
Work
by Jeffreys Copeland and Haemer

SunExpert Magazine ■ October 1998 53

Puzzle Posters, Part 2
TT

his column is a continuation of
last month’s. Let’s brief ly review
how we got here. First, perusing

comp.lang.perl.misc , we found an
interesting puzzle posted by Tim Bunce
(shown below).

One response to Tim’s puzzle came

from Nat Torkington: “You install a full
set of tools, like the Lord God Almighty
intended. Repent, ye prisoner of Bill ! The
Day of Judgement is at Perl ! Your messen-
gers are obviously just poor substitutes
for reliable pipe communication, which
you’d have if you had a real operating

system and not a scurrilous piece of tool-
challenged coprophilia !”

Not only did we think the response
was funny (it parodies postings by Nat’s
friend and coauthor Tom Christiansen),
we also realized Nat was correct: prepro-
cess the data, then pipe it to that vener-
able UNIX utility, tsort .

We sent our solution to Tim and he
wrote back saying that Nat had been right
for another reason: his operating system
(from some company in Redmond, WA)
doesn’t come with a tsort . We volun-
teered to write Tim one in Perl.

Lazily, we simply looked up a tsort

implementation from Jon Bentley’s book,
More Programming Pearls, published by
Addison-Wesley Publishing Co., 1988,
ISBN 0-201-1189-0. Bentley, in turn,
reused the algorithm from Don Knuth’s
The Art of Computer Programming. (We
might have done the same thing, except
someone has walked off with our copy
of Knuth.)

Finally, we wrote a column explaining
the overall solution and promised we’d

Novus ordo seclorum.
– The Great Seal of the

United States of America

A list of names in a specific order is given to a set of messengers in a remote land.
The messengers travel independently to a destination where they give the names
to you. The problem is that the messengers quite often, say 70%, miss out one or
more names and occasionally, say 10%, get the order wrong. Names are never added,
repeated or changed, only missed or reordered. The messengers always think
they've got it right. For example,

Original list: foo bar baz boo

Messenger A says: foo bar boo
Messenger B says: bar boo baz
Messenger C says: foo bar baz boo
Messenger D says: boo foo bar baz
Messenger E says: foo bar baz
Messenger F says: foo baz boo

The problem is to find the full list of names and the original order.
Tim

PA
UL

 S
TO

DD
AR

D

Work

write a second column about tsort implementa-
tion. This is it.

So what’s a tsort and why does UNIX have
one, anyway?

Suppose you have a list of ordered pairs. Turning
them into a single, ordered list, in which the second
element of each pair is always after the first, is called
topological sorting. The tsort utility performs topo-
logical sorts.

An example will help. If you know that A is
before B, A is before C and B is before C, then the
correct list order is A B C.

Things are not always this simple, however. Sup-
pose, for example, we add more information: A is
before Z and Z is before C. Now, the order could be
A B Z C or A Z B C. Either of these two orders is a
correct topological sort of the input data.

“But Z and B could be tied,” you helpfully
point out. Sure. This is even a problem with regular
sorts. If we sort the following numbers, 2 1 3 2 2,
the number twos can come in any order. tsort

and sort try only to produce a single, ordered list
consistent with the data. tsort ’s only restriction
is that there must be no cycles in the input data.
If A is before B, B is before C and C is before A,
tsort is stumped.

(The three number twos in our example remind
us that there are sentences that you can speak but
cannot write. For example, “There are three ‘tuuz’ in
the English language: ‘t-o,’ ‘t-o-o’ and ‘t-w-o.’” Out
loud, this sentence is factual and not at all artif icial.
Putting it on paper requires either rewording the
sentence or using an artificial spelling, such as
“tuuz,” that you won’t find in any dictionary. This
lovely example is courtesy of the late Col. Alan G.
Haemer, U.S.A.F.)

But why does UNIX come with a special utility
to do topological sorting? Who uses it?

One way to find out is to look through all the
executables in your path for any use of tsort:

for i in $(echo $PATH | sed 's/:/ /g')

do

grep -l tsort $i/*

done

The only utility we could f ind when we did this was
x11perfcomp . Note that if you grep for sort ,
instead of tsort , you’ll see a big difference.

“But surely,” you say, “this can’t be all it’s used
for.” Correct. And herein follows a history lesson.

