ALEX GROSS

ast time, we talked about photo-
L graphs, so this time we thought

we'd discuss slides. Now that lap-
top computers are ubiquitous, people
have defeated the idea of traveling light
by choosing to cart around 25-pound
projectors that connect to their 10-pound
laptops to do presentations. The current
tool of choice for generating presenta-
tions is Microsoft Corp.’s PowerPoint. If
you like WYSIWYG word processing sys-
tems, and would rather use your mouse
than your keyboard, PowerPoint might
be the tool for you.

But back when overhead projectors
were predominantly used, people usually
brought in black-and-white slides—view-
graphs—for presentations, assuming there
would be a projector on-hand when they
got there. The tool of choice for produc-
ing viewgraphs—for us, at least—was the
-mv macro package for troff . Because
we would rather edit the map than the
territory, we almost always prefer to use
troff or TeX for any text-processing
exercise. (And because we'd rather carry a

36

Work

Slides

file folder of viewgraphs than 35 pounds
of computer and projector, we still favor
the old method.) Unfortunately, -mv
required a fair amount of markup. For-
tunately, Perl guru Tom Christiansen
wrote an alternative called perlpoint
an obvious pun on PowerPoint.

There are a number of other ways
to attack the problem. As UNIX bigots,
we've always favored any approach that
uses a tools-and-pipes solution. Certainly,
the -mv solution does that: we can build
diagrams and tables into our slides using
the troff preprocessors pic and tbl .

The other end of the spectrum-the
wrong approach, in our view—would be
to take some text marked up for slides,
have a huge markup language that allow-
ed for tables, pictures and equations, and
directly generate PostScript from that
language. (In this world-view, the Power-
Point solution is perhaps a step worse
because you don't even get to edit the
markup. But we realize that this is a
religious battle in which we may be
adherents of a shrinking cult.)

SW Expert m December 1999

“A picture is worth
a thousand words.”
— Anonymous

“Talks, speeches, articles
and resolutions should
all be concise and to
the point. Meetings
also should not go

on too long.”

— Mao Tse-tung

The tools-and-pipes solution allows
us some extra flexibility. We can make
some decisions about the structure of the
slides—a title, two levels of bullet items,
some font changes and so on-and decide
what the text markup for those will be.
Given a fixed set of markup rules—for
example, a title line is bracketed by
<TITLE>..</TITLE> —we can then
build a filter to translate each markup ele-
ment into the appropriate troff direc-
tives. Even better, because the structure
of troff allows us to encapsulate a series
of directives into a macro, we can simpli-
fy our markup translator by pushing
most of the troff ~ work into a macro
package. Later, if we wish to change the
appearance of our slides, we can modify
the macro package without having to
change anything about the markup of
the slide text or the filter. We can do this
because what we've used to mark up the
slides is structural information, not the
procedure for generating each element.

If you've followed our discussions of
Perl’s pod—that is, “Plain Old Documen-

tation”—language for documentation, you'll realize that it’s
exactly this kind of markup. It generally uses structural markup
without worrying about the way in which each title or heading
is going to be rendered. This is important because pod can be,
and normally is, translated into a number of different forms.
For example, there are pod2html| , pod2man and pod2tex
filters, and each will have a different way of rendering some
text in italic.

This is an example of the virtue of documented intermedi-
ate formats. By having the input and output formats of TeX,
troff ’s -man macros and HTML all carefully documented,
we can generate filters to be added before or after existing tools.

Back to Tom Christiansen’s solution: It uses the UNIX-like
approach of a Perl filter along with a groff ~ (the GNU ver-
sion of troff) macro package for formatting slides. We've
recently done some work on the macro package to add some
features, so we thought we'd discuss the whole package. Look
for it on the Comprehensive Perl Archive Network (CPAN)
at http://www.cpan.com/ . Because perlpoint uses a
simple structured markup, it’s also easy to build a filter to con-
vert perlpoint input to HTML. (Such a filter exists, called
pp2html , but even though it’s part of the perlpoint distri-
bution we won' discuss it here.)

Input Format and Script

Let’s begin with the input format and script, which will
allow you to see how things flow. The input format is very
simple, as shown in the following self-documenting test file:

=A perlpoint Test File

This file is an example of Perlpoint input

* The line beginning with = is the slide title.

* These lines beginning with asterisks are bullet items.

