
Work
by Jeffreys Copeland and Haemer

42 SW Expert  ■ February 2000

Back to Basic(s)
WW

e have been working with
UNIX for so long that we
sometimes take it for grant-

ed. This column is for people who have
been so immersed in non-UNIX systems
that they haven’t yet advanced to the
1970s. Yes, we mean in systems like
Windows and MVS.

Lottery Numbers
A couple of months ago, we received

a note from a Romanian friend who
wanted to dip her toes into UNIX. She
had spent most of her professional career
working on DOS/Windows boxes, and
was ready to try something new. She
wrote to us, asking for advice.

A good place to start, we decided,
was to attack a simple problem she’d
already tried elsewhere.

Why a simple problem? Brian W. Ker-
nighan and Dennis M. Ritchie explain,
in the first section of the first chapter of
The C Programming Language (published
by Prentice Hall Inc., now in its second
edition, 1988, ISBN 0-13-110370-9): 

1.1 Getting Started 
The only way to learn a new program-

ming language is by writing programs in
it. The first program to write is the same
for all languages: 

Print the words 
hello, world

This is the basic hurdle; to leap over it
you have to be able to create the program
text somewhere, compile it successfully,
load it, run it, and find out where your
output went. With these mechanical
details mastered, everything else is com-
paratively easy.

And it’s not even as easy as Kernighan
and Ritchie make it sound. Our friend
recounts an early experience:

I remember when I first met Visual
C++, I only wanted to make a simple ran-
dom lottery number generator. My first
steps into the IT world were FORTRAN,
COBOL, assembly, all of them on a main-
frame. After many years spent far from the
IT world, I came across a PC with this 
idiotic Windows system. I had to learn C,
so I thought of this little program. OK, I

thought of it, read a book of C (Ritchie
and Kernighan)–of course, I didn’t read it
all, I tried to follow the steps. Alas! By no
means could I have guessed where the C
compiler was. I had to first make a project,
then change all kinds of settings that were
“Chinese” to me, or better said, I was
“Chinese” to them. In order to get that
beast to write the lottery numbers on the
screen (ON A BLACK SCREEN!), I had
to waste days on end, helpless and clueless,
thinking I must be the last idiot on the
planet. Finally, I managed it: using Bor-
land C++ 3.0, of course, because there 
was no rand() function in Visual C++.

This problem was well-defined, so it
seemed worth trying on UNIX in order
to show her what a UNIX-y solution
would look like.

Our first question was, of course,
“What does a lottery ticket look like?”
Romanian lottery tickets, it turns out,
contain three picks. Each lottery pick 
is made up of half a dozen, unique, ran-
dom numbers from the set {1… 49}, 
and each ticket requires three picks.

AL
EX

GR
OS

S

“UNIX…is not so 
much a product as 
it is a painstakingly 
compiled oral 
history of the hacker
subculture. It is our
Gilgamesh epic.”
– Neal Stephenson, 
“In the Beginning 
was the Command
Line,” 1999



SW Expert  ■ February 2000 43

Work

Here’s an example:

15 42 16 28 7 40
8 13 34 31 20 17
18 16 38 49 10 12

(We suspect that any single, matching pick is a winner, but
because we’re not going to actually buy a ticket, not having
the Romanian lei to spread around, we don’t care if we’re
wrong.)

/bin/sh
Here’s what we did, step-by-step:

First, we wanted to count to 49:

$ seq 49
1
2
3
...

Then, we needed 49 random integers:

$ for i in $(seq 49) do; echo $RANDOM; done
12978
17637
31835
...

Next, we added line numbers:

$ for i in $(seq 49); do echo $RANDOM; done | nl
1  21931
2  9178
3  24191
...

Then, we sorted them numerically by the second field:

$ for i in $(seq 49); do echo $RANDOM; done |
> nl | sort -n +1

41  623
46  984
28  1596
...

Next, to get our seven out of 49, we grabbed the top seven:

$ for i in $(seq 49); do echo $RANDOM; done |
> nl | sort -n +1 | head -7

33  786
34  1384
16  1414
11  2496
23  2684
35  3180
3  3404

And, of course, we just wanted the indices:

$ for i in $(seq 49); do echo $RANDOM; done |

> nl | sort -n +1 | head -7 | awk '{print $1}'

30

34

25

1

11

31

40

Well, that did what we wanted, so we made it into a program:

$ echo "for i in \$(seq 49); do echo \$RANDOM; \
done \
| nl | sort -n +1 | head -7 | \
awk '{print \$1}'" > lottery
$ chmod +x lottery
$ lottery
1
11
42
36
17
14
41

Voilà.
You need three sets? Sure. We just start the process again by

running it three times:

$ for i in $(seq 3); do lottery; done
6
24
25
49
1
35
21
25
43
28
2
23
14
32
15
17
44
43
33
13
29

But we don’t like that format. So let’s put each pick on a 
separate line:

$ for i in $(seq 3); do lottery | fmt; done

22 12 17 44 47 23 21

27 8 17 34 35 33 18

4 17 32 16 47 25 6

(Oh heck, we just looked back at the problem specification and
realized we only want six random numbers between 1 and 49,
not seven. Whatever shall we do? We’ll leave this as an exercise
for even the least experienced of our readers.)