Back in the old days, computers were much
slower; you could often go out for coffee while your
programs compiled and linked. Programmers did all
sorts of things to minimize compilations that we no
longer have to do, such as actually thinking about
code before compiling it. One thing that helped

54 SunExpert Magazine ■ October 1998

Listing 1. Our Perl Code

1 #!/usr/local/bin/perl -w
2 # $Id: tcsort,v 1.5 1998/08/04 20:29:07 jsh Exp jsh $

3 use strict;

4 use vars qw($opt_b $opt_d);
5 use Getopt::Std;
6 my $usage = "usage: $0 [-b|-d] [filename]\n";
7 getopts("bd") or die $usage;
8 die $usage if ($opt_b && $opt_d);

9 my %pairs;# all pairs ($l, $r)
10 my %npred;# number of predecessors
11 my %succ;# list of successors

12 while (<>) {
13 my ($l, $r) = my @l = split;
14 next unless @l == 2;
15 next if defined $pairs{$l}{$r};
16 $pairs{$l}{$r}++;
17 $npred {$l} += 0;
18 ++$npred{$r};
19 push @{$succ{$l}}, $r;
20 }

21 # create a list of nodes without predecessors
22 my @list = grep {!$npred{$_}} keys %npred;

23 while (@list) {
24 $_ = pop @list;
25 print "$_\n";
26 foreach my $child (@{$succ{$_}}) {
27 if ($opt_b) {# breadth-first
28 unshift @list, $child unless --$npred{$child};
29 } else {# depth-first (default)
30 push @list, $child unless --$npred{$child};
31 }

32 }
33 }
34 warn "cycle detected\n" if grep {$npred{$_}} keys %npred;

35 =head1 NAME

36 tcsort - topological sort

37 =head1 SYNOPSIS

38 tcsort [filename]

39 =head1 DESCRIPTION

40 =over 2

41 Does a topological sort of input pairs.

42 For a more complete description, see the tsort(1) man page,
43 For a fine explanation of the algorithm, see the October 1998
44 Work column in SunExpert, or the references given below.

45 =back

46 =head1 OPTIONS AND ARGUMENTS

47 =over 8

Work

was being able to link precompiled versions of utility routines
into your executable. This removed the requirement to recom-
pile, say, printf() , each time you compiled hello, world .
An advance built on top of this was the ability to collect relat-
ed, compiled object f iles into libraries, such as

/usr/lib/libc.a.

Linkers (ld on UNIX systems) allowed you to search through
one or more libraries for routines that your program called but
didn’t define. Unfortunately, even searching libraries could be
time-consuming. For example, if your code called strdup() ,
the linker would search libc.a to find strdup.o . But
strdup.o , in turn, calls malloc() , so a second search of
libc.a was needed to find and extract malloc.o . And
because malloc.o calls fprintf() …and so it goes.

This could all be done with a single pass through the library
by arranging the object f iles in an order that put each object f ile
in the library before the external functions it called.

Starting to sound familiar?
To accomplish this, the lorder utility was written to find

and list all the pairwise dependencies among object files and a
second utility, tsort , took these dependencies and put them
in the right order. This list, in turn, was given to ar , which
created libraries in the order it was told.

On modern systems, a much-enhanced ar does all the
work for you (and in a different way). Nevertheless, UNIX
systems still come with tsort . After all, it works. And you
can still occasionally use it to solve problems like the one
posed by Tim.

If, just for fun, you want to see the pair at work, try this:

$ mkdir /tmp/tsort_demo

$ cd /tmp/tsort_demo

$ ar x /usr/lib/libc.a # extract copies

of all .o files

$ lorder *.o | tsort

The tree-linearization news article code we wrote in
our July and August columns (“Cathedrals, Bazaars,
and News Readers,” Page 57 and “Virtual Threaded
News Reader,” Page 54, respectively) was related to
this problem: The news problem can be partially
solved with .CR tsort .

Question for our readers: Does anyone know
why UNIX always comes with Bessel functions
of the second kind, y0 , y1 and yn ?

An Implementation
Enough already. Listing 1 contains our code.

