
Work
by Jeffreys Copeland and Haemer

SW Expert ■ June 2000 43

Escher, Penrose, Foyer
WW

e were recently reading
Simon Singh’s entertaining
book, Fermat’s Enigma

(published by Walker & Co., 1997,
ISBN 0-8027-1331-9), about the quest
to prove Fermat’s Last Theorem. In the
process of discussing modular forms in
complex hyperbolic space and reductio
ad absurdum proofs, Singh touches on
tessellations and tilings. Tessellation, or
tiling a plane with regular figures, was
made famous by Dutch artist M.C.
Escher, and written about extensively
by Douglas R. Hofstadter in his won-
derful book Gödel, Escher, Bach (pub-
lished by Basic Books, 1979, ISBN
0-465-02685-0).

Before that, though…

We Get Letters…
In our February column, “Back

to Basic(s)” (Page 42, http://sw.
expert.com/C9/SE.C9.FEB.00.

pdf), we passed on a problem from one
of our Windows-bound friends, Michael
Mendelson. Michael had a C program to

randomize the lines of a text file. “I’m
sure,” he said, “you could write this one
in half the lines from the shell.” We
tossed that, in turn, to you, Gentle
Reader, and you responded with a vari-
ety of interesting solutions. We don’t
have space to show them all, but they
fell into a few categories.

First, we had some shell-like solutions.
Erik Jacobsen and Geoff Clare provided
ones that use awk to prepend random
numbers to each line, and then sed or
cut to remove them after sorting.

Marty McGowan provided us with a
shell-only solution. It provides a series
of one-line shell functions, triggered by
an invocation of the first one. This has
the fascinating feature of allowing you
to invoke the script on itself without
damage.

We had some Perl-based solutions,
like this one from O’Shaughnessy Evans:

perl -api -0777 -F'\n' \

-e 's/^.*?$/splice

(@F,rand ($#F+1),1)/meg;

print STDERR

"randomized $ARGV\n"'

Our favorite submission was a patho-
logical entry from Peter Kernan:

perl -pe 'splice @a, rand $.,

0, $_} for(@a) {'

Note the curly braces; they’re correct.
Because we’ve used the -p flag, the state-
ment on the command line is wrapped in

while (<>) { ... }

so the braces match up. To see this, use
the flags -MO=Deparse, which will show
you what the Perl compiler thinks this
code means.

Thank you one and all for your
entertaining bits of code. We had fun
looking at them.

Back to Tiles
One of the interesting features of tes-

sellations is that they’re often both rota-
tionally and translationally symmetric. In

“Every house is a
fixer-upper.”
– Arthur D. Hlavaty

“A house is a machine
for keeping your books
dry.”
– Tom Shippey,
paraphrasing
Le Corbusier

ER
IC

 M
UE

LL
ER

http://sw.expert.com/C9/SE.C9.FEB.00.pdf

Work

other words, you can turn them, or move the origin of your grid
without changing the layout of the pattern. But Singh reminds
us of some work British mathematician Roger Penrose did in the
1970s with two shapes that can equally well tile a plane. The kite
and dart (see Figures 1 and 2) can be combined into a number
of patterns that are completely nonsymmetrical.

Oddly enough, we read this at about the same time Copeland
realized he needed to retile the entryway of his house. “Wouldn’t
it be interesting,” we said, “if we could get tiles of kites and darts
in interesting colors, and then redo the entryway in a Penrose

pattern?” We thought we’d see just
how nonsymmetrical we could make
the patterns. We printed out a couple
of sheets of kites and darts on bright-
ly colored paper, and brought them
home. It’s not as easy as it looks, and
every time the cats climbed up on the
table to help, we lost all our work.

“This,” we thought to ourselves,
“is a job for graphics software.” We
have a phenomenal graphical engine
in just about every printer around us:
all we have to do is write the tiling
software primitives in PostScript.

