft.
After we gave him a copy of our last

month’s column, our friend, Dave Taen-
zer, pointed us at a wonderful article by
Kent Beck and Erich Gamma, at http:
//members.pingnet.ch/gamma/

junit.htm, which takes on this same
chore in Java.

Perfect. We’ll just solve the problem

all over again in Perl.
Look at how much we get from this

simple intellectual piracy: XP advocates
writing tests before writing code. What
tests should we write before we begin
coding? Easy. The tests we want to pass
are already specified in the Beck/Gamma
article. We’ll just translate them into Perl,
using the Test and Test::Harness
modules (which will give us a chance to
talk about those modules, too).

Moreover, whenever we can’t figure
out how to explain something, we can
just claim that the solution is trivial and
refer you to the original article.

Useful tip: if you’re going to steal,
steal from people who know what they
are doing.

• Kent Beck invented XP in the
first place. Read extreme Programming
explained [ISBN 201-61641-6]. (We
said that last month, but a little repeti-
tion never hurts.)

• Erich Gamma is the first author
of the popular Gang-of-Four book,
Design Patterns: Elements of Reusable

Object-Oriented Software (Erich Gam-
ma, Richard Helm, Ralph Johnson and
John Vlissides, ISBN 0-201-63361-2).

We won’t include any of their code
here–we’re pirates, not plagarists–but
to make comparisons as easy as possible
for those reading the articles side-by-
side, we’ll try to parallel the Beck and
Gamma design as closely as we can.

Money, Money, Money…
First we’ll sketch the problem. The

goal is to create a class that stores and
adds collections of money.

Beck and Gamma work in Switzer-
land, an international banking center,
so the objects must be able to hold more
than one kind of currency. We also need
two basic operations: addition and a test
for equality.

• If one object has 200 Kuwaiti
dinars and a second has 12 dinars and
300 Romanian lei, their sum should
have 212 Kuwaiti dinars and 300
Romanian lei.

• Two objects that each have exactly

Quality isn’t really a free
variable. The only possible
values are “excellent’’ and
“insanely excellent,’’ depend-
ing on whether lives are at
stake or not. Otherwise you
don’t enjoy your work, you
don’t work well, and the pro-
ject goes down the drain.
– extreme Programming
explained, Kent Beck

Animal testing is a terrible
idea; they get all nervous
and give the wrong answers.
–Stephen Fry

Testy, Aren’t We?
SC

OT
T

RO
BE

RT
S

Work

12 dollars, 16 yen and 50 Swiss francs
should have the same values, even if they
are different objects.

The Tests
Tests first. The structure of all our tests

are similar, so we’ll go through one line-by-
line to explain how they’re laid out.

The first thing to test is whether we’ve
implemented comparisons correctly. We
know from the outset what tests we’ll use:
the very same ones Kent and Eric do. Here
is our dramatic reading of the first set:

In Figure 1, Line 1 is a shebang line to
invoke the perl interpreter, with the -w flag,
to warn of possible errors. Line 2 is auto-
matically generated, configuration-manage-
ment information from RCS. Invoking the
nit-picky strict pragma is Line 3. These
three lines are our nod to the homily,
“Cleanliness is next to Godliness.”

Line 4 brings in the Test module,
which defines some utility functions for
testing. We’ll be using plan() and ok().
As with all other things Perl, Test.pm is
available from the CPAN,
(http://www.perl.com/CPAN/).

Line 5 introduces our test fixture: a
context to run the tests in. Typically, a
test fixture is a set of routines, constants
and variables to be shared among a set of
tests. We’ll show you ours in a minute; for
now, we’ll say that it creates things like
$f12chf, a Money object containing a
dozen Swiss francs.

Lines 6 through 9 use ok(), which tests
an observed outcome against an expected
one.

In Test.pm version 1.14, ok() accepts
strings, numbers, regular expressions and
even function pointers as arguments.
Function pointers are dereferenced and
evaluated, and regular expressions trigger a
regex match, so you can look for patterns,
not just exact matches. Invoked with a sin-
gle argument, ok() just looks to see
whether it’s non-zero.

The first test asks whether $f12chf
has a value. It had better. It also tests the
use of !=. The second asks if $f12chf
equals itself; the third, whether it has the
same value as a newly created object con-
taining 12 more Swiss francs; and the
fourth, whether it has a different value
from $f14chf, which contains 14 Swiss
francs. The fourth also tests the use of ne.