Herein follows a dramatic reading.
Lines 1 through 3 are our usual, cowardly boiler-

plate. We want Perl to tell us about our stupid mis-
takes, and we keep the code under Revision Control
System (RCS) so we can retrieve older versions with
fewer stupid mistakes. Lines 4 through 8 do argu-
ment parsing and handle the usage message. Lines
9 through 11 declare some hashes, and it’s worth

pausing here for a minute to talk about the data structures.
We’re going to keep all the elements to be sorted as arbitrary

strings. Each input line (for example, “age beauty,” to mean
“age comes before beauty”) has two elements. Unless this pair
has been seen before, which we’ll track by defining a hash ele-
ment, $pair{"age"}{"beauty"} , an input line will have
at least two effects:

1. The hash entry $npred{"beauty"} , which counts the
number of predecessors of beauty , will be incremented.

2. beauty will be added to the list of successors of age,

$succ{"age"} . Note that $succ{"age"} will be a refer-
ence to an array containing all the successors of age .

Lines 12 through 20 populate these structures. The remain-
ing lines traverse these structures, printing them out as the
sorted list.

So how do they work? The margins of this column aren’t
large enough to illustrate that lines 21 through 31 provide
a topological sort, so we’ll leave this as an exercise for our
readers. We will, however, give you more of a hint than you’ll
f ind in either Knuth or Bentley, and show you how to get
two different tsort s from one piece of code.

Traversing Trees
Let’s start by talking about tree traversal. The most familiar

way to traverse a tree is with a depth-first search. Here’s our
favorite algorithm for a depth-first search:
• Start with an empty stack.
• Push the root of the tree onto the stack to initialize.
• Pop the stack, print what you find and push its children

back on the stack in its place.
• Continue until the stack is empty.

56 SunExpert Magazine ■ October 1998

48 =item B<[-b|-d]>

49 breadth-first or depth-first (default) traversal

50 =item B<filename>

51 Optional input file.
52 Input format is pairs of white space-separated fields,
53 one pair per line.
54 Each field is the name of a node.

55 Output is the topologically sorted list of nodes.

56 Ignores lines without at least two fields.
57 Ignores all fields on the line except the first two.

58 =back

59 =head1 AUTHOR

60 Jeffrey S. Haemer, <jsh@boulder.qms.com>

61 =head1 SEE ALSO

62 tsort(1), tcsh(1), tchrist(1)

63 Algorithm stolen from Jon Bentley (I<More Programming Pearls>,
64 pp. 20-23), who, in turn, stole it from Don Knuth
65 (I<Art of Computer Programming,
66 Volume 1: Fundamental Algorithms>, Section 2.2.3)

67 =cut

Consider a trimmed-down UNIX directory tree as an
example: Push the root onto the stack (/); pop off the root
and print it, then push its children on (/etc /lib /usr);
next, pop off the first child, /etc , print it and push on its
children (/etc/rc /etc/passwd /lib /usr); pop again,
print /etc/rc , push on any children of /etc/rc ; and con-
tinue like this until the stack is empty.

Not only is this easy, but replacing the stack by a queue
gives a breadth-first traversal instead.

This is essentially what lines 21 through 31 are doing, with
a twist. In a tree, a parent can only be linked to its immediate
children. In an arbitrary, cycleless graph, parent nodes can also

have links to offspring nodes farther down the tree. To handle
this complication, we keep track of how many untraversed
predecessors each node has and only push it on the queue
when none remain.

To keep track of this, we only consider a node of the graph
a “child” eligible to be pushed on to @list , when we’ve just
printed its immediate parent. How do we know when we’re at
the immediate parent? We use the hash %npred to keep track of
how many predecessors are left. When the node is out of prede-
cessors, it’s really a child. In essence, we’re turning a graph into
a tree as we traverse it.

We’d like to thank Tim Bunce again for his entertaining
and educational puzzle and Nat Torkington (and, indirectly,
Tom Christiansen) for just the right clue.

Until next time, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in
Boulder, CO, and works at Softway Systems Inc. on UNIX interna-
tionalization. He spends his spare time rearing children, raising cats
and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked for
QMS, he operated his own consulting firm, and did a lot of other
things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/ ~copeland/work.html .

SunExpert Magazine ■ October 1998 57

Work

In a tree, a parent
can only be linked
to its immediate
children. In an
arbitrary, cycleless
graph, parent
nodes can also
have links to
offspring nodes
farther down
the tree.

	Puzzle Posters, Part 2
	An Implementation
	Listing 1. Our Perl Code

	Traversing Trees

