
Work
by Jeffreys Copeland and Haemer

38 SW Expert ■ November 1999

AL
EX

GR
OS

S

Pictures
OO

nce upon a time, a family
would go on vacation and
return with a dozen or more

little yellow and red (or green and
white) boxes of film to be developed.
Not anymore. Copeland recently
returned from a two-week swing
through California with 60 MB of
images loaded from his digital camera
onto his laptop.

While he claims the family vacation
was fun, we were both puzzled by what
to do with the photos. They were inter-
esting enough shots–San Francisco’s
Chinatown, beaches with fog, Santa
Monica Pier in the sunset–but the file
names, such as IMG00003/EX_15/

P0000234.JPG , were no good for
organizing the pictures. Worse, the soft-
ware that loads the pictures onto the
computer leaves the file with a date
stamp matching the transfer time,
not the time the picture was taken.

What do we know that can help
us? Well, we know that the pictures are
more or less in JPEG format, because

our old favorite image-display tool xv

says that’s what they are. (JPEG stands
for Joint Photographic Expert Group;
it’s a format that compresses the image
by, among other things, intentionally
throwing away some of the detail your
eyes can’t resolve.) But there’s more data
in the file than just the image. Let’s take
a look at one of the photo files:

$ mv IMG00003/EX_15/

P0000234.JPG p2.jpg

$ strings p2.jpg

Exif

Minolta Co., Ltd.

Dimage EX

0200

0100

1999:07:26 14:33:16

Minolta Co., Ltd.

Dimage EX

erence Platform

JPEG

So there is a date buried in the data
somewhere. In fact, that’s even the date

and time the picture was taken. So far,
so good.

A little investigation reveals that the
picture formats for digital cameras are
covered by ISO standard 12234, “Elec-
tronic Still Picture Imaging–Removable
Memory.” (Which was on the Web for
a while at the Photographic and Imag-
ing Manufacturers Association Web
site, but is no longer available.) The
particular format of these images is
called Exif, which was developed by
the Japan Electronic Industry Devel-
opment Association, or JEIDA. The
text of the standard is available by mail
order from Japan. Unfortunately, we
are not that patient.

On the other hand, we can conclude
(from ISO 12234) that while the Exif
files contain the JPEG image, it is pre-
ceded by a TIFF-format list of data
about the image, as a JPEG comment.

If you have no experience with
images, right about now you should
be asking, “What’s TIFF?” It’s the
Tagged Image File Format originally

“A picture is worth
a thousand words.”
– Anonymous

“If a picture were really
worth a thousand words,
people would draw that
saying instead.”
– Alan Haemer

SW Expert ■ November 1999 39

Work
developed by Aldus, and now owned by Adobe Systems Inc.
It is a kind of Swiss Army Knife for images, which allows you
to include fairly arbitrary data as tags in the image. Let’s take
a quick tour…

The data part of a TIFF file begins with either the charac-
ters II if the file is in little-endian byte order, or the characters
MMif it’s in big-endian byte order. This is followed by a short

containing the “arbitrary but carefully chosen” value of 42 .
Finally, we have a long specifying the
offset of the first image file directory.

An image file directory contains
a set of tags. It begins with a short

containing the count of entries in
the directory, followed by the entries
themselves. Each entry contains a
short with a tag identifier, a short

with the tag type, a long count for
the tag and a long containing the tag
value or a pointer to the tag data. For
example, our image file entry could consist of the following
(in little-endian order):

0f 01 02 00 12 00 00 00 6e 00 00 00

In other words, tag identifier 0x10f , of type 2 (that is,
ASCII), with count 0x12 (that is, 18 bytes long), at offset
0x6e into the data. Sure enough, in our example file, 110

bytes (that is, 0x6e) from the beginning of the TIFF data, we
have 18 bytes (including the trailing NUL) reading “Minolta
Co., Ltd.” The image file directory (IFD) ends with a long

representing the offset to the next IFD.

Organizing the Photos
We now know, in principle at least, how to dig out that

date-and-time stamp inside the picture file. Given that date
and time, we can write some software
to rename those annoying file names,
such as P0000234.JPG , to some-
thing more useful like 1999:07:26/

14:33:16 , which will at least allow
us to file the pictures by their date
and time.

