
Work
by Jeffreys Copeland and Haemer

38 SW Expert ■ October 1999

AL
EX

GR
OS

S

Babelfish
FF or years, we have been writing,

in this magazine and elsewhere,
about internationalization: how

to write programs that are multilingual.
Unfortunately, we are not yet as

multilingual as our software. Haemer
recently found the following note in
his incoming email:

Sehr geehrter Herr Dr. Haemer!
Herzlichen Dank fuer Ihre Einladung
am Donnerstag, die ich dankend annehme
Wie Sie vorschlagen, werde ich die Kunst-
werke an Ihren Waenden studieren. Dann
koennen wir uns auch weiter ueber solche
Themen wie Religion, Literatur und
Philosophie unterhalten. Ich bringe
Salat. Bitte schicken Sie mir directions
to your Haus.

Herzlich, Ana
Haemer speaks no German. What

to do, what to do?
If you’ve never clicked on the little

[Translate] link in AltaVista, this is the
time to try it out. Doing so takes you
to http://babelfish.altavista.
com, home of a server that will mecha-
nically translate some natural languages
into others. Babelfish offers machine

translation between English and a hand-
ful of common, European languages:
French, German, Italian, Portuguese
and Spanish.

Machine translation has a long, mix-
ed history. The bottom line is the trans-
lations aren’t perfect, and some of them
are downright silly. What impresses us
after a little use is how often Babelfish’s
translations are good enough.

Here’s what Babelfish did with Ana’s
message:

Dear Dr. Haemer!
Cordial thanks for your invitation on

Thursday, which I assume thanking. As you
suggest, I will study the works of art at your
walls. Then we can converse also further
about such topics such as religion, literature
and philosophy. I bring salad. Please you
send directions to to me your house.

Cordially, Ana
Imperfect, but completely intelli-

gible. It would be a pity to miss such
wonderful email because of our linguis-
tic limitations or because we demand
perfect translations.

A joint venture of Systran and Alta-
Vista, Babelfish is named after Douglas

Adams’ Babel fish from Hitchhiker’s
Guide to the Galaxy. It’s mostly used to
make sense of Web pages that would
otherwise be gibberish, but it’s a general-
purpose tool.

Babelfish: Not Just for
Browsers Anymore

Unfortunately, but not surprisingly,
the AltaVista interface is tied to a brows-
er, which limits you to typing at it. If
you’re interested in both programming
and human languages, as we are, there are
a lot of fun things you can imagine trying
with a programmatic interface to a tool
like this. However, writing Web clients
from scratch can require a lot of ad hoc,
trial-and-error work (see “A Simple Web
Script,” April 1999, Page 44, http://sw.
expert.com/C9/SE.C9.APR.99.pdf).

Luckily, there is now a Perl module
on the Comprehensive Perl Archive
Network, or CPAN (http://www.perl.
com/CPAN/), to help. WWW::Babelfish
is a module specifically designed to let
you write Web clients for the Babelfish
server. It took us only a few minutes to
produce a working, general-purpose

“Therefore is the name
of it called Babel; because
the Lord did there con-
found the language of all
the earth.”
– Genesis 11:9

“The Babel fish is small,
yellow and leechlike, and
probably the oddest thing
in the Universe… The
practical upshot of all this
is that if you stick a Babel
fish in your ear you can
instantly understand
anything said to you in
any form of language.”
– Douglas Adams,

Hitchhiker’s Guide
to the Galaxy

http://babelfish.altavista.com
http://sw.expert.com/C9/SE.C9.APR.99.pdf
http://www.perl.com/CPAN/

SW Expert ■ October 1999 39

Work
translation script. A few more iterations brought us to the script
shown in Listing 1.

We’ll mostly let the code speak for itself. The documentation
that comes with Babelfish is very clear, and this column has so
much code that we’re cramped for space. The third line points
the script at our own, local version of WWW::Babelfish . We
had to add the line

$ua->proxy(['http', 'ftp'] => $ENV{http_proxy});

to let us get to the Web through proxy servers.

We Play Telephone
So, let’s try it out.
In the game of “telephone,” a sentence is whispered from

person to person around a circle. When it completes a circuit,
the original phrase is contrasted with what it has turned into.

