
Work
by Jeffreys Copeland and Haemer

42 SunExpert Magazine ■ December 1998

PA
UL

 S
TO

DD
AR

D

Reader, Part 1
LL

ast month, we talked about read-
ing text online. This month and
next, we’ll provide some code

for you to do so. We wrote the original
version of the program we present here
during a standards meeting. We brought
along a few dozen back issues of the
RISKS-Forum Digest (see Usenet news-
group, comp.risks , or ftp://ftp.

sri.com/risks) to read on our lap-
top during the boring parts of the meet-
ing, but kept having to interrupt our
reading to check data in other files.
“Gosh,” we thought, “how come more

doesn’t have a way to start up where we
left off last time?” (Reading RISKS dur-
ing a meeting is certainly better for our
sense of well-being than reading it on
an airplane!)

We wrote a pager that did just that.
You started it with a list of files on the
command line, and it saved the list of
files and the point at which you stopped
reading. When you started the program
without arguments, it found the last list
of files–and your electronic equivalent

of a bookmark–and restored itself to
where you left off.

We wrote the current version of
the program when we found ourselves
fixing the paging code for the seventh
time to more closely match the behav-
ior of more . This version is actually
a front-end to a modified version of
less . As a result, the underlying pager
code has a full set of features. We have
written the wrapper code in C++ (so we
can use some data-hiding capabilities)
using the CWEBliterate programming
tool. (If you’re not familiar with this
tool, CWEBallows us to pleasantly mix
program and documentation and then
extract one or the other as needed. It’s
well-suited to articles like this one. For
more details, see “Cathedrals, Bazaars,
and News Readers,” July 1998, Page 57,
and “Virtual Threaded News Reader,”
August 1998, Page 54, or take a look
at our Web page.)

In addition to those outlined above,
we needed some other features:

• The code needed to be portable

because we wanted to run it on our
desktop SPARCs and our DOS-based
laptops. (It turns out this code is suffi-
ciently portable that we could also run
it on Windows NT-based laptops loaded
with Interix, a soon-to-be-certified port
of UNIX to Windows NT. Interix used
to be called OpenNT; Windows NT
will soon be called Windows 2000.)

• The data files needed to be port-
able for the same reason–they couldn’t
depend on byte order.

• We wanted to be able to store a
collection of files, such as RISKS, in
a single ZIP archive and read that as
if it were a directory.

• The ability to store “clippings”
(that is, save parts of a file for later
reference) would be useful.

• We wanted something small enough
that we could run it out of RAMDISK
on DOS. This means it would use mini-
mum power when we were reading on
an airplane. (Peter Neuman reports in
RISKS that until airlines made provisions
for power onboard, trans-Pacific flights

often found their restrooms occupied by laptops, more so
than humans.)

We’ll discuss each of these features as we develop the code,
and we’ll throw in some exercises for the reader along the way.
Having said all that by way of setup, we can jump right in.

Let’s begin by laying out the basic program:

<header files>

<prototypes>

<global data>

<class definitions>

<auxilary routines>

<main program>

It will be helpful to have two versions of the main program:
“test” and “production.” So we can swap in test or production
versions as necessary.

<main program>=

#ifdef TEST

<test main>

#else

<production main>

#endif

We can also guess a couple of the header files we’ll need.
We’re going to do our input using the stdio library, rather
than the newer C++ streamio package. (Exercise for the
reader: How would you go about converting the program to
use streamio ?) We’ll also need some standard definitions.
Similarly, we know a priori that we’re going to need to do
some string processing–what do we write that doesn’t? We’ve
included both a DOS and a UNIX complement of include

files. Notice that the strcasecmp interface exists under
various names, so we use a #define to work around that:

<header files>=

#define _ALL_SOURCE

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#ifdef __MSDOS__

#include <io.h>

#include <dos.h>

#define strcasecmp stricmp

#else

#include <unistd.h>

#include <strings.h>

#endif

#include <sys/stat.h>

We’re going to make use of a string routine that is common,
strdup() , but we have run across C implementations without
it. Let’s add it just in case it’s missing:

