
Work
by Jeffreys Copeland and Haemer

40 S/W Expert ■ June 1999

M
IC

HA
EL

 A
VE

TO

I18N, Part 1
MM

ost of the software we’ve writ-
ten is flawed: it assumes an
anglophone environment in an

ASCII codeset. While it might be OK for
the program we wrote to index our music
CDs, it doesn’t help our pen pal in Japan
organize his music collection–unless all of
his CDs are by English-speaking artists.
And it doesn’t help our college roommate
from Paris either, because his recordings
will have titles with odd accent marks.
In fact, our software probably won’t even
sort the titles correctly for our French
friend, because the numeric sequence
of the Latin-1 codeset is not the same
as the lexical sequence. Indeed, if you
look above at the linguistic variations
of “hello, world,” you’ll see that the non-
English ones require characters we don’t
even have in ASCII. What to do?

I18N is the accepted abbreviation
for internationalization–“I,” followed by
18 characters, followed by “N,” which
neatly solves the Anglo-American dispute
over the use of “Z” versus “S.” The inter-
faces we need when we internationalize

software are dictated by a few standards,
principally ANSI C, the POSIX family
and The Open Group’s System Headers
and Interfaces Guide. Some time ago,
in S/W Expert ’s now defunct sibling
RS/Magazine, we wrote a series of articles
on this topic. Recently, Copeland has
found himself up to his hips in I18N
development as Softway Systems pre-
pares to have its Interix system UNIX-
branded, so we thought it was time for
a quick refresher.

Software in 75 Languages
It should be obvious, even in places

as homogenous as Boulder, CO, that
English is not the only language in the
world. The process of writing software
to operate in different countries involves
not just different languages, but differ-
ent character sets and collation orders,
as well as some extensions to things
like regular expressions. How do we
represent this information?

First, let’s recognize that there are two
roughly orthogonal sets of information:

There are the text strings in the pro-
gram that need to be translated (“file
not found”) and there is culture-specific
information about our current environ-
ment (use comma instead of period for
a radix point and use day-month-year
as the date format). The text strings are
stored in message catalogs, and the lan-
guage and region in which we want to
operate are represented by something
called a locale. We’ll come back to mes-
sage catalogs later, but locales actually
have six separate categories of data:

• LC_CTYPE, containing the data
used by ctype functions.

• LC_COLLATE, containing data
about the lexical order of the characters,
as opposed to the numeric order of their
character codes.

• LC_NUMERIC, providing data about
how to format numeric quantities.

• LC_MONETARY, providing rules
on formatting currency.

• LC_TIME, containing culture-
specific details about the clock.

• LC_MESSAGES, not directly related

“hello, world”
– Everyone

“bonjour, monde”
– Tout le monde français

“konichiwa, sekai”
– Nihonjin

Work

to message catalogs, but telling us how to recognize yes/no
responses from the user.

In general, we declare what linguistic environment we’re
operating in with the LANGenvironment variable. Generally,
LANGtakes the form of the language followed by the country
in two-letter abbreviations, often with the codeset appended.
For example, fr_CA for Canadian French or en_US.Latin1

for American English.
To make our programs locale-aware, we call setlocale()

early in the program, with the locale category and locale name.
Almost always, the call will be setlocale(LC_ALL,"") –that
is, for all locale categories, set the current environment to the
value specified by LANG.

A Matter of Character
For European languages, getting enough characters in an

8-bit byte is fairly easy: 256 characters give us plenty of room
for the likes of “n with tilde,” “capital a with grave accent”
and so on. This is even the case for languages like Russian
and Ukrainian, which aren’t based on the Latin alphabet.
Many languages are handled by the ISO family of 8859 code-
set standards. Most Western European languages use a charac-
ter set called ISO8859-1, or Latin-1. Russian can be handled
by 8859-5, which contains Cyrillic characters.

Unfortunately, there are some languages for which this
doesn’t work. Japanese, for example, has about 6,400 ideo-
graphs. Usually, these characters are represented externally
to the program–on disk, for example–as multibyte sequences.
Thus, “hello, world” in Japanese might be encoded (at two
bytes per character) as the hexadecimal codes 82 B1 82 F1

82 C9 82 BF 82 F1 99 A2 8D 45 .
But we’re still stuck with the problem of characters not fitting

in a char . Fortunately, ANSI C provides a data type just for this
purpose, wchar_t , the wide character. A wchar_t is at least a
16-bit quantity. Solaris defines it with a typedef unsigned

long wchar_t , while Interix uses unsigned short ; UNIX
successor Plan 9 substitutes a 16-bit Rune data type, which
contains a Unicode character; your mileage may vary. When
internationalizing programs, you’ll find most of the changes you
make center around manipulating wchar_t s. You’ll also discov-
er that wchar_t s will figure prominently in many of the bugs
you find. You’ll need to include <stlib.h> in your programs
to use wide characters and related interfaces.

If the data are stored externally with the characters repre-
sented as multibyte strings, how do we convert them into wide
characters to deal with them internally? Well, you may not
have to. If you are only processing bytes and don’t need to
worry about the characters themselves–think cat –it’s suffi-
cient to be 8-bit clean. What’s 8-bit clean? It means your code
doesn’t assume a 7-bit ASCII-only environment. An example
of incorrect code we’ve tripped over in the past involves storing
strings in an array of char , but assuming the characters are
only seven bits, so that the program can store a single-status
bit in the high-order bit of each char in the buffer. This code
won’t even work in the Latin-1 character set!

