
Work
by Jeffreys Copeland and Haemer

52 SunExpert Magazine ■ June 1998

We Argue with Our Code
TT

here are several ways to get infor-
mation into a UNIX program to
affect the way it behaves. In this

column we’re going to talk about one of
these: command-line arguments.

First, though, let’s briefly list all the
ways. There are four:

1. The environment – Each UNIX
process inherits a suite of information
from its parent process, which it can
interrogate. All the programs you run
from the shell have a collection of state
information, including the current
working directory and the current user’s
ID, which the operating system keeps
track of during the life of the process.

These values are private to the process.
Once the process has started running, it
can manipulate most of them, but you
can’t change them from outside. The fact
that you can’t change an environment
from the outside is very important. In
all the programming newsgroups, you’ll
find a never-ending stream of posts ask-
ing, “How do I change the value of an
environment variable in a parent process

from one of its children?” The answer
(always found in the FAQ) is, “You can’t.”

Nevertheless, if you tweak the envi-
ronment before you start a program, it
can examine that environment at start-
up time and decide how you want it to
run. Most of this state information is
held in environment variables, which
you can see with the command env .

We could say a lot more about the
environment, but we won’t.

2. Interprocess communication –
Running processes can talk directly to
one another in a host of interesting
ways, collectively called “IPCs.” The
most common of these are pipes (named
and unnamed), signals, sockets, sema-
phores, message-passing and shared
memory. Not all vendors supply all of
these, but we wouldn’t call anything
“UNIX-like” if it lacked unnamed
pipes, signals or sockets.

3. Input – Duh.
4. Command-line arguments – Now

we’re at the subject of this column, so
let’s dig deeper.

A Little Background
The only Standard-C function

with two alternative prototypes is
main() , which you can use as either
int main(void) or int main(int

argc, char *argv[]) . Whenever
you use the latter, the operating system
passes main() two parameters. The
first is the number of arguments that
your program was invoked with, and
the second is a NULL-terminated list
of those arguments.

If you’re not as old as we are, you
may take command-line arguments for
granted. Believe us, they’re a big deal.
This is from Brian Kernighan’s Why
Pascal is Not My Favorite Programming
Language (Bell Labs’ Computing Science
Technical Report No. 100):

There is no notion of access to com-
mand-line arguments, again probably
reflecting Pascal’s batch-processing origins.
Local routines may allow it by adding non-
standard procedures to the environment.

We’ll give you the obligatory reminder
that all arguments are processed by the

Sir, I have found you
an argument; but I am
not obliged to find you
an understanding.
– Samuel Johnson

PA
UL

 S
TO

DD
AR

D

SunExpert Magazine ■ June 1998 53

Work
shell before calling the program. The shell does file name
expansion (globbing) and splits the argument list on white
space. If you say

$ rename foo* bar*

the shell expands the strings foo* and bar*

before it starts rename (rename will never
see the asterisks).

What do these arguments mean? Whatever
you want: file names, flags, assignment state-
ments, your children’s names, your birthday
and so on. The C Standard assigns them no
built-in meaning.

Admittedly, unless you go to a lot of work,
argv[0] contains the name the program was
invoked by. The remainder of the arguments are
the other strings from the command line that
invoked the command. (Here “a lot of work”
typically means invoking one of the exec()

family by hand. If you want to know more
about that, check out the man page for execl() .)

This isn’t much restriction, though. In the following
command,

the argument nkids=3 could be a file name, as far as the C
Standard is concerned:

$ ls -l

total 3

-rw-rw-r-- 1 jsh rd 12 Mar 29 15:08 abc

-rw-rw-r-- 1 jsh rd 24 Mar 29 15:08 nkids=3

-rw-rw-r-- 1 jsh rd 18 Mar 29 15:08 riley

Conventions
C isn’t the only standards game in UNIX-town. Whenever

we discuss command-line issues, we consult the POSIX stand-
ard for the Shell and Utilities, POSIX.2–IEEE 1003.2-1992.

In addition to standardizing commands and shell syntax,
Dot 2 contains a variety of definitions and rules designed
to make shell programs and programmers more portable. In
particular, Section 2.10, “Utility Conventions,” gives a detail-
ed set of rules about command options. Following these
guidelines, if we see this line in a shell script:

gut_morgn -s ’Vos makhstu?’ -a -- -zoe

we can reasonably infer that gut_morgn is the name of a
command, while the leading hyphens of -a and -s indicate
they’re flags (options) controlling the command’s behavior.

’Vos makhstu?’ is probably an argument to the -s
option because of its position. But -zoe is not an option at
all, despite the leading hyphen, because it follows the end-
of-argument indicator -- . Admittedly, we’re talking about
a standards document: precise, but not always penetrable.

