
Work
by Jeffreys Copeland and Haemer

42 SunExpert Magazine ■ March 1999

LL
ast month, we were inspired by
an elementary school math class.
This month, we’ll take you to

middle school or junior high, depend-
ing on your local school district. Leav-
ing elementary school brings many
changes. The one that our daughters
seem to attach the most importance
to is…lockers!

Here’s a problem that a middle-
school math teacher gave us over coffee:

Imagine all the students lined up in
front of their lockers–Student One in
front of Locker 1, Student Two in front
of Locker 2 and so on. All the lockers
are closed.

We start by having Student One
open Locker 1, then open Locker 2,
then Locker 3, Locker 4 and so on
down the line. When he opens the last
locker, he returns to his own locker and
stands in front of it.

Next, Student Two closes Locker 2,
then Locker 4, Locker 6 and every other
locker down to the end of the line, and
returns to her place.

Now it is Student Three’s turn.
Student Three closes Locker 3, opens
Locker 6 (which, remember, was open-
ed by Student One and then closed by
Student Two), closes Locker 9 and so
on, fiddling with the door of every
third locker.

If we continue this process through
to the last student, which lockers are
open, which are closed, and why?

Before we go any further, what’s
your answer?

What?
Our answer was, “Um…The prime-

numbered lockers are open?” (Two great
minds in one great rut.) Wrong.

If this was your answer too, don’t feel
bad. We’ve given several of our friends
this problem, and many of them gave
us this same wrong answer. Another
frequent off-the-cuff wrong guess is the
Fibonacci series. Michael, who works
behind the counter in our neighbor-
hood coffeehouse, guessed factorials.
That’s wrong too.

Instead of guessing, perhaps you
tried using paper, a pencil and an eraser.
We, of course, wrote a short program
(see Listing 1 on Page 44).

Lines 1 through 3 are boilerplate,
with a shebang line containing the -w
flag, and the compulsive, nit-picking
strict module that we tend to use
because we’re poor typists.

Lines 4 and 5 use the first argument
as the total number of lockers and exit
with a bitter complaint if it isn’t present.

Normally, Perl arrays begin at index
0, as in C, but we want our locker num-
bers to begin at 1, so line 6 says that in
this program, all our array indices are
going to begin at 1, as in FORTRAN.

Line 7 sets up an array of lockers
and starts with them all closed (we’ll use
$locker[5] = 0; to mean Locker 5 is
closed and $locker[5] = 1 ; to mean
Locker 5 is open).

Lines 8 through 12 perform the
openings and closings and lines 13
through 15 print out the numbers
of the open lockers.

“I have not kept my square;
but that to come

Shall all be done by the rule.”
– William Shakespeare,
Antony and Cleopatra

“What mighty contests rise
from trivial things.”
– Alexander Pope,
The Rape of the Locker

Going Through Our Lockers

PA
UL

 S
TO

DD
AR

D

Work

And the output? (Drumroll, please.)

$ lockers 200

1 4 9 16 25 36 49 64

81 100 121 144 169 196

Yup. Squares.
(Like you, middle-schooler Gillian Haemer said “squares,”

but that requires the sophistication to know what a square is.
Luckily, there’s more than one way to look at patterns. Her

little sister, Zoe, said “3, 5, 7, 9… I see the pattern.” Do
you see what she saw?)

But that’s only the first half of the answer.

Why?
Last month, when we were talking about elementary-

school math, we remarked that computers sometimes raise
more questions than they answer. Here’s a case where a short
program gave us a quick, easy-to-interpret pattern as the
answer to an interesting puzzle. This forced us head-on into
the question, “Why?”

So, let’s think. Well, if you’re locker N, who messes with
your door? Easy. The student corresponding to each of your
divisors, including Student One and Student N. The locker
door ends up being open if, and only if, it has an odd number
of divisors.

So squares, and nothing else, have an odd number of
divisors? Precisely.

Okay, why’s that? Let’s take a look at the divisors of each
number–another short program (see Listing 2).

This program is just a variant of our program in Listing 1.
This time, instead of opening or closing locker doors, line
14 pushes each divisor of $j onto the end of the array
@$divisors[$j], and lines 15 and 16 print out the lists
of divisors, along with the number of elements in each list.

$ divisors 30

1 [1] : 1

2 [2] : 1 2

3 [2] : 1 3

4 [3] : 1 2 4

5 [2] : 1 5

6 [4] : 1 2 3 6

7 [2] : 1 7

8 [4] : 1 2 4 8

9 [3] : 1 3 9

10 [4] : 1 2 5 10

11 [2] : 1 11

12 [6] : 1 2 3 4 6 12

13 [2] : 1 13

14 [4] : 1 2 7 14

15 [4] : 1 3 5 15

16 [5] : 1 2 4 8 16

17 [2] : 1 17

18 [6] : 1 2 3 6 9 18

19 [2] : 1 19

20 [6] : 1 2 4 5 10 20

21 [4] : 1 3 7 21

22 [4] : 1 2 11 22

23 [2] : 1 23

24 [8] : 1 2 3 4 6 8 12 24

25 [3] : 1 5 25

26 [4] : 1 2 13 26

27 [4] : 1 3 9 27

28 [6] : 1 2 4 7 14 28

29 [2] : 1 29

30 [8] : 1 2 3 5 6 10 15 30

44 SunExpert Magazine ■ March 1999

Listing 1

1 #!/usr/local/bin/perl -w
2 # $ID: lockers,v 1.1 1998/12/22 01:26:41 jsh Exp $

3 use strict;