* |tis also possible to use font changes in the same
way we do in C<pod>.
For example, I<italics>.

* All work and no play makes a very long slide.

1) this is a display

2) test

3) where we have code
4) on 4 lines

INDEX

The only slightly obscure item in this example is the line con-
taining INDEX. It triggers the macros to produce an index of
the slides. This is helpful when you're conducting a presen-
tation and someone asks a question about “that slide a few
minutes ago labeled Middle East Religions.”

How does that get translated into slides? It’s pretty simple,
really. A command line like the following will do the trick:

SW Expert m December 1999

37

http://www.cpan.com/

pp2roff test.pp | groff - | Ip

The Perl script pp2roff deals with the troff ~ markup for
you, and then groff deals with the formatting. The pp2roff
script—which was originally written by Christiansen, and slight-
ly modified by us—is fairly straightforward (see Listing 1). Here
follows a dramatic reading.

We begin with the usual shebang line, use strict ~ and
-w, so Perl will keep us honest about grammar. Line 3 sets Perl’s
record separator to the empty string, which separates records
with a blank line rather than the usual newline. Lines 6 through
9 define the text to be used at the start of each slide: a comment
for a separator and the author tag from data we set up in lines

Listing 1. The pp2roff Script

1 #usr/local/bin/perl -w

2 use strict;

3 %=1

4 my $author = (getpwuid($<))[0];

5 my $title = @ARGV ? " \\- SARGV[0]" : "
6 my3$TOP = <<EOF;

7\

8 .au "$author$title”

9 EOF

10 print ".mso slidemacs\n.ns\n";
11 while (<>) {

12 chomp;

13 s\V\e/g;

14 s{*=\s*(*){$TOP\n.c "$1"\n};
15 if (IN\¥\s*/) {

16 # handle bullet items
17 s/n (?=\S)/lgm;

18 s{M*\s*H.2\n}gm;

19 }

20 if ("INDEX$/) {

21 # produce an index slide
22 print "\n.IX\n";

23 next;

24 }

25 if (I\[\t].9\S/s) {

26 s/ llgm;

27 print <<EO_DISPLAY;
28 b

29 .sz-7

30 .sp.5

31 $

32 sp.5

33 .sz+7

34 e

35 EO_DISPLAY

36 }else {

37 s{I<(*?)>H{\f2$1\\fP}g;
38 s{C<(*?)>}{\f(CB$1\\{P}g;
39 s{B<(.*?)>H\\f3$1\\{P}g;
40 s/\s*--\s*/ \\(en /g

41 if(1A,

42 print $_, "\n";

43 }

44 }

4 and 5. Line 10 produces the text to start the package of slides:
we read the slidemacs macro package—groff ’s.mso directive
is the same as troff ’s.so directive but it uses the macro pack-
age search rules, so it will begin looking in /usr/local/
share/groffitmac

Our major while loop beginning on line 11 reads each
record of the input—-remember they're now separated by blank
lines—and processes them. Line 13 ensures that backslashes aren't
eaten unnecessarily by troff . The if statement at line 15 pro-
cesses the bullet items tagged in our input file with an asterisk,
turning them into.2 macros for groff . Theif statement on
line 20 processes the INDEX line in the input.

There’s a slightly complicated if-else between lines 25
and 43 that bears a little study. In the if clause, we take any
block of lines beginning with white space, strip off the white
space and bracket the lines with a.b/.e pair of macros. Why?
This handles an inset display—generally, a code example. The
else clause, on the other hand, deals with pod -like font
changes, converting double-hyphens into en-dashes.

Fairly simple, right? Which means most of the magic of
what’s happening is pushed down into the slidemacs macro.

The Macros in Question

Space limitations prevent us from doing a complete reading
of slidemacs , but we’ll touch on the high points to give you
a flavor for some troff tricks you may not have seen. You can
collect the entire set of macros from our Web site, http://
alumni.caltech.edu/~copeland/work/ , or from CPAN.
We've heavily modified the slidemacs macro package from
the perlpoint distribution.