The last line calls plan() to say we’ll be

40 SW Expert ■ September 2000

Figure 1

1 #!/usr/bin/perl -w
2 # $Id: test_equals,v 1.5 2000/06/13 03:08:40 jsh Exp jsh $

3 use strict;
4 use Test;
5 use Money_fixture;

6 ok($f12chf != undef);
7 ok($f12chf, $f12chf);
8 ok($f12chf, new Money(CHF=>12));
9 ok($f12chf ne $f14chf);

10 BEGIN { plan tests => 4 }

Figure 2

1 #!/usr/bin/perl -w
2 # $Id: Money_fixture.pm,v 1.2 2000/06/13 01:56:03 jsh Exp $

3 package Money_fixture;

4 use strict;
5 use Exporter;
6 use Money;

7 our (@ISA, @EXPORT);
8 @ISA = qw(Exporter);
9 @EXPORT = qw($f12chf $f14chf $f26chf $f7usd $f21usd $fmb1 $fmb2);

10 our $f12chf = new Money(CHF=>12);
11 our $f14chf = new Money(CHF=>14);
12 our $f26chf = new Money(CHF=>26);
13 our $f7usd = new Money(USD=>7);
14 our $f21usd = new Money(USD=>21);
15 our $fmb1 = new Money(CHF=>12, USD=>7);
16 our $fmb2 = new Money(CHF=>14, USD=>21);

17 1;

Figure 3

1 #!/usr/bin/perl -w
2 # $Id: test_bag_equals,v 1.4 2000/06/13 03:08:40 jsh Exp jsh $

3 use strict;
4 use Test;
5 use Money_fixture;

6 ok($fmb1 != undef);
7 ok($fmb1, $fmb1);
8 ok($fmb1 != $f12chf);
9 ok($f12chf != $fmb1);
10 ok($f7usd != $fmb1);
11 ok($fmb1 != $fmb2);

12 BEGIN { plan tests => 6 }

running four tests. Putting the call inside a
BEGIN{} provides this information at compile
time. Test.pm forces us to do this and aborts
the compilation if we don’t.

Now’s a good time to show our test fixture
(Figure 2).

As advertised earlier, the module just creates
a few Money objects. Some only have one cur-
rency type, others have two. Lines like our

$fmb1 = new MoF 0

ney(CHF=>12, USD=>7);

are what we think calls to our constructor
should look like. Remember, we still haven’t
written any code; writing the tests is forcing us
to define the interfaces.

By letting our constructor, which we call
new() out of habit, take currency/amount
pairs as arguments, it can also be an initializer.
(Beck and Gamma use separate classes for
objects that hold a single kind of currency
and more than one kind. This seems like
overkill for Perl’s relaxed view of the world.)

The keyword our is new to Perl 5.6 and
declares lexically scoped globals. Earlier Perls
needed a use vars pragma.

These objects in hand, we can show our
tranlation of Beck and Gamma’s second buck-
et (Figure 3), which checks whether bags of
mixed currency compare correctly.

Adding Addition
What should addition look like? The sim-

plest design we can think of is this:

$a = new Money(USD=>10);

$b = new Money(USD=>20);

$c = $a + $b;

Let’s assume we can do that. Figure 4 shows
the Beck and Gamma simple test case, and Fig-
ure 5, their tests for mixed-currency addition.

Each of our tests is just a Perl program; we’ll
run individual tests by executing them from
the command line.

Having written all the tests and designed
the interfaces, all that’s left is writing the class.
And how will we know when we’ve written it?

The tests will pass.

The Code
Figure 6 shows our first attempt.
We won’t do a full exegesis–our focus is the

testing, not the code–but the perl is straight-
forward. Two noteworthy points:

• Our comparison functions overload both

SW Expert ■ September 2000 41

Work

Figure 4

1 #!/usr/bin/perl -w
2 # $Id: test_simple_add,v 1.4 2000/06/13 03:08:40 jsh Exp jsh $

3 use strict;
4 use Test;
5 use Money_fixture;

6 ok($f26chf, $f12chf + $f14chf);

7 BEGIN { plan tests => 1 }

Figure 5

1 #!/usr/bin/perl -w
2 # $Id: test_mixed_add,v 1.4 2000/06/13 03:08:40 jsh Exp jsh $

3 use strict;
4 use Test;
5 use Money_fixture;

6 ok($fmb1, $f12chf + $f7usd);
7 ok($fmb2, $f21usd + $f14chf);
8 ok($fmb1 + $fmb2, $f7usd + $f21usd + $f26chf);
9 ok($fmb1 + new Money(CHF=>-12), $f7usd);

