
M
IC

HA
EL

 A
VE

TO

Work
by Jeffreys Copeland and Haemer

S/W Expert ■ August 1999 39

Software Ptools
TT

his month, we take you to
Hershey Heaven. In the flurry
of irrelevancy with which the

press inundates Nobel Prize winners,
Alfred D. Hershey, the 1969 Nobel
Laureate in Physiology or Medicine,
was asked what he thought heaven
would be like. He answered that in
heaven, he thought he’d finally get
an experiment that worked–and be
able to do it over and over again.

In 1976, Brian W. Kernighan and
P.J. Plauger wrote Software Tools (pub-
lished by Addison-Wesley Publishing
Co., ISBN 0-201-03669-X), a book
we recommend to everyone. Here’s
a brief synopsis supplied by coauthor
Peter Plauger:

Describes a number of small programs
made popular by the UNIX operating
system. Contains complete source code of
all the programs in Ratfor, a structured
dialect of FORTRAN that strongly re-
sembles C. This classic pioneered the
term ‘software tools.’

This book, probably the clearest

exposition of the UNIX tools philoso-
phy, provides the source code for com-
plete implementations of several UNIX
tools, together with running commen-
tary on every point of their design and
implementation.

But why in Ratfor–something that
“strongly resembles C”–and not C
itself ? The first edition of Kernighan
and Ritchie’s The C Programming Lang-
uage, which introduced the world to C,
was published in 1978. But in 1976,
the two universally available program-
ming languages were COBOL and
FORTRAN-66 (often as the imple-
mentation FORTRAN IV). Kernighan
and Plauger had a message to get out
about how to program, to an audience
who had never heard of UNIX or C,
and who–at least the way it looked
then–never would.

As a transition vehicle, they created
a language that looked like C, but could
be preprocessed into FORTRAN-66.
(Most of you have probably never seen
FORTRAN-66, but it lacks nearly

everything you take for granted in pro-
gramming languages: if-then-else, data
structures, while loops, character I/O
and even strings. The primary control-
flow structures are the “logical if ” and
the “goto.”)

Here’s an example of relatively easy-
to-read FORTRAN-66, taken from the
original Bell Labs Ratfor documentation:

IF (X.LE.100) GOTO 10

CALL ERROR(5HX>100)

ERR = 1

RETURN

10 ...

The equivalent in Ratfor?

if (X>100) {

call error("x>100"); err = 1;

return }

The idea was to use a language that
would permit easy-to-read examples in
a book that showed folks how to write
code that improved their programming

“Those who cannot
remember the past are
condemned to repeat it.”
– George Santayana

“Those who do not
understand UNIX are
condemned to reinvent
it, poorly.”
– Henry Spencer

Work

environments. To close the loop, the final chapter of Software
Tools designs and implements an entire Ratfor-to-FORTRAN
preprocessor.

The book quickly spurred the formation of the Software
Tools User Group (STUG). Formed at Lawrence Berkeley
Labs, this group began distributing tapes that contained all of
the code from the book, together with an ever-growing body
of contributed tools, all of which could be installed on any
computer with a FORTRAN compiler (which meant, at the
time, pretty much any computer)–a UNIX-like environment,
not just for non-UNIX systems, but for a
world that had never heard of UNIX or C.

If you’d like to see what sorts of things
were done, you can still find references
to Software Tools on the Web. One such
site is http://www.geocities.

com/SiliconValley/Lab/9247/

#compilers . An advantage of the UNIX
“one tool, one job” philosophy is that you
can attack each command separately, one
at a time. Most are bite-size. Individual
contributors can write a useful tool in a few
days (or less) and make a real contribution to the larger
whole. Yoked to this is the idea that when you write a little
program, instead of a giant, monolithic one, you can really
make it yours; you can get your arms around it and put in
the work you need to get it just right.

The reason we can recommend a 25-year-old book, full
of code for programs you’ll never need to write, in a language
you’ll never use, is that it remains the clearest, best written,
most entertaining and practical treatise we know on how to
get programs just right. (Do not, by the way, be fooled into
buying Software Tools in Pascal, written by the same authors
and published in 1981. Kernighan’s 1981 technical report,
entitled, “Why Pascal Is Not My Favorite Programming
Language,” http://cm.bell-labs.com/cm/cs/cstr/

100.ps.gz , gives great insights into both why this book
didn’t turn out the way it could have and why Pascal, once
a hot contender for the programming language of choice,
eventually lost out to C.)