<prototypes>=

char *strdup(char *s);

And the routine itself:

<auxilary routines>=

char *

strdup(char *s)

{

char *x;

x = (char *) malloc(strlen(s)+1);

if(x != NULL)

strcpy(x,s);

return x;

}

Last, we’ve got some routines that we will define later but for
which we need prototypes now:

<prototypes>=

void fatal(char *msg);

void warning(char *msg, char *s);

char *next_file_from_listing(void);

Bookmark Class
We actually have two types of bookmarks. One is used to

mark the point where we last left off on our linear reading of
the material, but we also need to simulate fingers holding our
place in the book as we flip back and forth chasing references,
or places we want to read to our spouses later. For convenience,
we’ll refer to these as the main bookmark and the supplementary
bookmarks. In the normal course of events, we’ll only have a
single instantiation of the Bookmark class.

<class definitions>=

<bookmark class definition>

<bookmark interface code>

The class internals are simple at the top level:

<bookmark class definition>=

class Bookmark {

public:

<bookmark interfaces>

private:

<bookmark data>

};

For the data, we need to include the following. (If we had
structured our classes differently, we might have included a
FileList class containing the list of files and a BookMark class
containing a single bookmark. We could then instantiate a
“BookMark” for the main bookmark, and one for each supple-
mentary bookmark we used. Instead, we’ve decided to include
all the data in a single class.)

<bookmark data>=

int file_count; // how many files

char **file_names; // the actual file names

ssize_t file_which, file_where; // main bookmark

SunExpert Magazine ■ December 1998 43

Work

Work
// next some constants

enum { BOOKMARKS=26 }; // the array sizing

enum { EMPTY_BM=-1L }; // empty bookmark defn

// supplementary bookmarks

ssize_t bm_which[BOOKMARKS];

ssize_t bm_where[BOOKMARKS];

Let’s add the prototypes for our interfaces to the class definition:

<bookmark interfaces>=

Bookmark(FILE *fp);

Bookmark();
~Bookmark();

void Add_File(char *name);

int Find_File(char *name);

void Write(char *name);

bool Query(char c,

ssize_t &which, ssize_t &where);

bool Set(char c, ssize_t which, ssize_t where);

void Set_main(ssize_t which, ssize_t where);

bool Set_main(char c);

In addition, we’ll add some inline routines to return data from
inside the class:

<bookmark interfaces>=

char *

Current_File()

{ return file_names[file_which]; }

ssize_t

Current_FileNr()

{ return file_which; }

ssize_t

Current_Line()

{ return file_where; }

int

File_Count()

{ return file_count; }

And we need a handful of interfaces to modify data inside
the class. (Exercise for the reader: Can you implement these
as C++ overloaded operators?)

<bookmark interfaces>=

void

Prev_File()

{

if(file_which > 0) --file_which;

file_where = 0L;

}

void

Next_File()

{

if(++file_which > file_count)

--file_which;

file_where = 0L;

}

bool

No_More_Files()

{

return(file_which == file_count);

}

We need to define a global (variable) to tell us if we’re
(reading) a ZIP archive; for convenience, we’ll save the file
name of the archive. Also, if we’re reading a ZIP , we unfurl
the current file into the current directory. This means we
need to access basename(file) if it’s a ZIP we’re reading;
otherwise, file . We define a macro to test this for us:

<header files>=

#define we_are_zip ((zip_name != NULL))

#define locate(x) (we_are_zip? basename(x) : x)

The Boolean type is not necessarily part of the language–it
has been in and out of the C++ specification so many times no
one’s quite sure. So we do some more defensive programming:

<header files>=

#ifndef bool

#define bool short

#define false 0

#define true 1

#endif

We’ve discovered that in older versions of certain DOS com-
pilers, some useful constants may be missing:

<header files>=

#ifdef __MSDOS__

ifndef FILENAME_MAX

define FILENAME_MAX BUFSIZ

endif

ifndef R_OK

define R_OK 04

define W_OK 02

endif

#endif

Similarly, we’re going to need a file in which to save our list
of files and bookmarks. We’ll define its name and the name
of the printed clippings now, and save ourselves some grief
later. We’ll also define a single string containing both names.
This will save us some effort in function calls later on, as
we shall see.