4 my $usage = "usage: $0 num_lockers";
5 my $n = shift || die $usage;

6 $[= 1;
7 my @lockers = (0)x$n;

8 for (my $i=1; $i <= $n; $i++) {
9 for (my $j=$i; $j <= $n; $j += $i) {
10 $lockers[$j] = $lockers[$j] ? 0 : 1;
11 }
12 }

13 for (my $i=1; $i <= $n; $i++) {
14 print "$i\n" if ($lockers[$i]);
15 }

Listing 2

1 #!/usr/local/bin/perl -w
2 # $ID: divisors,v 1.1 1998/12/22 01:26:41 jsh Exp $

3 use strict;

4 my $usage = "usage: $0 num_lockers";
5 my $n = shift || die $usage;

6 $[= 1;
7 my @divisors;

8 for (my $i=1; $i <= $n; $i++) {
9 for (my $j=$i; $j <= $n; $j += $i) {
10 push @$divisors[$j], $i;
11 }
12 }

13 for (my $i=1; $i <= $n; $i++) {
14 my $t = scalar @$divisors[$i]};
15 printf "%3d [%2d] : ", $i, $t;
16 print "@$divisors[$i]}\n";
17 }

Aha. Well, the first thing we see is something we already
knew: only prime numbers have exactly two divisors (one
and themselves). What about some of the other compound
numbers? The powers are easy: 2 has two divisors, 4 has
three, 8 has four, 16 has five and so on. It’s easy to see that
for any prime, p

n
has n + 1 divisors: p

0
, p

1
, … p

n
.

But how about the other compound numbers, like 72?
72= 2

3
x 3

2
.

First, we arrange all the divisors in a table, like this:

Across the top, we have the possible powers of three and
down the side, the possible powers of two. Taken together,
the table entries constitute all (3+1) x (2+1) = 12 possible
combinations.

Similarly, though harder to draw, it should be pretty
clear that the divisors of 900 = 2

2
x 3

2
x 5

2
can be laid out

in a (2+1) x (2+1) x (2+1) = 3 x 3 x 3 cube. (Okay, okay,
“a three-dimensional rectangular parallelepiped.”)

Much harder to draw would be the four-dimensional
grid of divisors of 4902963250500 = 2

2
x 3

5
x 5

3
x 7

9
, but

it’s not hard to see how many elements would be in it: 3 x
6 x 4 x 10 = 720.

So which numbers will have a multidimensional array
of divisors with an odd number of elements? Only those
with an odd number of elements in every dimension; an
even number in any dimension would make the product
of the dimensions even.

And how many elements are there in each dimension?
One more than the power of the prime that dimension rep-
resents. (Thus, in our first example above, 72 = 2

3
x 3

2
, we

have four elements in the dimension representing the prime
factor 2, and three elements in the dimension representing
the prime factor 3.)

But for each axis to be of odd length, each prime factor
must be raised to an even power. And if each prime factor is
raised to an even power, then the number is a square.

For example, 144 = 12
2

= (2
2

x 3
1
)

2
= 2

4
x 3

2
will have

(4+1) x (2+1) = 15 factors, and Locker 144 will be open.
Not bad, eh?

Not Again!
Okay, here’s another one.
Same students, same lockers, opposite rules. This time,

Student One doesn’t open his locker or anyone else’s. Student
Two doesn’t open Locker 2, but opens Locker 3, skips Locker
4, opens Locker 5 and so on.

Student Three doesn’t open Locker 3, does open Locker 4,
closes Locker 5, ignores Locker 6 and goes on changing the
state of every locker that is not divisible by three. Now which
lockers are open?

(“Um…Primes?” No again.)

Listing 3 shows the code. And the answer:

$ lockers2 100

1 2 6 8 9 10

12 14 18 20 22

24 25 26 28 30

32 34 38 40 42

44 46 48 49 50

52 54 56 58 60

62 66 68 70 72

74 76 78 80 81

82 84 86 88 90

92 94 96 98

Aha! It’s the even numbers. Well, almost.
What’s the pattern? And why?
We see the answer to the first question, but not a good

proof for the second one. Maybe you have to be a middle-
schooler to come up with one; if you have a middle-schooler
who does, please pass the proof along and we’ll print it.
Meanwhile, we’ll ask Gillian Haemer and Allie Copeland.

Until we hear from you or them, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in
Boulder, CO, and works at Softway Systems Inc. on UNIX interna-
tionalization. He spends his spare time rearing children, raising
cats and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked
for QMS, he operated his own consulting firm and did a lot of
other things, like everyone else in the software industry.

Note: The software from this and past Work columns is
available at http://alumni.caltech.edu/ ~copeland/work .

SunExpert Magazine ■ March 1999 45

Work

Listing 3

#!/usr/local/bin/perl -w
$ID: lockers2,v 1.1 1998/12/22 15:29:44 jsh Exp $

use strict;

my $usage = "usage: $0 num_lockers";
my $n = shift || die $usage;

$[= 1;
my @lockers = (0)x$n;

for (my $i=1; $i <= $n; $i++) {
for (my $j=$i; $j <= $n; $j++) {

$lockers[$j] = ($lockers[$j] ? 0 : 1) if $j%$i;
}

}

for (my $i=1; $i <= $n; $i++) {
print "$i\n" unless $lockers[$i];

}

x 1 3 9

1 1 3 9
2 2 6 18
4 4 12 36
8 8 24 72

	Going Through Our Lockers
	What?
	Listing 1

	Why?
	Listing 2

	Not Again!
	Listing 3