Imagine a game of telephone at the European Commission
headquarters in Brussels, where each player has a different native
language and most of the transmission noise is translation error.
We can simulate this by setting up a pipeline of translation pro-
grams. Because Babelfish only provides translations to and from
English, every other speaker will have to be an Anglophone.
(Alternatively, imagine that all the whispering is done in English,
but that each speaker must translate the phrase that comes in his
right ear, first from English into his native language and then
back to English, before passing it on to the person on his left.)

Here’s an example:

#!/bin/sh
Continental telephone
$Id: teleEurope,v 1.1 1999/08/09 16:26:36 jsh Exp $
whisper() {

ana -o $1 | ana -i $1 | tee /dev/stderr
}

echo my hovercraft is full of eels |
whisper English |
whisper French |
whisper Portuguese |
whisper Italian |
whisper German |
whisper Spanish

And here’s its output:

my hovercraft is full of eels

my hovercraft is full with eels

mine hovercraft is full with conger-eels

Hovercraft of the mine is full with the gronghi

Air cushion vehicle of the pit is full with gronghi

Listing 1. A Simple Babelfish Client
#!/usr/local/bin/perl -w

use strict;
use lib "."; # hack, cough
use WWW::Babelfish;
use Getopt::Std;
my $options = "[-i input_language | -o output_language] [filename ...]";
my $usage = "usage: $0 $options";

sub get_langs {
use vars qw($opt_o $opt_i);
getopts "i:o:" or die $usage;
die $usage if ($opt_o && $opt_i);
my ($in, $out) = ($opt_i || "English", $opt_o || "English");

}

my ($in, $out) = get_langs;
my $obj = new WWW::Babelfish('agent' => 'Mozilla/8.0');
die "Babelfish server unavailable\n" unless defined $obj;

my @languages = $obj->languages;
die "source language $in must be in @languages\n"

unless grep /$in/, @languages;
die "destination language $out must be in @languages\n"

unless grep /$out/, @languages;

$/ = undef;
my $translation = $obj->translate(source=>$in, destination=>$out, text=><>);

die "Could not translate: " . $obj->error unless defined $translation;
print "$translation\n";

=head1 NAME

ana - Simple Babelfish client, for notes from Ana

=head1 SYNOPSIS

ana [-i input_language | -o output_language] [files] Continued on Page 40

Work

40 SW Expert ■ October 1999

The vehicle of pneumatic shock absorber of the
hollow is full with gronghi

(“My hovercraft is full of eels” is used in the WWW::Babelfish
documentation, and is taken from Monty Python’s “Hungarian
Phrasebook” sketch.)

But why stop there? Looking for Babelfish-related news
articles on DejaNews (http://www.dejanews.com), we
found the following wonderful post from David Chess at IBM
Research:

> Subject: Babelfish invariance
> From: chess@us.ibm.com (David M. Chess)
> Date: 1999/05/27
> Newsgroups: alt.hackers
> The first thing everyone does with a translator
> like Babelfish (http://babelfish.altavista.digital.
> com/) is to translate something from one's native
> tongue into some other language, and then back
> again, to see what happens. It's only a slight
> stretch to *continue* this process until you get
> to a fixed point of the transform (the resulting
> string is the same as the last one you put in),
> or a cycle (the resulting string is the same as
> the one you put in N steps back). A string in
> language A which, when translated into language
> B by Babelfish and the result translated back
> into A, yields A again, is said to be "Babelfish
> invariant".
> [...]

Further on in the posting, David says he handcrafted a client

to play with this idea. Lazily, we tried our hands at the same
thing with WWW::Babelfish :

#!/usr/local/bin/perl -w
#$ID: telephone,v 1.3 1999/09/01 20:13:52 jeff Exp jeff $

use strict;
use lib "."; # hack, cough
use WWW::Babelfish;
use Getopt::Std;
my ($obj, $in, $phrase);
my $optionsa = "[-c] [-v]";
my $optionsb1 = "[-s language_spoken ";
my $optionsb2 = "| -t language_of_thought]";
my $optionsb = $optionsb1 . $optionsb2;
my $optionsc1 = "[-n cycles]";
my $optionsc2 = "[filename | -e expression]";
my $optionsc = $optionsc1 . $optionsc2;
my $usage = "usage: $0 $optionsa $optionsb $optionsc";
use vars qw($opt_s $opt_t $opt_n $opt_v $opt_e $opt_c);

sub parse_args {
getopts "s:t:n:e:vc" or die $usage;
die $usage if ($opt_s && $opt_t);
my ($speak, $think) = ($opt_s ||

"English", $opt_t || "English");
$speak = ucfirst lc $speak;
$think = ucfirst lc $think;
my $n = $opt_n || 10;
die unless $n = ~ /^\d+$/;

($speak, $think, $n);

=head1 DESCRIPTION
=over 2

B<ana> uses babelfish to translate from one language to another.
Default language for each is English.