<header files>=

#define INDEX "___ndx__"

#define PRINT "___prt"

44 SunExpert Magazine ■ December 1998

#define INDEX_PRINT "___ndx__ ___prt"

At the same time, we’ll need to define the global instances of
the Bookmark class and the zip_name defined:

<global data>=

class Bookmark;

char *zip_name = NULL;

Bookmark *marks;

How will the data be stored in the index file? In an effort to
make the index file portable, we will write the file in flat ASCII.
For example, the following sample index file for a selection of
RISKS Digests contains a count of files, the names of the files,
the main bookmark (in the form of file number and line num-
ber within file) and the supplementary bookmarks, which are
lettered for convenience:

10

risks17.60

risks17.61

risks17.62

risks17.63

risks17.64

risks17.65

risks17.66

risks17.67

risks17.68

risks17.69

7 90

a 3 24

c 4 93

q 7 114

Next, we must provide the code for the methods we prototyped
earlier. We begin by providing a method to read an open book-
mark file. Let’s do this in the constructor, as follows:

<bookmark interface code>=

Bookmark::Bookmark(FILE *fp)

{

char buf[BUFSIZ];

if(fgets(buf,BUFSIZ,fp) == NULL)

fatal("bad bookmark file: file_count");

file_count = atoi(buf);

// now we allocate the file names array:

file_names =

(char **)malloc(file_count*sizeof(char *));

// read the file names:

for(int i = 0; i < file_count; i++)

{

if(fgets(buf,BUFSIZ,fp) == NULL)

fatal("bad bookmark file: file_name");

char *s;

if((s=strchr(buf,'\r')) != NULL) *s = 0;

if((s=strchr(buf,'\n')) != NULL) *s = 0;

file_names[i] = strdup(buf);

}

// main bookmark:

if(fgets(buf,BUFSIZ,fp)==NULL)

fatal("bad bookmark file: main bookmark");

sscanf(buf,"%ld %ld", &file_which,

&file_where);

// range check current file number:

if(file_which >= file_count)

file_which = file_count - 1;

/* supplementary bookmarks: */

// ...begin by clearing them:

for_all_bookmarks(c) {

bm_which[MARK(c)] =

bm_which[MARK(c)] = EMPTY_BM;

}

// ...now read the ones in the file:

while(fgets(buf,BUFSIZ,fp) != NULL)

{

char c;

sscanf(buf,"%c %ld %ld", &c,

&bm_which[c-'a'], &bm_where[c-'a']);

}

}

We’ve done a trick with the loop around the supplemen-
tary bookmarks that needs some explaining. We’re going
to be looping through those supplementary bookmarks fre-
quently and we don’t want to institutionalize the notion that
there are only 26 of them. What we’ll do is set up a macro
for the loop and a macro to decode a bookmark name (what-
ever form that may take) into an array index. Note that we
specify the loop variable to for_all_bookmarks so that
we can use the same one with MARK. (This is a case where
we might have been better with an inline function rather
than a macro.)

<header files>=

#define for_all_bookmarks(x) \

for(char x='a'; x<='z'; x++)

#define MARK(x) ((x)-'a')

We’ll also need a method to provide an empty Bookmark

instance. This gives us a way to generate a Bookmark with no
files in it. In other words, it lets us bootstrap the Bookmark

when we don’t already have an index:

<bookmark interface code>=

Bookmark::Bookmark()

{

file_count = 0;

file_names = NULL;

file_which = file_where = 0L;

for_all_bookmarks(c){

bm_which[MARK(c)] =

bm_which[MARK(c)] = EMPTY_BM;

}

}

SunExpert Magazine ■ December 1998 45

Work

Work
We only need one destructor for the class:

<bookmark interface code>=

Bookmark:: ~Bookmark()