Work

44 SW Expert  ■ February 2000

We could do all this interactively, and nearly instantly,
because the UNIX shell lets you recall and edit command
lines. Although POSIX only guarantees vi -like editing com-
mands, the shells we’ve used also provide an emacs-like mode
in case you like that better.

When this feature first became widely available in the late
1980s, it quickly changed the way we interacted with the shell.

Our typical approach is now to do much of our shell-level
programming on the fly. At each step, we recall and edit a pre-
vious command, mostly just appending a new filter to do
something new to the data.

Because a good UNIX filter takes its input from stdin

and writes to stdout , we often test what we write from the

keyboard and watch the results on the screen. When we are
finally satisfied, we capture what we have been doing and
turn it into an executable shell script. (We use this same
process in a substantial amount of our Perl programming.)

UNIX is full of tiny tools that filter and transform text.
The sense we get when we’re programming is one of popping
together little, existing tools, looking at the output, and then
adding some new transformation to get to the next stage.

Production Code
But what if we wanted “production” code? 
The answer is: we’d do the same thing. For a straightforward

task like this, the most important factor to consider is develop-
ment time. As Tom Christiansen says: 

Q: What’s the difference in speed between an
application in Perl and an application in C++? 

A: About three weeks. :-)
It is, however, worth enhancing our program a

bit. Listing 1 shows a production version that adds
comments, does its own formatting and takes an
optional command-line argument to specify how
many picks to generate.

One noteworthy feature of this code is the 
internal documentation. We have simply co-opted
Perl’s pod format. The various pod tools encourage
you to keep documentation and code in the same
file so they’ll stay in synch, and produce a wide
variety of documentation formats from a single,
well-defined input format. They work for our 
shell script, too, because the exit statement at 
the end of our executable code prevents the shell
from trying to interpret the documentation, while
the various pod tools (pod2html , pod2latex ,
pod2man, pod2text , pod2usage and pod

select ) will ignore everything before the first
pod directive.

A Good Programmer Can Write 
FORTRAN in any Language

If you’ve tried running this code, you may see
that we’ve glossed over a step. In our examples,
we’ve used a utility called seq . This trivial, yet
amazingly useful UNIX tool isn’t found in the
POSIX standard, or even on most UNIX distri-
butions. It should be clear what it does: seq

counts. We first saw seq used in The UNIX Pro-
gramming Environment by Brian W. Kernighan
and Rob Pike (published by Prentice Hall, 1984,
ISBN 0-13-937681-X), but we now use it so
much that we’d be lost without it. In fact, we
were, just the other day.

A few weeks ago, we were asked to help judge a
practice ACM programming contest. While wait-
ing for the contestants’ entries to be submitted, we
did what we do compulsively: write code. We sat
down with another judge, Dan Crawl, to explore
how we might solve one of the programs in the

Listing 1. Production Code
#!/bin/sh
# Romanian lottery program:
#    print lottery tickets with NPICK picks (default 3)
#    each pick is 6 random, non-repeated integers from 1..49
# $Id: lottery,v 1.6 1999/11/27 00:24:46 jsh Exp $

pick1() {
RANDOM=$RANDOM          # reset the seed 

for i in $(seq 49)        # 49 random numbers 
do

echo $RANDOM
done | 
nl |               # index the numbers 
sort -n +1 |       # randomize indices by sorting random data 
head -6 |               # grab the first 6 
awk 'print $1' |        # now throw away the sort key 
fmt                # and put all 6 on one line
}

case $# in
0) N=3 ;;
1) N=$1 ;;
*) echo "usage: $0 [npicks]" 1>&2 ; exit 1 ;;

esac

for j in $(seq $N)
do

pick1
done

exit

##############################################################

=head1 NAME

lottery - print "6 from 49" lottery picks

=head1 SYNOPSIS

B<lottery [npicks]>

=head1 DESCRIPTION

B<lottery> prints B<seq> lottery picks, one per line (default: 3)

Each pick is six, non-repeated integers out of 1..49.

=head1 SEE ALSO

sh(1)

=head1 AUTHORS 

Jeffrey L. Copeland <copeland@alumni.caltech.edu>
Jeffrey S. Haemer <jsh@usenix.org>



SW Expert  ■ February 2000 45

Work
shell (more on this anon) and immediately ran into a brick wall:
the machine we were working on didn’t have seq(1) .