In the normal case, where we have a multibyte character
to convert to a wide character, we’ll avail ourselves of the

mbtowc() interface. This useful function takes a pointer to
a multibyte character string, a pointer to the destination wide
character and the maximum number of bytes that comprise a
character in the multibyte string; mbtowc returns the number
of bytes actually converted, which allows you to increment the
string pointer for the next pass. How many char s constitute a
character? For all interesting implementations of the standards,
it’s a minimum of one byte and a maximum of MB_CUR_MAX.
While MB_CUR_MAXmay look like a define d constant value,
it actually returns the size of the maximum character from the
current locale.

On the other hand, if you have a string to convert, you can
use the mbstowcs() interface, which takes pointers to the
multibyte source string and the wchar_t target string, plus
a count of the maximum number of bytes to convert.

In general, when you are operating on strings–think of a
filter program–the steps you want to take for an I18N program
are as follows:

• Read the string of multibyte characters.
• Convert it to a string of wchar_t s.
• Process the wchar_t s using an algorithm similar to the

original char -based one (“similar” is important, more about
that in a moment).

• Convert the wchar_t string back to multibyte characters.
• Output the multibyte string.
There are a handful of things we need to look out for when

processing wide characters. To begin with, we want to compare
against characters, not bytes, in our loops. For example, to step
through a string, the classic loop

char *s, buf[128];

for(s = buf; *s; s++)

needs to be transformed into

wchar_t *s, buf[128];

for(s = buf; *s != L'\0'; s++)

where L'\0' represents the wide-character null byte. Likewise,
L'a' represents the wide-character version of lowercase a. By
analogy to our normal single-byte methods, when doing input
we need to read wide characters into wint_t s rather than
wchar_t s, so we can recognize the wide character end-of-file
marker (more about this when we discuss input and output).

A major source of bugs is the fact that sizeof(char)

!= sizeof(wchar_t). For example, even though memset

(buf,0,BUFSIZ) worked on your character array, it won’t
work on your wchar_t array. Instead you need to say

memset(buf,0,BUFSIZ*sizeof(wchar_t))

An important consequence of this size difference is that
problems may arise in using the same algorithm for single-byte
characters and wide characters. For example, it means your
bitmap for each character, short bitmaps[256] , may
suddenly become short bitmaps[65536] (assuming your
wide character is an unsigned short), which may take far

42 S/W Expert ■ June 1999

S/W Expert ■ June 1999 43

Work
more memory than you intended. Worse, a two-dimensional
array of character data that previously took 64 KB of memory
will now take 4 GB. Sometimes, the larger character size means
we have to rethink our algorithms.

What else won’t work quite the way we expect?
Strings are one of our most common data structures because

so much of what we do is text processing. As you might expect,
there are many helpful routines in the standard libraries for
handling wide-character strings. The most important of these
is comparison.

If all you need is to test the equality of two wide-character
strings, you can substitute wcscmp() for strcmp() . This will
also work if all you care about is the relative numeric values of
a pair of strings. However, if you are trying to compare the lexi-
cal values of “ça” and “done,” you suddenly have a more com-
plicated problem.

In the normal course of events, we’d expect the string “ça” to
be less than “done.” But (assuming we’re operating in Latin-1)
the character code for ç is 0xE7, which is much higher than the
code for d, 0x64. Fortunately, there’s an interface to solve the
problem. To compare two wide-character strings lexically, we
use wcscoll() , which does a magic transformation on the
strings based on their lexical values.

If we’re going to be doing a lot of comparisons among the
same set of strings–think sort –we don’t want to perform the
lexical transformation for every single comparison. We’d like to
separate that step from wcscoll() , so that for the comparison

step we could just use the relatively cheaper wcscmp() . For
that, we want the wscxfrm() interface, which takes a wide-
character string and returns, in another wide-character string,
the lexically transformed value used by wcscoll() . In other
words, wcscoll() is just two calls to wcsxfrm() , followed
by a call to wcscmp() .

Finishing Up
This gets us about halfway through our discussion of I18N

techniques. We’ve discussed locales and wide characters, and
how changing from char s to wchar_t s can make a mess of
your algorithms. We also began a discussion of wide-character
strings. Next time, we’ll finish up talking about strings and dis-
cuss input, output, time, dates and money. We’ll also discuss
message catalogs once over lightly.

Until then, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives
in Boulder, CO, and works at Softway Systems Inc. on UNIX inter-
nationalization. He spends his spare time rearing children, raising
cats and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked
for QMS, he operated his own consulting firm and did a lot of
other things, like everyone else in the software industry.

Note: The software from this and past Work columns is
available at http://alumni.caltech.edu/ ~copeland/work .

http://alumni.caltech.edu/~copeland/work
mailto:copeland@alumni.caltech.edu
mailto:jsh@usenix.org

	I18N, Part 1
	Software in 75 Languages
	A Matter of Character
	Finishing Up