We should be stuck at this point.
We don’t know what the tag names
are because we don’t have a copy of
the Exif specification. However, we

do have a shortcut, because we can find software on the Web
that reads TIFF and Exif files. Sometimes, an implementa-
tion is as good as a specification. (And we’re lazy, so we’d
just as soon find an implementation because it saves us
rewriting code.)

We succeeded in our search when we discovered the gPhoto
Web page, http://gphoto.fix.no/ . The GNU digital
camera application, gPhoto, comprises a suite of software for

T IFF is a kind of Swiss

Army Knife for images,

which allows you to

include fairly arbitrary data

as tags in the image.

http://gphoto.fix.no/

Work

40 SW Expert ■ November 1999

everything from loading images off the camera–we hadn’t
found this package yet and so had to use Windows software
for that–to plug-ins for GIMP, the GNU image manipulation
program. But for our purposes, it has a frighteningly useful
little Perl module, exif.pm , that handles the processing of
tags from Exif files. From there, we can construct a Perl script
to do the renaming that we described above.

We begin with our usual setup:

#!/usr/local/bin/perl -w

$Id: file-pix.pl,v ...

rename Exif files from digital camera

based on the date and time the picture

was taken

use POSIX;

use exif;

use strict;

sub usage {

die "Usage: $0 [files...]\n";

}

Obviously, we need to remember to include the exif module
we described earlier and to provide for a usage message.

Most of the work will be done in the rename_picture

subroutine, which we’ll build next:

Extract the photo time, and rename the file

based on that time.

sub rename_picture {

my $name = $_;

my %tags = exif::dump_jpeg($name);

my $ptime = ""; # time inside the photo

$ptime = $tags{$exif::datetimeoriginal}{value}

if($tags{$exif::datetimeoriginal}{count});

We use the dump_jpeg interface in the exif module to pop-
ulate the associative array tags of TIFF tags from the file.

Given that array, we can get the time and date of the origi-
nal picture. The exif module lets us know what tags have
been used with a count for each possible tag; we use that
information to ensure we’ve got a real value for the time

stamp, otherwise we default to the initialized null value:

now that we've got the timestamp,

such as 1969:07:21 00:15:23",

we need to extract the components

my $re = "(\\d\\d\\d\\d):(\\d\\d):(\\d\\d) " .

"(\\d\\d):(\\d\\d):(\\d\\d)";

die "bad date format in $_"

unless $ptime = ~ /$re/o;

We’ve used a shortcut above and set up a regular expression
for getting the date components. We’ve done this mostly for
typesetting purposes.

Given the time breakdown–year, month, day and so
on–we can construct a date string, a time string, the new
file name and a UNIX time_t of the timestamp. We do
that next:

my $fdate = $1 . $2 . $3;

my $ftime = $4 . $5 . $6;

my $newname = $fdate . "/" . $ftime;

my $ctime = mktime($6, $5, $4,

$3, $2 - 1, $1 - 1900,

0, 0, 1);

We want to file the picture in a directory named for the date,
$fdate . We don’t want to create the directory if it’s already
created, and we want to stop if we can’t create it. We use a
very idiomatic Perl statement to do this:

mkdir $fdate, 0777 ||

die "can't create directory $fdate"

unless -d $fdate;

Once we’ve created the directory, we want to assure ourselves
that we aren’t about to overwrite an existing file. We check if
the target name exists and issue a warning if it does:

if(-r $newname) {

warn "file $newname already exists";

return;

}

Then we rename the old file to one with the $ftime for its

name, and let the user know what we’re doing:

rename $name, $newname or

die "can't rename $name to $newname";

print "rename $name, $newname\n";

Last, we change the times in the inode for the file so that
they match the actual time the photo was taken:

now re-time the file, too

utime $ctime, $ctime, $newname;

}

Because this is Perl, it is also very easy to change the naming
scheme: for example, giving the pictures a name consisting of
the date and time all in a single, large directory. We’ll leave
those modifications as exercises for the reader.

To finish up, we need a “main” program, which is pretty
simple:

main program

if(@ARGV) {

for(@ARGV) {

rename_picture($_);

}

} else {

usage();

}

Once we had a flock of pictures on our screen, we came up
against another problem.