It’s hard to imagine, nowadays, just how revolutionary this
book’s approach was. It changed lives. Most folks reading this
column have probably never even seen a punched card or writ-
ten a FORTRAN program. To help put things in context, imag-
ine working as a programmer in a world in which neither you
nor anyone you know has ever heard of a filter or a “software
tool,” and the only tools available to you as a programmer are
a compiler, an assembler and a linker. (And a world where noth-
ing is off-the-shelf. We know someone who began his career
writing a payroll system in FORTRAN for a movie studio.)

One chapter of Software Tools contains the complete design
and implementation of an editor. Not a screen editor, mind you.
After all, no one had cursor-addressable terminals back then.

What ever happened to STUG? One finds occasional fos-
sils of STUG, such as Usenix’s Software Tools User Group
Award, http://www.usenix.org/directory/stug.

html , but the group died of its own success. People who

joined STUG learned about UNIX, helped popularize UNIX
and the UNIX philosophy, eventually demanded UNIX and
switched to UNIX when it became available.

In the mid-1980s, the UNIX tool set story was replayed
more than once, to the great advantage of a new generation
of computer users. Mortice Kern Systems (MKS) Inc., a Cana-
dian company, rewrote the entire basic UNIX command set
from scratch for MS-DOS, and later ported the same suite
to various legacy systems.

In the same time frame, the Free Software Foundation
(FSF) coordinated the contribution of
an army of volunteers, who created freely
redistributable versions of nearly all com-
mon UNIX tools, which eventually made
up the bulk of the command-line utilities
for Linux.

A third great source of rewritten UNIX
tools are the BSD releases, coordinated by
the University of California at Berkeley’s
Computer Science Research Group
(CSRG), and found in a wide variety of
freely available BSD-based UNIXes. As

with STUG and the FSF, CSRG’s work was the coordinated
effort of an unruly army of individual volunteers.

Everyone eventually caught on to the software toolbox
approach.

Tom Christiansen Becomes Irked
Well, everyone except the Windows world.
Those of you who read the comp.lang.perl.misc

newsgroup know that Tom Christiansen, coauthor of many
O’Reilly & Associates Inc. Perl books, is a frequent contri-
butor. When a question irks Tom, he speaks right up, often
chastising the questioner. Some people don’t like this, so
Tom is occasionally a source of discussion on the newsgroup
in his own right.

Like grains of sand in an oyster, though, these irritants
sometimes spur Tom to create something beautiful. (In the
distance, we hear groaning; to quote Jo Haemer, “A cheap
shot is a terrible thing to waste.”)

Spurred on by irksome questions, Tom has written Perl
man pages, FAQs, tools and even a series of Perl FMTYEWTK
(Far More Than You Ever Wanted To Know) essays.

Several months ago, Tom was going through a stretch of
irritation at people asking for complete Perl solutions to prob-
lems that could be solved with simple calls to basic UNIX util-
ities. Too often, his pointing this out didn’t help the requester,
because they were running some Microsoft Corp. platform
that didn’t have the basic utilities to solve the problem.

For a while, Tom’s reaction was to declare that such lacunae
were God’s wrath visited upon anyone sinful enough to run
something other than UNIX, and that we in the UNIX com-
munity had no obligation to help.

Those of you who’ve been reading the newsgroup, or this
column, for some time will even remember a parody posting,
by Nat Torkington–Tom’s coauthor for The Perl Cookbook
(published by O’Reilly, 1998, ISBN 1-56592-243-3).

40 S/W Expert ■ August 1999

http://www.geocities.com/SiliconValley/Lab/9247/#compilers
http://cm.bell-labs.com/cm/cs/cstr/100.ps.gz
http://www.usenix.org/directory/stug.html

Tim.Bunce@ig.co.uk (Tim Bunce) writes:

> The problem is to find the full list of

> names and the original order.