Guideline 7 of Dot 2 says “option-arguments should not be
optional.” Fortunately, you don’t have to understand it. Dot
2 also encourages conformance to its rules by providing a
C-language function, getopt() , and a shell-level utility,

getopts , that encapsulate the rules of correct
behavior. Use these to parse arguments, and
you’ll end up doing the right thing.

Of course these, too, are specified in
standards-speak. Here’s a paragraph taken
from the four-page description of getopts :

If an option character not contained in the
optstring operand is found where an option
character is expected, the shell variable specified
by name shall be set to the question-mark (?)
character. In this case, if the first character in
optstring is a colon (:), the shell variable
OPTARG shall be set to the option character
found, but no output shall be written to
standard error; otherwise, the shell variable
OPTARG shall be unset and a diagnostic
message shall be written to standard error. This
condition shall be considered to be an error

detected in the way arguments were presented to the invoking
application, but shall not be an error in getopts processing.

And vice versa. Offer not good in Alaska, Albuquerque
and southeastern counties of northern
West Virginia between the hours of

12 p.m. and 12 a.m., Central Standard Time, inclusive.
Void where prohibited by law.

Picking Arguments for Fun and Profit
The Dot 2 rationale–which contains nonnormative,

explanatory and historical footnotes to the normative first
volume–also provides code illustrating how to use both
getopt() and getopts . (Nonnormative is standard-ese
for “This is interesting and helpful, but language lawyers
can officially ignore it.” Normative is standard-ese for “The
semicolons in the remainder of this document shall be assign-
ed and conform to all special meanings detailed to them by
section 1.3.4.2.8.7.16 of this document, except as modified
by ISO Standard 1769.8a-1987, q.v., if supported by the
implementation.”)

Unfortunately, you probably do not have a copy of Dot 2
handy. To help smooth your way, we’ll give you examples of
both getopts(1) and getopt(3) .

We’ll make the two code examples parallel one another as
closely as we can, so you can contrast them, and we’ll follow
these with a third parallel example in Perl.

Let’s begin with the most verbose of the three, a C pro-
gram that demonstrates how to use getopt(3) :

#include <stdio.h>

#include <limits.h>

#include <getopt.h>

#include <string.h>

int r;

$ foo ’./abc*’ -x cat=fezmo nkids=3 riley gillian zoe 11/21/48

In addition to
standardizing
commands and
shell syntax,
Dot 2 contains
a variety of
definitions and
rules designed
to make shell
programs and
programmers
more portable.

Work

54 SunExpert Magazine ■ June 1998

char g[128];

die(char *s)

{

fprintf(stderr, "%s\n", s);

exit(1);

}

main(int argc, char *argv[]) {

int i, name;

char usage[128];

char **s;

sprintf(usage,

"%s: [-g value] [-r] filename [...]",

argv[0]);

printf("The full command line is’ ");

for (s = argv; *s; s++) {

printf(" %s", *s);

}

printf("’\n");

printf("The command name is ’%s’\n", argv[0]);

printf("There are %d other arguments",

argc - 1);

if (argc > 1) {

printf(" and the first of these is ’%s’",

argv[1]);

}

printf("\n");

while ((name =

getopt(argc, argv, "g:r")) != -1) {

switch(name) {

case ’g’: strncpy(g, optarg, 128);

break;

case ’r’ : r = 1;

break;

case ’?’: die(usage);

}

}

argc -= optind-1;

memmove(argv+1, argv+optind,

(argc+1) * sizeof(char *));

if (argc < 2) { die(usage); }

printf("The options are -g = ’%s’, -r = %d.\n",

g, r);

printf("The %d filename arguments are ’",

argc-1);

for (s = argv+1; *s; s++) {

printf(" %s", *s);

}

printf(" ’\n");

}

Next, a shell script with a parallel getopts(1) example:

#!/bin/sh

die() {

echo $* 1>&2; exit 1

}

usage="$0: [-g value] [-r] filename [...]"

echo "The full command line is ’ $0 $* ’."

echo "The command name is ’$0’"

echo -n "There are $# other arguments"

test $# -gt 0 &&

echo -n " and the first one is ’$1’."

echo

while getopts g:r name

do

case $name in

g) g="$OPTARG" ;;

r) r=1 ;;

?) die $usage ;;

esac

done

shift $(($OPTIND - 1))

test $# -gt 0 || die $usage;

echo "The options are -g = ’$g’, -r = ’$r’."

echo "The $# filename arguments are ’ $* ’."