When you’re hacking, getting there is all the fun. We shifted
gears and wrote a seq . Listing 2 shows what we came up with. 

Here, too, we show our colors. For us, programming in
UNIX feels like bolting together prefabricated parts from a
brilliantly designed erector set. Many of our workaday tasks
can be done in minutes with the right pieces at hand. Some-
times, however, in the midst of our work, we discover we don’t
have something we need. Rather than go back to the drawing
board to redesign a custom solution (say, in Visual C++), we
simply pause to manufacture the missing part, then pop it 
into place.

Occasionally, this approach pushes us over the edge. One 
of the problems in the programming contest was to count the
atoms in a formula, such as tetraethyl lead, Pb(CH3CH2)4,
and produce output something like the following:

C: 8

H: 20

Pb: 1

Our first reaction was to consider a pipeline with these steps: 
1. Replace each distinct element with a distinct prime, turn 
the numbers into exponents, and everything else into multi-
plications, like this: 2*(3*5^3*3*5^2)^4 .
2. Pipe the expression to usr/bin/bc for evaluation. 
3. Pipe the result to /usr/games/factor for prime factorization.
4. Reverse the transformation in Step 1.
That’s deeply warped.

When drunk enough on Green Chartreuse, Haemer will 
confess to having written an entire object-oriented language in
the shell [Jeffrey S. Haemer, “A New Object-Oriented Program-
ming Language: sh,” Proceedings of the USENIX Summer 1994
Technical Conference, Boston, MA.]

Two (or More) Can Play at this Game
Here’s a chance to try your hand. Last week, we got a note

from another Windows-bound friend, Michael Mendelson, who
said he, too, wanted to start playing with UNIX. When we sent
him our Romanian lottery story, he responded with a similar
story of his own, culminating with a 154-line C program that
he’d written early in his career to randomize the lines of a file. 
In his note, he says, “I’m sure you could write this one in half
the lines from the shell. I’d like to learn some of those tools.”

His program reads in a file, shuffles the lines into random
order, overwrites the original file with the result and announces
the file has been randomized.

How small a shell solution can you come up with? Our
first cut took about 15 lines. Let us know how much better
you can do. We’ll pass on your results to Michael.

Last, we received a note from an observant reader who
points out that the anonymous “A picture is worth a thou-
sand words,” with which we began our November and
December columns (“Pictures,” November 1999, Page 38,
and “Slides,” December 1999, Page 36), is actually a quote
from Fred R. Ballard in Printer’s Ink , March 10, 1927. We’re

always pleased when our humble efforts reach the desks of the
literate and well-read. Happy trails!   ✒

Jeffrey Copeland (copeland@alumni.caltech.edu ) is cur-
rently living in the Pacific Northwest, where he spends his time
writing UNIX software in a large development organization and
fighting damp rot.

Jeffrey S. Haemer (jsh@usenix.org ) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked for
QMS, he operated his own consulting firm and did a lot of other
things, like everyone else in the software industry.

Note: The software from this and past Work columns is available
at http://alumni.caltech.edu/~copeland/work or alternately
at ftp://ftp.expert.com/pub/Work .

Listing 2. Homemade seq
#!/usr/bin/perl -w
# $Id: seq,v 1.3 1999/12/13 19:38:13 jeff Exp $

use strict;

my $usage = "usage: $0 [start] end"
unless @ARGV == 2;

unshift @ARGV, 1 if @ARGV == 1;
die $usage unless (@ARGV == 2);

foreach ($ARGV[0]..$ARGV[1]) {
print "$_\n";

} 

=head1 NAME

seq - print a sequence

=head1 SYNOPSIS

seq [start] end

=head1 DESCRIPTION

C<seq> generates sequential integers

By default, it starts counting at 1.
For example, 

$ seq 3 5
3 
4 
5

=head1 BUGS

By little more than a lucky accident,
C<seq>
does odd, sometimes useful things
with non-integer arguments.
Not obvious that this is a bug.
Try this, for example:

$ seq cat dog

=head1 AUTHORS

Just a re-implementation of something used
in Kernighan and Pike, but never written
in there.
Maybe it's part of Plan 9 or something. 

Dan Crawl <crawl@cs.colorado.edu> 
Jeffrey S. Haemer <jsh@usenix.org> 
Jeffrey L. Copeland <copeland@alumni.caltech.edu>

mailto:copeland@alumni.caltech.edu
mailto:jsh@usenix.org
http://alumni.caltech.edu/~copeland/work
ftp://ftp.expert.com/pub/Work

	Back to Basic(s)
	Lottery Numbers
	/bin/sh
	Production Code
	Listing 1. Production Code

	A Good Programer Can Write FORTRAN in any Language
	Listing 2. Homemade seq

	Two (or More) Can Play at this Game