Let’s begin with the setup. We define whole flock of
numeric constants:

\" Parameters:

‘nr PW 11i

\" PW=paper width

‘nr PH 8.5i

\" PH=paper height

'nr MB 1i

\" MB=margin border

‘nr MT 0.5i

\" MT=margin text

'nr BW \n(PWu-\n(MBu-\n(MBu
\" BW-=border width

'nr TW \n(BWu-\n(MTu-\n(MTu
\" TW=text width

'nrC 0.5i

\" C=corner radius

'nr PT \n(MBu+\n(MTu

\" PT=page offset for text
'nr BB \n(PHu-\n(MBu

\" BB=bottom of box

\" 0.7i is amount the logo sticks up over line
'nr CH 0.6i

\" CH=height of logo (above base)/2
'nr BT \n(BBu-\n(CHu-1v

\" BT=bottom of text

38 SW Expert m December 1999

http://alumni.caltech.edu/~copeland/work/

Notice that we've calculated some of these from other values.
Also, we've used the single-quote mark as an introducer, rather
than the normal troff dot. This is a carryover from the origi-
nal and is overkill. As you may know, the single quote performs
the directive without doing a line break. For the setup, this is
probably unnecessary.

The next step is to set the parameters for troff

‘pl\n(PHu
IN\n(TWu

It \n(Twu
'evl
IN\n(TWu

It \n(TWu

'ev

'‘po \n(PTu
‘wh \n(BTu fa
'wh 0 hd

.em FL

'ds ff " *(DA ™
'de Ft\" footer
'ds ff\&\$1

We're setting up the line length and title length—Il and
It —in both the base and alternate environments. (Environ-
ments are troff s way of allowing you to have different setups

for the page headers, footers and body text. They can be extend-
ed to other uses, too, such as footnotes.) The alternate environ-
ment is the one in which we will draw the frame around the
box. We set up two traps with the .wh directive: one at the
top of the page, which invokes the header macro.hd , and one
that invokes the.fa macro at the bottom of the page. We also
ensure that we flush the last bullet item by invoking .FL as
the end-macro. Last, we set the footer text to the date, the DA
string, but we can reset it with the .Ft macro.

From all that setup, we proceed to the .c macro, which
gets translated from a line starting with an equal sign and
begins a slide. That is, pp2roff converts a line like

=This is a title
into
.c "This is a title"

Note the odd use of the .FL macro in the definition of .c
(more on this later).

dec

.FL\" finish the previous bullet item
.bp

.Sp 1v

in0

SW Expert m December 1999 39

.na

\"if we have an argument, it's the

\" first of a series of slides, else

\" we just increment the slide number

A\"and print it.

.ce \"the title line is centered

.ps +3\" and slightly larger

Jel@@\$1@ \\\

. ds @t "\$1

.nr@pl

\&\(@t

If\\n[index-on] \{\

.da @x \" -- divert to the index

\&\¥ (@t ... \n%

br

.da

A\

A\

Notice that this macro anticipates the possibility of being
invoked without an argument. To handle that case, we keep

a part number, @p and save the title string in @t We take the
slide title argument and append it to the @xdiversion in which
we are caching the titles. (For the uninitiated, a troff diver-
sion captures text into a buffer, but doesn't print it. It’s a trick
that allows you to save the text for a footnote, an index or other
text that is gathered out of sequence with its printing. Because
you can measure the aggregate height and width of the cap-
tured text, it also allows you to decide when you need to end
the body text so the whole footnote will fit on the page.)

Also notice that we've committed to using groff ~ with
slidemacs by not using a two-character register name,
which traditional troff requires. Finishing up the else
side of the if

el\\

. nr @p \\n(@p+1
\&*(@t (part \\n(@p)
A

.ps

we've incremented the part number and generated a title line
with the original title and part number, for example, “Sample
Slide (part 3).”

In practice, we only use one level in the bullet lists on our
slides. So even though we have different levels of bullet in the
macro package, the one we translate asterisks into from our
perlpoint input is.2:

.de 2

KP

.in 0.5i

i -Ww\(bu\h@0.15i@'u
\(bu\h@0.15i@\c
IFl@@\$1@ \&\$1

This is fairly simple: we do a negative indent slightly wider than
a bullet, we put out the bullet and, if there’s an argument, we
drop that text next to the bullet. If there’s no argument, it can
follow the macro because we have not done a line break. Note
that we didn't use the .FL macro, we used.KP instead. We'll
explain both of these tricks now.