You INSTALL a FULL SET OF TOOLS, like THE LORD GOD

ALMIGHTY intended. REPENT, ye PRISONER of BILL!

The DAY of JUDGEMENT is AT PERL! Your MESSENGERS

are obviously just POOR substitutes for RELIABLE

PIPE COMMUNICATION which you'd have if you had a

REAL OPERATING SYSTEM and not a SCURRILOUS PIECE

OF TOOL-CHALLENGED COPROPHILIA!

Tom^WNat

:-)

This ultimately led us to write a Perl version of tsort(1)

(see http://sw.expert.com/C9/SE.C9.SEP.98.pdf

and http://sw.expert.com/C9/SE.C9.OCT.98.pdf).
More recently, though, Tom seems to have decided that the

problem isn’t going to go away, and has organized a project to
rewrite all the basic UNIX utilities in Perl, so that any system
with Perl can have the full, basic UNIX command set for free.

Note the word “organized.” Tom has written some utilities
himself but what he’s really doing is coordinating contribu-
tions from all over the Perl world. Tom calls it the “Perl Power
Tools” project. We prefer “Software Ptools”: the “P” is psilent.

An Example: asa(1)
This looked like enormous fun, and we jumped in with

both feet. We have both worked in the printer industry, so we
decided to chip in by contributing a traditional UNIX utility
that no one else would be silly enough to write: asa(1) , a
program that interprets traditional FORTRAN carriage-con-
trol commands.

Here, a little history will help. A couple of decades ago,
printers were all impact line printers that produced great

stacks of accordion-folded, green-and-white-lined,14-inch-
wide paper, which was actually 15-inches wide if you counted
the tear-off strips on the sides that were perforated so teeth on
the printer carriage could advance the paper.

These printers were simple; most couldn’t even do graphics
(graphics output was provided by another kind of printing
device, called a plotter). Indeed, besides printing alphabetic
characters, almost all they could do was to move to the top
of a new page, backspace (in order to underline) and overprint
lines (to produce bold characters).

But at the time, not even character sets were portable (non-
IBM Corp. machines often used ASCII, but IBM machines,
which were in the majority, used EBCDIC), which meant
your programs couldn’t assume that backspace was a ^H,
form-feed was a ^F or carriage return was a ^M.

A convention was born: all printers agreed to look at the
first character of each output line and interpret a small number
of special characters as special carriage-control commands. For
example, a “1” in the first column of an output line told the
printer to eject the current page and move to the top of a new
page. These conventions were made a part of the American
Standards Association (ASA) FORTRAN standard. (You read
that correctly: printer carriage controls were part of a program-
ming language standard.) ASA was later renamed ANSI.

In the C/UNIX world, there are no such conventions.
Moreover, neither contemporary terminals nor newer print-
ers, such as laser printers, interpret output in this way. Old
FORTRAN programs, ported from other operating systems,
began finding themselves assuming these conventions on
systems that didn’t recognize them.

To handle this, early UNIX systems included a program
called asa(1) , which translated FORTRAN carriage controls.
Listing 1 shows our implementation of asa(1) .

And now for our dramatic reading: The meat of the pro-
gram lies in 10 lines of code, lines 10 through 20. Everything
else is professionalism.

S/W Expert ■ August 1999 41

Work

Listing 1. asa(1)

1 #!/usr/local/bin/perl -w
2 # $ID: asa,v 1.1 1999/05/31 22:03:15 jsh Exp jsh $

3 use strict;

4 exit 1 if grep {!-r} @ARGV; # traditional

5 if (grep /-/, @ARGV) {
6 $0 = ~ s(.*/)();
7 warn "usage: $0 [filename ...]\n";
8 exit 2; # traditional
9 }

10 while (<>) {
11 chomp;
12 s/^$/ /;
13 s/^[^10+-]/\n/;
14 s/^1/\f/;
15 s/^\+/\r/;
16 s/^0/\n\n/;
17 s/^-/\n\n\n/;
18 print Continued on Page 42

http://sw.expert.com/C9/SE.C9.SEP.98.pdf
http://sw.expert.com/C9/SE.C9.OCT.98.pdf

Work

42 S/W Expert ■ August 1999

19 or exit 1; # traditional
20 }

21 =head1 NAME

22 asa - interpret ASA/FORTRAN carriage-controls

23 =head1 SYNOPSIS

24 asa [I<filename> ...]