Those are nice shapes, you’re saying to yourself, but how do
I draw them? It’s pretty simple. We begin with some definitions
and parameters, which we incorporate into a PostScript prolog:

/tan { dup sin exch cos div } def
/dela 54 def
/delb 18 def
/delk delb def
/theta 72 def
/phi 144 def
/side 100 def
/sideb side dela cos mul delb cos div def
/span 2 side mul cos dela mul def
/kiteht side def
/dartht side theta 2 div cos mul
sideb phi 2 div cos mul sub def

This defines the apex angles of the dart and kite (theta at
the “bottom,” phi at the “top”), the angles of the shoulders
(del) and the length of the long and short sides (side and
sideb, respectively). We also define the height from point to
point (dartht and kiteht), and the distance between the
shoulders (span).

Given those parameters, drawing a dart is fairly easy. We
just give PostScript some driving directions:

/dartpath {

currentpoint translate

newpath 0 0 moveto

theta 2 div neg rotate 0 side rlineto

phi rotate 0 sideb rlineto

180 phi sub neg rotate 0 sideb rlineto

closepath

} def

In the event that’s not obvious, let’s give you a dramatic
reading of what we just did. We began by adjusting the origin of
our coordinate system to the current point. Beginning there, we
started a new path, turned to the right theta/2 degrees, moved
forward side, turned to the right phi degrees and moved for-
ward by sideb. At that point, we’d travelled the path for the
right side of the dart. We finished by making the oblique angle
turn at the dart’s top, moved forward by another sideb and
closed the path by returning to the origin.

Notice that we haven’t drawn the path at all, merely describ-
ed what it is. This means that we can write two complemen-
tary routines to use this one. The first draws the outline of the
dart, and the second takes a color off the stack and draws a
filled-in dart:

/dart {

gsave

dartpath

stroke

grestore

} def

/dartcolor {

gsave

dartpath

setrgbcolor

fill

grestore

} def

As we said, the first routine, dart, draws the dart’s outline,
standing on its point at the current position. The second,
dartcolor, draws a dart shaded in the color specified by the
red/green/blue (RGB) triple on the stack. Notice that we’re
carefully saving and restoring the graphic state each time we
draw the dart. This means that when we finish the dart using
either routine, even though dartpath has done violence to
our coordinate system, we have the same origin and rotation
that we did when we started.

Our definition for kites is remarkably similar to the defini-
tion for darts. To wit:

/kitepath {

currentpoint translate

newpath 0 0 moveto

theta 2 div neg rotate 0 side rlineto

180 dela delb add sub rotate 0 sideb rlineto

180 phi sub rotate 0 sideb rlineto

closepath

} def

/kite {

gsave

kitepath

stroke

grestore

} def

44 SW Expert ■ June 2000

Figure 2. Dart

Figure 1. Kite

SW Expert ■ June 2000 45

Work
/kitecolor {

gsave

kitepath

setrgbcolor

fill

grestore

} def

Interlocked Tiles
That was easy. Now we have to write some routines to place

tiles relative to one another. We begin with a handful of rou-
tines that give us motion relative to the size of a tile. For exam-
ple, if we want to rotate a tile to the left or right, we need:

/plustheta { theta rotate } def

/minustheta { theta neg rotate } def

This means we can say something like:

dart plustheta kite

Similarly, we’ll need fractional rotations:

/plushalf { theta 2 div rotate } def

/minushalf { theta 2 div neg rotate } def

Also, we’ll want some translations along the breadths and
heights of the tiles:

/pluskite { 0 kiteht translate } def

/plusdart { 0 dartht translate } def

/plusside { 0 side translate } def

We need two additional primitive motions and a service rou-
tine: “turn completely around,” “make sure I’m positioned
here” (this is useful just before a tile) and “print a mark for
debugging purposes.” To wit:

/aboutface { 180 rotate } def

/here { 0 0 moveto } def

/mark { 0 0 moveto (v) show } def

One other interesting primitive is “pick a random color.” Post-
Script provides us with an integer random number generator.
Do you remember what its range is? Neither do we, except that
it gives us an integer, so we take a modulo of the low-order bits
and scale into the range [0,1). We repeat three times to give us
our RGB triple. This allows us to provide primitives for ran-
domly colored darts and kites, Dart and Kite. We also seed
the random number generator:

/color { 0 1 2

{ pop rand 256 mod 256 div } for

} def

/Dart { color dartcolor } def

/Kite { color kitecolor } def

realtime srand

46 SW Expert ■ June 2000

Work
(An aside: Special mention in a future column for the first

reader to give us an attribution for the following: “The genera-
tion of random numbers is too important to be left to chance.”
We tripped over the quotation not so long ago, but our source
had no idea where it came from. We thought it might be from
Volume 2 of Knuth’s The Art of Computer Programming, but we
can’t find it there.)