=back

=head1 OPTIONS AND ARGUMENTS

=over 8

=item I<-i>

input language

=item I<-o>

output language

=item I<filename ...>

files to translate (default: stdin)

=back

=head1 AUTHOR

Jeffrey S. Haemer <jsh@usenix.org>

=head1 SEE ALSO

perl(1) WWW::Babelfish(3)

=cut

http://www.dejanews.com
http://babelfish.altavista.digital.com

SW Expert ■ October 1999 41

Work

SW Expert ■ October 1999 41

}

sub xform {
my ($s, $d, $in) = @_;
warn "in = $in\n" if ($opt_v);
my $out = $obj->translate(source=>$s,

destination=>$d, text=>$in);
warn "out = $out\n" if ($opt_v);
die "Could not translate: $s" .

$obj->error unless defined $out;
chomp $out;
$out;

}

my ($speak, $think, $n) = parse_args;
$obj = new WWW::Babelfish('agent' => 'Mozilla/8.0');
die "Babelfish server unavailable\n"

unless defined $obj;

my @languages = $obj->languages;
die "Spoken language ($speak) must be in:

@languages.\n"
unless grep /$speak/, @languages;

die "Language of thought ($think) must be in:
@languages.\n"
unless grep /$think/, @languages;

if ($opt_e) {
$phrase = $opt_e;

die $usage if @ARGV;
} else {

local $/ = undef;
$phrase = <>;

}
$in = $phrase;

foreach my $t (1..$n) {
my $out = xform $speak, $think, $in;
$out = xform $think, $speak, $out;
if (lc $in eq lc $out) {

chomp $in;
print "$t\t" if $opt_c;
print "$in\n";
exit;

}
$in = $out;

}

die qq("$phrase"\n\thas become\n"$in"\n);

=head1 NAME

telephone - simulates the game of "telephone"

=head1 SYNOPSIS

telephone [-c] [-nI<n>] [-v] [files | -e expression]
[-t thought language | -s spoken langauge]

Work

42 SW Expert ■ October 1999

=head1 DESCRIPTION

=over 2

B<telephone> simulates the game of telephone. (In the
game of telephone, participants sit in a big circle.
One person whispers a phrase to the person next to
him. That person then whispers what he thought he
heard to the person on the other side, and this
continues around the circle until it gets back to
the originator. The point of the game is to see how
much the phrase changes in transit.

In this program, each simulated participant "thinks"
in one language (say, German) and "whispers" in a
second (say, English). The changes are generated by
one cycle of translating from English to German and
back again. Translation is performed by babelfish.

This process continues through a series of
English->German->English cycles until the phrase
has either become "babelfish invariant" (stable)
or gone around the circle.

=back

=head1 OPTIONS AND ARGUMENTS

=over 8

=item I<-v>

verbose

=item I<-t>

language of thought

=item I<-s>

language of speech

=item I<-n>n

number of participants (default: 10)

=item I<-c>

count iterations until stability

=item I<-e>

word or expression to translate

=item I<filename ...>

files to translate (default: stdin)

=back

=head1 AUTHOR

Jeffrey S. Haemer <jsh@usenix.org> and
Jeffrey Copeland <copeland@alumni.caltech.edu>
from a suggestion in alt.hackers
by David M. Chess <chess@us.ibm.com>

=head1 SEE ALSO

perl(1) WWW::Babelfish(3)

=cut

David also says that French is rumored to be the best-sup-
ported language. To test this, we wrote a little shell script that
plays telephone in several languages:

#!/bin/sh
$Id: multi-tel,v 1.1 1999/08/09 16:26:36 jsh Exp $
comparison of languages for "telephone"

for i in English French German Italian Portuguese Spanish
do

echo == $i
telephone -c -t $i -e "$*"

done

and another to exercise it:

#!/bin/sh
#! $Id: mtest,v 1.1 1999/08/09 16:26:36 jsh Exp $
demo of multi-tel

multi-tel My hovercraft is full of eels.
echo
multi-tel Out of sight, out of mind.
echo
multi-tel CITRAN blows dead aardvarks.