25 =head1 DESCRIPTION

26 =over 2

27 Traditional FORTRAN programs put carriage-control characters
28 in the first columns of their output,
29 which were interpreted by older line printers
30 according to the ASA vertical format control standard.
31 (ASA was the American Standards Association -- now ANSI.)

32 Under this standard, the first character of each printable record (line)
33 determines vertical spacing, as follows:

34 =over 2
35 I<blank> carriage return
36 0 two carriage returns
37 1 formfeed
38 + overprint
39 - three carriage returns (IBM extension)

40 =back

41 All other characters are discarded, and empty lines behave as though
42 they have a leading blank.

43 B<asa> interprets these characters.

44 =back

45 =head1 EXIT VALUES

46 =over 2

47 0 normal exit

48 1 inability to write on stdout or to read an input file

49 2 bad argument

50 Exit status values chosen from MKS toolkit.

51 =back

52 =head1 AUTHOR

53 Jeffrey S. Haemer

54 =head1 BUGS

55 Currently, B<asa> just looks at the readability of its input files
56 at startup time. It should really do it a file at a time,
57 but that makes the code look gross.

58 The carriage-control '-' is an IBM extension.
59 Perhaps the default should ignore it
60 and there should be a '-i' option to interpret it.

61 =head1 SEE ALSO
62 I<Communications of the ACM>, Vol 7, No. 10,
63 p. 606, October 1964.

64 NWG/RFC 189, Appendix C

65 =cut

S/W Expert ■ August 1999 43

Work
Lines 1 through 3 are our usual boilerplate. The shebang

line (line 1) invokes the Perl interpreter and gives it the -w
flag, which queries various questionable usages. The third line
requires the still more picky strict pragma. As long as we’re
going to write a utility, we might as well catch as many silly
errors as we can. The second line says we’re keeping our code
under revision control.

Lines 4 through 9 do argument parsing. The comment
“traditional” means that it’s traditional for this command to
exit with an exit status of “2” if the arguments are misspecified.

Lines 21 through 65 are documentation. Perl lets you keep
your documentation in the same file as your code, so they don’t
get out of sync.

The meat of the program is the loop begun on line 10 and
finished on line 20, which reads and prints the file one line at a
time. Carriage control is specified entirely by the first character
in the line, so line 11 begins by removing any special ASCII
carriage controls at the ends of lines. The printer will never see
them. The standard says that a line beginning with anything
except one of the special ASA carriage-control characters should
trigger a new line and a carriage return, and lines 12 and 13
give us that. Line 12 prints blank lines as blank lines. Line 13
consumes any other character that begins a line and performs
the default action: terminating the preceding line. (Yes, that’s
right. If you want a character at the beginning of a line, you
have to precede it with something else. The first character is
always interpreted as carriage control.)

Lines 14 through 17 interpret the ASA, beginning-of-line
carriage-control codes:

1 Form-feed
+ One carriage return (for overprinting)
0 Two carriage returns/line-feeds (for double-spaced lines)
- Three carriage returns/line-feeds (for triple-spaced lines)

There it is. A 10-line program. Just an oddly shaped brick in
the ziggurat of free UNIX tools for the non-UNIX world.

Want to chip in? It’s fun. Go to http ://language.perl.

com/ppt and take a look at what’s done and what’s not. Make
the world a better place by spending a few hours in Hershey
Heaven.

Until next time, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in
Boulder, CO, and works at Softway Systems Inc. on UNIX interna-
tionalization. He spends his spare time rearing children, raising
cats and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked for
QMS, he operated his own consulting firm and did a lot of other
things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/~copeland/work or
alternately at ftp://ftp.expert.com/pub/Work .

http://language.perl.com/ppt
http://alumni.caltech.edu/~copeland/work
ftp://ftp.expert.com/pub/Work
mailto:copeland@alumni.caltech.edu
mailto:jsh@usenix.org

	Software Ptools
	Tom Christiansen Becomes Irked
	An Example: asa(1)
	Listing 1. asa(1)