Color Blindness
As we’ve mentioned before, we often get some amusement

out of Copeland’s color blindness. Actually, Copeland’s chil-
dren get more amusement:

“Hey, Daddy! What color is this?”
“Um, orange?”
“Nope! Red! Ha ha!!”
Since the last time we mentioned color blindness, we’ve

had some correspondence with Dr. Neil Cuadra of Cuadra
Associates Inc., comparing Web sites and anecdotes about
missing colors.

For example, Dr. Cuadra found a Web page at http://

www.geocities.com/Heartland/8833/coloreye.

html containing a selection of the Ishihara color perception
test circles. Those are the arrays of colored dots, usually very
carefully printed, your ophthamologist uses to check your color
vision. You look at a circle of dots, and if you have normal
color vision, you see a particular number. If your color vision
is lacking in the range for that chart, you see a different num-
ber. (Both Dr. Cuadra and Copeland fail to see any numbers
in most of the charts.)

He also pointed out to us that the nice folks at Design
Matrix, Topanga, CA, have a Web page devoted to designing
for people with color-vision problems (see http://www.

designmatrix.com/pl/cyberpl/cftcb.html).

As an aside, we’ll tell you that Design Matrix principal
Gary Swift is an old friend from our Interactive Systems
Corp. days and originally turned us on to architect Chris
Alexander’s idea of design patterns. The idea is that in
designing things, some patterns of design recur, so it’s
helpful to understand what they are and to know how to
use them. Alexander described his notions in an excellent
book, A Pattern Language (published by Oxford University
Press, 1977, ISBN 0-19-501919-9). Its companion volume,
Timeless Way of Building (Oxford University Press, 1979,
ISBN 0-19-502402-8), contains several hundred patterns
for residential building. It was Alexander who inspired Erich
Gamma and his merry band to adopt the idea for their book,
Design Patterns: Elements of Reusable Object-Oriented Software
(published by Addison-Wesley Publishing Co., 1995, ISBN
0-201-63361-2).

In any event, on the Design Matrix site, Swift provides a
set of design patterns for visual design with color blindness in
mind. We found his exposition particularly useful, and wish
all magazine editors and Web designers were conversant with
it. (Hey, you guys at Wired, take note!)

After that, in our search for design notes on color blind-
ness, we tripped over http://www.iarchitect.com/

color.htm at the Interface Hall of Shame, an online design
critique. Also, we found the Web site for Lighthouse Inter-
national, which has a number of additional clues for helping
your color-blind readers, http://www.lighthouse.

org/color_contrast.htm . (Paradoxically, we were led
to these pages from a reference at Feed Magazine, http://

www.feedmag.com . Feed ’s navigation bar down the left
side of the page is simply a series of colored squares, with
no clue as to what any of them link to.)

That’s a rather reference-dense recounting of our explora-
tion on the subject. With luck, it will give you some things
to think about the next time you design a Web page. Among
Western Europeans, about 8% of males are color-blind (for
more details see http://www3.ncbi.nlm.nih.gov/

htbin-post/Omim/dispmim?303800). Remember that
statistic when you start to build something that depends
on colors.

That’s all for this time. Next month, we’ll think about
slides. No, not photographic slides, but an alternative to
using PowerPoint from Microsoft Corp. for your next
presentation.

Until then, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in
Boulder, CO, and works at Softway Systems Inc. on UNIX interna-
tionalization. He spends his spare time rearing children, raising
cats and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked
for QMS, he operated his own consulting firm and did a lot of
other things, like everyone else in the software industry.

Note: The software from this and past Work columns is
available at http://alumni.caltech.edu/~copeland/work

or alternately at ftp://ftp.expert.com/pub/Work .

SW Expert ■ November 1999 41

Work

http://www.iarchitect.com/color.htm
http://www.lighthouse.org/color_contrast.htm
http://www.feedmag.com
http://www3.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?303800
mailto:copeland@alumni.caltech.edu
http://www.geocities.com/Heartland/8833/coloreye.html
http://www.designmatrix.com/pl/cyberpl/cftcb.html
mailto:jsh@usenix.org
http://alumni.caltech.edu/~copeland/work
ftp://ftp.expert.com/pub/Work

	Pictures
	Organizing the Photos
	Color Blindness