{

for(int i = 0; i < file_count; i++)

free(file_names[i]);

free(file_names);

file_count = 0;

file_which = file_where = EMPTY_BM;

for_all_bookmarks(c) {

bm_which[MARK(c)] =

bm_where[MARK(c)] = EMPTY_BM;

}

}

When starting up with a fresh file list, we need to be able to
add files to the end of the list in the Bookmark . This routine
will also be useful if we want to add files to an existing index. To
do this, we just need to expand the existing array of file names:

<bookmark interface code>=

void

Bookmark::Add_File(char *name)

{

file_count++;

if(file_names)

file_names =

(char **) realloc(file_names,

file_count*sizeof(char *));

else

file_names = (char **) malloc(sizeof(char *));

if(file_names == NULL)

fatal("can't add file to bookmarks");

file_names[file_count-1] = strdup(name);

}

Similarly, we’re going to need a method to find a file name
in the file name list. If we don’t have it, we’ll return -1 ; other-
wise, we’ll return the index in the file_names array.

<bookmark interface code>=

int

Bookmark::Find_File(char *name)

{

for(int i = 0; i < file_count; i++)

if(strcmp(file_names[i], name) == 0)

return i;

return -1;

}

We will eventually need to write the bookmarks to a file. Nor-
mally, we would use the file specified by the INDEX macro.
Given its name, producing the file itself is easy. (Exercise for
the reader: How could we name the index file so it is hidden on
DOS and UNIX, and use the same name on both systems?)

<bookmark interface code>=

void

Bookmark::Write(char *name)

{

FILE *fp;

if((fp = fopen(name, "w")) == NULL)

fatal("can't open bookmarks for writing");

fprintf(fp, "%d\n", file_count);

for(int i = 0; i < file_count; i++)

fprintf(fp, "%s\n", file_names[i]);

fprintf(fp, "%ld %ld\n",

file_which, file_where);

for_all_bookmarks(c)

{

if(bm_which[MARK(c)] != EMPTY_BM)

fprintf(fp, "%c %ld %ld\n",

c, bm_which[MARK(c)], bm_where[MARK(c)]);

}

fclose(fp);

}

We’ll also need to query and set supplementary bookmarks.
When we ask for a bookmark, we will handle the file and line
number by reference and return false if the bookmark is
unset. When we want to set a bookmark, we’ll return false

only if the bookmark is out of range.

<bookmark interface code>=

bool

Bookmark::Query(char c,

ssize_t &which, ssize_t &where)

{

if(bm_which[MARK(c)] == EMPTY_BM)

return false;

which = bm_which[MARK(c)];

where = bm_where[MARK(c)];

return true;

}

bool

Bookmark::Set(char c,

ssize_t which, ssize_t where)

{

if(MARK(c) < 0 || MARK(c) > BOOKMARKS)

return false;

bm_which[MARK(c)] = which;

bm_where[MARK(c)] = where;

return true;

}

We’ll also need a method for setting the main bookmark. If
we choose a file out of the range of our array of file names,
we only change the line number, not the file.

<bookmark interface code>=

void

Bookmark::Set_main(ssize_t which, ssize_t where)

46 SunExpert Magazine ■ December 1998

{

if(which >= 0 && which < file_count)

file_which = which;

file_where = where;

}

Also, we want a version of Set_main that sets from a given
secondary bookmark and returns true if the bookmark is set:

<bookmark interface code>=

bool

Bookmark::Set_main(char bkmk)

{

ssize_t which, where;

if(!Query(bkmk,which,where))

return false;

Set_main(which, where);

return true;

}

We need to add some code so that we can handle the previous
context as we do in vi : We can get back to the last place we
were reading using a '' command. But we won’t do that now.
(Exercise for the reader: How would you add that code?)

Initial Setup, Command-Line Parsing
We need to get in here and define the skeleton of the main

program, which will include the following:
• How to parse the files and flags on the command line.
• How to distinguish text files from ZIP archives.
• How to set up the initial index file.
• How to instantiate the Bookmark class.