Now we can build some very interesting composite motions.
For example, if we want to add a tile to the left or right we
could use the following:

/addleft { plustheta here } def

/addright { minustheta here } def

dart addleft kite addright addright dart

(Notice that we can compound these.) Similarly, we may want
to add a tile upside down from the current one, as you can see
in Figure 3, where the added tile is in color:

/addleftinvert {

plushalf plusside aboutface

minushalf here

} def

/addrightinvert {

minushalf plusside aboutface

plushalf here

} def

here kite addrightinvert Dart

In Figure 4, we put our tiles nose-to-nose, and again, the sec-
ond tile is in color. Why do we always move the height of a dart
plus a kite? Because it doesn’t matter which order they’re in; we
can’t have tiles of the same kind facing each other like this:

/addtop {

0 kiteht dartht add

translate aboutface here

} def

here kite addtop Dart

Last, we have a series of composite motions that allow us to
stack the tiles nose-to-nose, but offset (see Figure 5):

/addtopleftdart {

plushalf 0 side dartht add

translate aboutface here

Figure 3 Figure 4

} def

/addtoprightdart {

minushalf 0 side dartht add

translate aboutface here

} def

/addtopleftkite {

addtop minushalf here

} def

/addtoprightkite {

addtop plushalf here

} def

here dart addtopleftkite Kite

Some of these might be easier to read if we were adherents
of the “EveryWordCapitalized” school of variable naming, or
even the “underscore_between_words” school. However, what-
ever these composite drawing functions are named, we can
make interesting patterns.

For example, Figure 6 has a tile pattern that’s translation-
ally symmetric. We drew it with the following:

here

kite addrightinvert dart addleftinvert

kite addrightinvert dart

addtop kite addleftinvert dart

addrightinvert kite addleftinvert dart

However, we can make much more interesting patterns. See
Figure 7, which was drawn using the following:

here kite addleft kite addleft kite addleft

kite addleft kite addtopleftdart dart

addleftinvert dart addright kite addrightinvert

dart addleftinvert dart addright kite

addrightinvert dart addleftinvert dart addright

dart addrightinvert dart addleftinvert kite

addright kite addrightinvert dart addleftinvert

dart addright kite addtop dart addleftinvert

kite addrightinvert kite addleftinvert kite

addright kite addrightinvert dart

Notice that this is almost, but not quite, rotationally symmet-
ric. It’s the sort of pattern we were looking for in the first place
for Copeland’s entryway.

Challenge
We can manually lay out as many tiles as we want using

these primitives. It’s a lot more stable than the cat-endangered
cutouts on the dining room table. On the other hand, it’s still
trial and error.

The next logical step is one we don’t know how to do, so
here’s the part where we turn to you, our helpful and energetic
readers: What’s the algorithm we need at this point to lay tiles
out automatically in a random pattern? This is a second oppor-
tunity to share your knowledge with us, and the rest of our
readers, in exchange for having your name made famous in
these pages.

Until then, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) is cur-
rently living in the Pacific Northwest, where he spends his time
writing UNIX software in a large development organization and
fighting damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked
for QMS, he operated his own consulting firm and did a lot of
other things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/~copeland/work or
alternately at ftp://ftp.expert.com/pub/Work.

SW Expert ■ June 2000 47

Work

Figure 6

Figure 7Figure 5

mailto:copeland@alumni.caltech.edu
mailto:jsh@usenix.org
http://alumni.caltech.edu/~copeland/work
ftp://ftp.expert.com/pub/Work

	Escher, Penrose, Foyer
	We Get Letters...
	Back to Tiles
	Figure 1. Kite
	Figure 2. Dart

	Interlocked Tiles
	Challenge
	Figure 5
	Figure 6
	Figure 7