10 BEGIN { plan tests => 4 }

Figure 6

1 #!/usr/bin/perl -w
2 # $Id: Money.orig.pm,v 1.1 2000/06/13 03:08:40 jsh Exp jsh $

3 use strict;
4 package Money;

5 sub new {
6 my $class = shift;
7 bless {@_}, $class;
8 }

9 sub equals {
10 use overload ('==' => \&equals, 'eq' => \&equals);

11 my ($s1, $s2) = @_;
12 my @k1 = keys %$s1;
13 my @k2 = keys %$s2;
14 return 0 unless @k1 == @k2;
15 foreach (@k1) {
16 return 0 unless $s1->{$_} == $s2->{$_};
17 }
18 1;
19 }

20 sub not_equals {
21 use overload ('!=' => \¬_equals, 'ne' => \¬_equals);
22 !equals @_;
23 }

24 sub stringify {
25 use overload('""' => \&stringify); Continued on Page 42

Work

==/!= and eq/neq because we’re not sure which pair we’ll
want to use.

• We wrote a stringify function, overloading '""', to let
print() pretty-print the contents of a Money object. Oh, but
wait: we need to test stringify.

#!/usr/bin/perl -w

$Id: test_printing,v 1.1 2000/06/13 03:08:40 jsh Exp jsh $

use strict;

use Test;

use Money_fixture;

ok("$f12chf", "CHF => 12");

ok("$fmb1", "CHF => 12, USD => 7");

BEGIN { plan tests => 2 }

Writing this new test reveals a design problem. A test
requires predictable output, so stringify(), needs print hash
elements in a predictable order. We fix stringify to look like
this:

sub stringify {

use overload('""' => \&stringify);

my $m = shift;

my $s;

foreach (sort keys %$m) {

$s .= $s ? ", $_ => $m->{$_}" : "$_ => $m->{$_}";

}

$s;

}

At last, we’re ready to run the test suite. As soon as we

do–voila! bugs. Comparison and simple addition seem to work
fine, but our mixed addition fails.

1..4

ok 1

ok 2

not ok 3

Test 3 got:'HASH(0x80ea938)'(./test_mixed_add at line 12)

Expected: 'HASH(0x82339a0)'

not ok 4

Test 4 got:'HASH(0x8234f44)'(./test_mixed_add at line 13)

Expected: 'USD => 7'

In fact, our addition results aren’t even printing in the
error output. We already know that Money objects print cor-
rectly, so … addition must not be giving us Money objects.

Perl’s lack of strict-typing has let us write a plus() that
does not return the kind of object we want. Here’s our next
version.

sub plus {

use overload('+' => \&plus);

my ($m1, $m2) = @_;

my %s = (%$m1, %$m2);

my $s = new Money;

foreach (keys %s) {

$s->{$_} = (defined $m1->{$_} ? $m1->{$_} : 0) +

(defined $m2->{$_} ? $m2->{$_} : 0);

}

$s;

}

Should we stop and write a test to check that plus()
returns a Money object? No. We already have one. That’s how
we knew it didn’t!

Okay, now the third test passes, but the fourth still doesn’t,
for the same reason that Beck and Gamma’s first version didn’t
pass their tests: Our code thinks that CHF=>0, USD=>7 is dif-
ferent from USD=>7. Paralleling the original paper, we’ll let
plus() eliminate ‘0’ values before returning.

my $sum = (defined $m1->{$_} ? $m1->{$_} : 0) +

(defined $m2->{$_} ? $m2->{$_} : 0);

$s->{$_} = $sum if $sum;

With this change, everything passes and we’re done.

Test Harnesses
Having illustrated unit tests, Beck and Gamma move up a

level to show a test harness: a program that runs a suite of tests,
and reports the results in a stereotyped way.

Beck and Gamma develop a TestSuite object and a
TestRunner tool to drive and oversee the Java test in their
paper.

Since Perl provides a Test::Harness module, Figure 7,
built to work with Test, we will use it to write our very own

42 SW Expert ■ September 2000

26 my $s = "";
27 while (my ($k,$v) = each %{$_[0]}) {
28 $s .= ", " if $s;
29 $s .= "$k => $v";
30 }
31 $s;
32 }

33 sub plus {
34 use overload('+' => \&plus);

35 my ($m1, $m2) = @_;
36 my %s = (%$m1, %$m2);
37 my $s = {};
38 foreach (keys %s) {
39 $s->{$_} = (defined $m1->{$_} ? $m1->{$_} : 0) +
40 (defined $m2->{$_} ? $m2->{$_} : 0);
41 }
42 $s;
43 }

44 1;

SW Expert ■ September 2000 43

Work
tiny harness. Here’s what its output looks like:

test_bag_equal......ok

test_equal..........ok

test_mixed_ad.......ok

test_printin........ok

test_simple_ad......ok

test_subclassin.....ok

All tests successful.