<production main>=

main(int ac, char *av[])

{

<parse the command line>

<instantiate and populate Bookmark>

<additional index processing, if needed>;

<process the files>

return(0);

}

Next, we can parse the command line. There are a few cases to
consider:

1. There are no arguments.
2. The first argument on the line is a plus sign (+).
3. The first argument on the command line is a ZIP archive.
4. The first argument on the line is a file.
We’ll explain the action in each case as we go along, but the

fundamental goal is to identify and open the index file, resulting
in a FILE * for the index.

An earlier version of this program recognized additional
flags, in particular, the flags for encryption in the various ZIP

tools. We’re not going to support that here, for two reasons:
First, there is a lot of difference between encryption in the Info-
ZIP utilities on UNIX and in the PKZIP utilities on DOS–the

UNIX versions want the passwords from the console not on
the command line, for example. Second, such encryption is
adequately provided by external programs such as the Info-ZIP
zipcloak and Phil Zimmerman’s Pretty Good Privacy (PGP).
When we wrote the original program, we added a note apolo-
gizing if the U.S. cryptographic regulations made it difficult for
users to get those software packages, but now it’s probably easier
to get them from outside the United States.

<parse the command line>=

FILE *fp = NULL; // the index file pointer

If there no arguments, then we should already have an index
file in our current directory. If we have no arguments and
cannot open an index file, we’ve got a problem.

<parse the command line>=

if(ac == 1)

{

if(access(INDEX,R_OK) != 0)

fatal("no arguments and no index file?");

}

If the first argument is a plus sign (+), we want to add the files
given here to the existing index file. We should already have an
index file. We’ll set a f lag to tell us that we’re adding and deal
with their names later:

<parse the command line>=

else

if(strcmp(av[1],"+") == 0)

{

if(access(INDEX,R_OK) != 0)

fatal("files to add but no index file?");

adding_files++;

}

For that last case, we need to declare the variable:

<global data>=

int adding_files = 0;

Next, we need to determine if our first argument is a file.

SunExpert Magazine ■ December 1998 47

Work

If there are
no arguments,
then we should
already have an
index file in our
current directory.
If we have no
arguments and
cannot open an
index file, we’ve
got a problem.

Work
Because it may be a ZIP archive, we’ll try both the given
name and the name with .zip appended. If the first argu-
ment is not a file, we’re in trouble. The status messages are
not strictly necessary but allow us to see what progress is
being made.

<parse the command line>=

else

{

char name[FILENAME_MAX];

char namezip[FILENAME_MAX];

strcpy(name, av[1]);

strcpy(namezip, av[1]);

strcat(namezip, ".zip");

if(access(name,R_OK) != 0)

{

printf("can't open %s, checking %s\n",

name, namezip); //???

if(access(namezip,R_OK) == 0)

strcpy(name,namezip);

else

fatal("can't open first file");

printf("whew! got %s\n", name); //???

}

<check if we're a zip>

}

If we reach this next section of code, we have a readable
file. (If not, we invoked fatal() in the last section.) Let’s
check if we’re reading a ZIP file: The magic cookie is PK\

003\004 . If so, we’ll set zip_name and try to extract the
index and clippings files:

<check if we're a zip>=

char buf[BUFSIZ];

fp = fopen(name, "rb");

fgets(buf,BUFSIZ,fp);

if(strncmp(buf,"PK\003\004",4) == 0)

{

zip_name = strdup(name);

<clobber an existing index file>

<unzip the index and print files>;

}

fclose(fp);

If we are reading a ZIP (which we must be if we’re inside
this if) we must remove any existing index file before
we unpack the new index file. We’re set up to overwrite it,
but if the current directory has an old index file, and our
current zip doesn’t have one yet, we could be looking at
an unrelated index.

<clobber an existing index file>=

if(access(INDEX,R_OK) == 0) unlink(INDEX);

If we can open an index file, we can instantiate a populated
Bookmark from it. If not, we can create an empty Bookmark

object and proceed from there. We still haven’t dealt with the
issue of adding files if we had a plus sign (+) argument; we’ll
do that at the end.