You'll remember that we did some hand-waving above
in the.c macro, which starts a slide, allowing us to continue
onto a new slide with an incremented part number. This
feature lets us continue adding items to our slides without
having to worry about them overflowing. The other thing
required to make this feature work is to capture the bullet
item that would have forced the overflow onto a new page
and wait until the page break to print it. In other words, each
bullet item must be captured and cannot be printed until we
determine whether it will fit on the page. The .KP macro
starts the capture and the.FL macro does the flush:

.de KP \" start a keep for a new bullet item
.FL
di @k

The new bullet item is saved into diversion @k but only after
we've flushed the old bullet item with .FL :

.de FL\" flush the current bullet item
.br

ifl@\n(.z@@ \{\

. br

. di\" close the diversion

. \" bullet item diversion

. if\n(dnu>\\n(.tu .PF

. nf

.in0

. @k \" now print the bullet item
. in

. i

\

Remember that we're invoking .FL before we start the new
bullet. We don't even bother if there is no active diversion. It is
a peculiarity of troff that the name of the current diversion
is stored in a number register named.z . So if the string con-
tained in\n(.z is empty, we have no diversion and, hence,
no bullet item in progress.

On the other hand, if that register does contain some-
thing—presumably @k the name of the bullet diversion—we
close the diversion. If it is too long to fit on the page—that is,
if the diversion’s height in the dn register is more than the dis-
tance to the bottom-of-page trap in register .t —we invoke
.PF to finish the page. In any event, we print the last bullet
item by invoking the diversion as though it were a macro.

The .PF macro is pretty simple:

.de PF\" page flush for overflow slide

40 SW Expert m December 1999

{8
.Sp 1v

We rely on the ability of.c to remember the last title it was
given, and use it to begin the new page. This is an implicit
insertion of a line like the following into our input:

= Test slides (part 2)

The.sp generates the blank line we normally insert after a title.

Finishing Up
We only have a few more things to do to finish up the
macro package. The index is fairly simple:

.de IX\" print index

.nrindex-on 0 \" don't index the index
FL

.c "Slide Index"

.Sp

.nf

.@x

.nrindex-on 1 \" turn indexing back on

We turn off indexing by resetting the index-on number

register. This prevents our title line for the index slide from
appearing in the index. Then we flush the last slide, which
actually begins the index slide. To produce the body of the
index slide, we just spill the contents of the @xdiversion. We
finish by turning the index-on register back on, in case we
have more slides to come.

Last, we need to take a brief look at how we format code.
As we noted earlier, we bracket code with a pair of .b and
.6 Macros:

.deb

ftCB

.ps 23

.nr X 8X\w' 'u

ta H\nXu H\nXu +\nXu +\nXu \
H\nXu H\nXu +\nXu +\\nXu

.nf

.dee

ftR

.ps 23

Vs 23

fi

The.b macro forces us into Courier Bold font, sets the
point size, gives us tab stops at every eight spaces and sets us
to no-fill mode. The inverse .e macro returns us to the body
Roman font, regular point size and fill mode. (OK, our code
is not actually presented in a different point size, but we can
change these macros depending on the availability of fonts
on our printer.)

We've shown you some of the perlpoint package. It fills
an important niche now that with the advent of groff , the
-mv macro package is usually not available. Mostly, this has
been a tutorial in setting up troff ~ macros. Take this knowl-
edge and your own needs for presentation slides, and extend
perlpoint for your own niche. Then donate your extension
back to the Perl community by sending it to the CPAN or to
Tom Christiansen. Or as the Sirius Cybernetics robots say,
“Share and enjoy.”

Next time, we will continue the theme with a different
purpose-built macro package, which will allow you to amaze
your friends in an entirely different way.

Until then, happy trails. &

Jeffrey Copeland (copeland@alumni.caltech.edu) is cur-
rently living in the Pacific Northwest, where he spends his time
writing UNIX software in a large development organization and
fighting damp rot.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked for
QMS, he operated his own consulting firm and did a lot of other
things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/~copeland/work or
alternately at ftp://ftp.expert.com/pub/Work

42 SW Expert m December 1999

ftp://ftp.expert.com/pub/Work
http://alumni.caltech.edu/~copeland/work
mailto:jsh@usenix.org
mailto:copeland@alumni.caltech.edu

	Slides
	Input Format and Script
	Listing 1. The pp2roff Script

	The Macros in Question
	Finishing Up