Finally, here’s the same thing in Perl:

#!/usr/local/bin/perl -w

use Getopt::Std;

local ($opt_r, $opt_g) = (0, "");

$usage = "$0: [-g value] [-r] filename [...]\n";

print "The full command line is

’ $0 @ARGV ’.\n";

print "The command name is ’$0’\n";

print "There are ", scalar @ARGV,

" other arguments";

print @ARGV ?

" and the first one is ’$ARGV[0]’.\n" :

"\n";

getopts "g:r" and @ARGV or die $usage;

print "The options are -g =

’$opt_g’, -r = ’$opt_r’.\n";

print "The ", scalar @ARGV, "

filename arguments are ’ @ARGV ’.\n";

The size differences between the code are noteworthy.
If we count nonblank lines, each example is about half the

SunExpert Magazine ■ June 1998 55

Work
size of its predecessor:

$ for i in getopts.c getopts.sh getopts.pl

> do

> echo ==$i

> sed ’/^$/d’ $i | wc -l

> done

==getopts.c

46

==getopts.sh

22

==getopts.pl

11

Even with blank lines, the entire Perl script fits comfortably
inside a 24x80 terminal window.

At the other end of the spectrum, the C program fills an
entire printed page, but if you’re writing a C program, you
won’t care how much shorter the argument parsing would be if
you were writing a shell script; you will care that a getopt()

call is shorter, more robust
and easier to debug than a
hand-crafted argv[] parser.

But why are they differ-
ent sizes? Comparing the C
and shell sources is instruc-
tive. Almost every meaning-
ful individual unit in the
C program translates direc-
tly into something the shell
can say in fewer words. For
example, loops turn into
single lines, variables and

functions no longer need declarations and even case
statements can be laid out more directly in the shell.
Common actions have been made easy to express.

Perl is a completely different story. C’s declarations and
#include directives, which the shell script got by without,
have returned. The stunning shrinkage comes from something
else: much-simpler getopts handling. Parsing the options,
storing their values, verifying that there are file name arguments
and issuing a usage message for improper invocation takes 13
lines in C, 11 lines in the shell and only one in Perl.

If we stand back and remind ourselves that the bulk of these
three programs are just scaffolding to report that we’ve parsed
the arguments successfully, the author of Getopt::Std has
clearly done something right.

More Arguments
But what if you need to do really, really, really complicated

argument processing?
In the shell, you’re back to doing things by hand. In C,

take a look at the man page for GNU’s getopt_long() ,
which can do so many things that the Bugs section reads:

This man page is confusing.

Perl, too, has a comprehensive, confusing, Getopt::Long

module, but if you don’t like it, the Comprehensive Perl Arch-
ive Network (CPAN) at http://www.perl.com/ lists seven
other packages, which offer even more styles of argument han-
dling. However, even if you choose to use Getopt::Std ,
get the latest version from the CPAN. Versions before 5.004
only let you save the value of the -d option into the variable
$opt_d . Recent versions let you save arguments into the hash
(associative array) of your choice. Instead of saying this:

getopts(’abcdefg’) or die $usage;

print "\$opt_a is $opt_a\n" if defined $opt_a;

print "\$opt_b is $opt_b\n" if defined $opt_b;

...

you can now say this:

getopts(’abcdefg’, \%opts) or die $usage;

foreach (sort keys %opts) {

print "\opt{’$_’} is $opts{$_}\n"

}

Does it matter what hash we choose? There is one inter-
esting choice: the hash %ENV, which contains the environ-
ment. By using %ENV, you can have your code set options
from the command line, or take in option values from the
environment. Observe:

Set the default values

override environment value

$ENV{’r’} = 0;

set to "hello" only if $g

isn’t already set in the environment

$ENV{’g’} ||= "hello";

optionally override defaults

with command-line arguments

getopts($args, \%ENV)

or die "usage: $0 [-r] [-g string]

Of course, this takes us to the beginning of our column.
We’ll let you reread it while we go off and argue until next
month.

Until then, happy trails. ✒

Jeffrey Copeland (copeland@alumni.caltech.edu) lives in
Boulder, CO, and works at Softway Systems Inc. on UNIX inter-
nationalization. He spends his spare time rearing children, rais-
ing cats and being a thorn in the side of his local school board.

Jeffrey S. Haemer (jsh@usenix.org) works at QMS Inc. in
Boulder, CO, building laser printer firmware. Before he worked
for QMS, he operated his own consulting firm, and did a lot of
other things, like everyone else in the software industry.

Note: The software from this and past Work columns is avail-
able at http://alumni.caltech.edu/ ~copeland/work.html .

	We Argue with Our Code
	A Little Background
	Conventions
	Picking Arguments for Fun and Profit
	More Arguments