Files=6, Tests=21,

3 wallclock secs

(2.65 cusr + 0.19 csys = 2.84 CPU)

Nearly all the work is done by line six, which
runs every test specified on the command line
(or all tests whose name starts with test_, by
default). runtest() normally prints its timing
and statistics summary (the last two lines of our
sample output) to STDERR. By enclosing our call
in an eval(), the string is captured in $@.

Our call to catch() prints this to STDOUT,
but if we set up a cron job to invoke our harness
with a -m flag, catch() will use mail_me
() to mail us the summary. This lets us promote
conformance tests into regularly scheduled
regression tests.

We Finish With Testing (for Now)
Okay. We’re done.
Dave Taenzer, who started us on this journey

by giving us a book, says software development
methodologies are like fad diets: no matter how many haven’t
worked, people are always eager to try another. “The high-
carbohydrate-low-fat diet? No, no. You want the grapefruit-
and-protein diet.” “You’ve been using strict typing? No
wonder you’ve been having problems! You want typeless lan-
guages.”

Despite this mild cynicism, Dave likes both extreme Program-
ming explained and Design Patterns: Elements of Reusable Object-
Oriented Software. In our experience, Dave’s recommendations
are worth listening to.

We are also longtime fans and practitioners of eXtreme
Testing: developing conformance tests and test harnesses from
the beginning, and then writing code to pass to the conformance
tests, instead of testing after the fact. We always like anything
that plays to our prejudices.

We hope we’ve helped some readers see that good testing
needn’t mean armies of low-level, “keyboard monkeys” walking
through testing scripts. Good testing is fun, intellectually chal-
lenging and technical.

We’ve skipped some things that deserve mentioning. We’ll
mention three and shut up:

• Perhaps the best-known software test harness is Cygnus’s
DejaGnu, originally built by Rob Savoye, on top of Expect to
oversee tests of Cygnus’s suite of GNU utilities. DejaGnu is very
mature and can handle jobs as sophisticated as driving tests from
one machine that cross-compile on a second machine and run

on a third. If you need a really sophisticated test harness, instead
of something simple and roll-your-own, consider DejaGnu
(http://dejagnu.sourceforge.net/).

• The simple Test and Test::Harness modules worked
fine for us. As they say in the Perl world, though, There Is
More Than One Way To Do It (pronounced “tim-toady”).
http://c2.com/cgi/wiki?PerlUnit, has pointers to
several projects to develop testing modules more like junit,
including an ongoing Open Source project that you can join
and help develop.

• Kent Beck has written us to correct our extreme capitaliza-
tion: “… the capitalization is only funny on the book cover. XP
is spelled out ‘Extreme Programming’.” Thanks, Kent.

Until next time, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) is currently
living in the Pacific Northwest, where he spends his time writing
UNIX software in a large development organization and fighting
damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at Minolta-QMS
Inc. in Boulder, CO, building laser printer firmware. Before he
worked for QMS, he operated his own consulting firm and did a
lot of other things, like everyone else in the software industry.

Note: The software from this and past Work columns is available
at http://alumni.caltech.edu/~copeland/work or alternately at
ftp://ftp.cpg.com/pub/Work.

Figure 7

1 #!/usr/bin/perl -w -s
2 # $Id: money_suite,v 1.5 2000/06/13 03:08:40 jsh Exp jsh $

3 use strict;
4 use Test::Harness;
5 our $m;# -m switch for "mail me"

6 eval { runtests(@ARGV ? @ARGV : <test_*>); };
7 catch($@);

8 sub catch {
9 my $results = shift;
10 print $results;
11 mail_me ($results) if $m;
12 }

13 sub mail_me {
14 my $message = shift;
15 my $author = (getpwuid($<))[0];
16 open(MAIL, "|/usr/lib/sendmail -oi -t")
17 or die "Can't fork sendmail: $!\n";

18 print MAIL <<"EOF";
19 From: $0 (Your Friendly Test Harness)
20 To: $author;
21 Subject: Test summary

22 $message

23 EOF
24 close(MAIL) or die "Argh! Can't close(MAIL)\n: $!\n";
25 }

	Testy, Aren't We?
	The Tests
	Adding Addition
	The Code
	We Finish With Testing (for Now)
	Test Harnesses