<instantiate and populate Bookmark>=

if((fp=fopen(INDEX,"r")) != NULL)

{

marks = new Bookmark(fp);

fclose(fp);

} else {

marks = new Bookmark();

<populate the bookmarks>

}

<possibly add files>

If we don’t already have an index file, we need to populate
one. We only need to worry about this in the non-ZIP case.
In the ZIP case, we populate the file names into the Bookmark

when we synchronize the listing with the list in the Bookmark ,
as follows:

<populate the bookmarks>=

if(!we_are_zip)

{

<populate text bookmarks>

}

Populating a non-ZIP bookmark is pretty easy, we just add all
the file names to the list on the command line:

<populate text bookmarks>=

for(int i=1; i < ac; i++)

marks->Add_File(av[i]);

Now, we return to conditionally adding files from the com-
mand line:

<possibly add files>=

if(adding_files)

for(int i = 2; i < ac; i++) {

if(access(av[i],R_OK) == 0)

marks->Add_File(av[i]);

else

warning("can't open file to add %s", av[i]);

}

There is one other major order of business. In general, if
we are reading a ZIP file, we want to synchronize the index
file to the files actually in the archive. That is, if files have
been added to the archive since the index file was created,
we want to add them to the file list in the Bookmark class
(we ignore files removed from the archive). We use the service
routine we just postulated to achieve this. Note that this will
also handle the initial population of the index from the ZIP

if we are lacking an index file.
We perform the synchonization only if there is an index

file present; if there is not an index file, then we just create

48 SunExpert Magazine ■ December 1998

a Bookmark from the listing (we already know what the
full complement of files are). We ignore the index and clip-
ping files.

We finish this step by unlinking the index file, because
we don’t need it while we’re reading–it’s in memory–and we’ll
recreate it at the end:

<additional index processing, if needed>=

if(we_are_zip)

{

char *s;

while((s=next_file_from_listing()) != NULL)

{

if(marks->Find_File(s) < 0 &&

strcasecmp(s,INDEX) != 0 &&

strcasecmp(s,PRINT) != 0)

marks->Add_File(s);

}

unlink(INDEX);

}

The Test Driver
This is slightly out of order, but we’ll address some test

code next. In the best of all possible worlds, we would pro-
vide a full set of test scripts to run in parallel with this. In-
stead, we provide some pretty simple-minded routines to
exercise the methods in our Bookmark class. To ensure that
the Bookmark suite is working, we need to examine the gen-
erated bookmark file foo .(Exercise for the reader: Build a
more comprehensive test driver.)

<test main>=

main(int ac, char *av[])

{

FILE *fp;

fp = fopen("a","w"); fclose(fp);

fp = fopen("b","w"); fclose(fp);

fp = fopen("c","w"); fclose(fp);

marks = new Bookmark();

marks->Add_File("a");

marks->Add_File("b");

marks->Add_File("c");

unlink("a"); unlink("b"); unlink("c");

marks->Set_main(1L,27L);

marks->Set('r',2L,84L);

marks->Write("___foo");

}

Leftovers
We have a few leftover routines from the work above,

which we’ll write next time. In the meantime, we need to
name them and provide their prototypes.

The first thing we need to do is display the files:

<process the files>=

process_the_files();

We also need code to extract the index and print files if we’re
reading from a ZIP archive:

<unzip the index and print files>=

unzip_index_print();

And prototypes for both routines:

<prototypes>=

void unzip_index_print(void);

void process_the_files(void);

Next time, we’ll provide the code for these and also build the
actual interface to less .

Until then, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in
Boulder, CO, and works at Softway Systems Inc. on UNIX interna-
tionalization. He spends his spare time rearing children, raising cats
and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked for
QMS, he operated his own consulting firm, and did a lot of other
things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/ ~copeland/work .

SunExpert Magazine ■ December 1998 49

Work

	Reader, Part 1
	Bookmark Class
	Initial Setup, Command-Line Parsing
	The Test Driver
	Leftovers