Here’s what we found when we ran it:

== English
1 My hovercraft is full of eels.
== French
2 My hovercraft is full with eels.
== German
5 My air cushion, machine pulls up,

is full from the Aalen.
== Italian
2 My Hovercraft is full of the eels.
== Portuguese
3 Hovercraft of the mine is full of

conger-eels.
== Spanish
1 My hovercraft is full of eels.
== English
1 Out of sight, out of mind.
== French
3 Out of the sight, spirit.
== German
4 Understand over the sight from out.
== Italian
2 From sight, the mind.

SW Expert ■ October 1999 43

Work
== Portuguese
3 Except of the sight, it is of the mind.
== Spanish
2 Outside Vista, the mind.

== English
1 CITRAN blows dead aardvarks.
== French
2 CITRAN blows the dead aardvarks.
== German
"CITRAN blows dead aardvarks."
has become
"CITRAN burns continuous aardvarks one of the dead
ones of one."
== Italian
"CITRAN blows dead aardvarks."
has become
"CITRAN jumps the aardvarks has put put out of order
put put put put put put put."
== Portuguese
2 Inoperative CITRAN establish aardvarks.
== Spanish
"CITRAN blows dead aardvarks."
has become
"Aardvarks died to the blowing of CITRAN."

We like reading these out loud in thick, stage accents.
The numbers at the beginning of each line are the number

of steps to Babelfish invariance for that language. If no stable
phrase has been found after 10 steps, the beginning and ending
phrases are printed, as with the German, Italian and Spanish
translations of the third phrase.

It looks to us like the Spanish translations may be better
than the French; however, the German translations are certainly
the worst. Because we began this column by showing how use-
ful the German translations are, the Spanish translations must
be very good indeed.

We’ll leave you with a few questions.
Reader Quiz 1: Obviously, different input words can produce

different translations, but does Babelfish take punctuation into
account, or just pass it through, unchanged?

Also noteworthy is the final phrase’s failure to stabilize
in several languages. In his posting, David notices that some
strings fail to stabilize because the translation goes into an
infinite regression. Try this:

telephone -v -t french -e pizza

Reader Quiz 2: Can anyone offer a word or phrase that puts
telephone into an infinite loop by alternating between two (or
more) translations?

Oh, and the two new other phrases? “Out of sight, out of
mind” has a venerable history in machine translation. It is said
that an early attempt to translate this phrase to Russian and
back returned “Invisible idiot.”

Reader Quiz 3: Can anyone out there provide a real citation
for this oft-recited, possibly apocryphal story?

Reader Quiz 4: Can anyone tell us what CITRAN was, why
it blew dead aardvarks, and who originally pointed this out?

Soon after we finished writing this article, National Public
Radio (NPR) ran an item about the Consortium for Speech

Translation Advanced Research, or C-STAR, based at Carnegie-
Mellon University in Pittsburgh, PA. C-STAR has developed
a prototype machine translation system that, by operating in
restricted domains–C-STAR’s example is a travel agency–can do
nearly simultaneous translation from voice input. If you have the
RealNetworks Inc. RealAudio plug-in for your browser, you can
listen to it from the Web page for the July 22nd edition of “All
Things Considered,” at http://www.npr.org .

Summary
In this column, we tried to tie together three topics that

we’re interested in: programming for the fun of it, the Web
and internationalization.

But what about the art on Haemer’s walls? If you want
to come see it, send him email in English, French, German,
Italian, Portuguese or Spanish. Plan to bring salad.

Until next time, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in
Boulder, CO, and works at Softway Systems Inc. on UNIX interna-
tionalization. He spends his spare time rearing children, raising
cats and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked for
QMS, he operated his own consulting firm and did a lot of other
things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/~copeland/work or
alternately at ftp://ftp.expert.com/pub/Work .

mailto:copeland@alumni.caltech.edu
mailto:jsh@usenix.org
http://www.npr.org
http://alumni.caltech.edu/~copeland/work
ftp://ftp.expert.com/pub/Work

	Babelfish
	Babelfish: Not Just for Browsers Anymore
	We Play Telephone
	Listing 1. A Simple Babelfish Client

	Summary

