
80 SunExpert Magazine ■ March 1998

Work
by Jeffreys Copeland and Haemer

Letters, We get letters,
We get stacks and stacks of letters …
– Perry Como

R ecently, we received a letter from a
corporate attorney advising us that
the courts had ordered his client to

produce all of our correspondence with that
client. We were surprised by this–wouldn’t
you be?–if for no other reason than we didn’t
think we’d had any. But with as much mail
as we get, who could tell?

Curious, we tried using grep to look
through all our old, saved mail, but the
strings we were looking for were very com-
mon. Worse, grep really didn’t give us what
we wanted: mail messages. Stepping back a
moment, we realized that we needed a tool
that understood the semantics of mail. In
fact, we reasoned, this wasn’t even a limited-
utility tool. Questions like, “Where the heck
are those messages from Charlie about the
Viper project?” are pretty frequent.

How long would it take to write such a
tool from scratch? All morning, as it turned
out. What’s more, doing it is a good illustra-
tion of how to build tools quickly, so in this
column, we’ll walk you through the process.

As a side benefit, the next time you know

of someone who’s trying to look through
large volumes of electronic mail, you’ll be
prepared to help with a line-by-line expla-
nation of this tool.

Design by Analogy
Start by asking yourself how the tool

should look to the user. Even if you’re mak-
ing something that no one else will ever use,
design the interface as though you’re writing
it for someone else; chances are, six months
later, you’ll forget why you made the choices
you did. A good rule of thumb is to make the
tool look as much as possible like something
else familiar to you. Because “theft” is a poor
choice of words around lawyers, we like the
phrase “design by analogy.”

Here, we want something grep -like,
so we’ll try to make the interface look like
grep ’s. We’ll even call our tool mgrep , for
mailgrep, to keep things simple. This decision
means that in two years, after we’ve forgotten
what we did, when we sit down to look for
mail messages containing the string zzazz

in the mailboxes Feb.mbox and Mar.mbox ,
we can start out trying mgrep zzazz Feb.

mbox Mar.mbox and not be surprised with
the result. Also, a little attention to detail now
will let us pull out all messages containing

Looking
Through
Our Mail

Jeffrey Copeland
(copeland@alumni.
caltech.edu) lives in
Boulder, CO, and works
at Softway Systems Inc. on
UNIX internationalization.
He spends his spare time
rearing children, raising cats,
and being a thorn in the side
of his local school board.

Jeffrey S. Haemer
(jsh@usenix.org) works
at QMS Inc. in Boulder,
CO, building laser printer
firmware. Before he worked
for QMS, he operated his
own consulting firm, and
did a lot of other things, like
everyone else in the software
industry.

Note: The software from
this and past Work columns
is available at http://
alumni.caltech.edu/
~copeland/work.html .

SunExpert Magazine ■ March 1998 81

Work

zzazz or ZZAZZ or Zzazz with mgrep -i zzazz Feb.mbox

Mar.mbox . Why -i ? Because that’s the flag grep uses for case-
insensitive matches.

Moreover, this saves us from having to design all the fea-
tures and options either from scratch or at once. For example,
if we do a bare-bones implementation now, and a year later we
want to add an option that means “report all mailboxes that
contain messages with this pattern,” we won’t have to convene
a design committee. All we need to do is glance through the
grep man page, note the -l option (which prints only the
names of files containing lines that match the pattern), and
write code to add a -l flag to mgrep .

More Theft
Man is a tool-using animal… Without tools he is nothing,

with tools he is all. – “Sartor Resartus,” Thomas Carlyle

On to implementation. Our goal is to get something work-
ing quickly, so Perl seems like a good tool to use because we
know Perl–familiarity is never a factor to be ignored. What’s
more, this is a text-processing problem–one of Perl’s strengths.

If we’re going to use Perl, our first impulse is to continue to steal
by raiding the Comprehensive Perl Archive Network (CPAN).
Oh, sorry. Make that, “…build on the work of others.”

We’ll begin by perusing the modules list at http://

www.perl.com/CPAN/modules/ . Well, not actually there,
because going to http://www.perl.com/CPAN/ takes
you to a multiplexer that automatically throws you to the
nearest mirror site. This trick gets you good performance
without making you memorize a lot of URLs. (Note: The
trailing slash is very important. Without it, you don’t get
the multiplexer.) Once there, we quickly find our way to
http://www.perl.com/CPAN/modules/00modlist.

long.html , the current module list, and begin looking.
Modules are Perl’s rough equivalent of Ada packages or
C++ classes: language extensions, often object-oriented, to
handle specific problems.

What will we need? Something to handle argument parsing
would be nice, so we don’t have to handcraft our emulation of
grep ’s flags. A search for “option” quickly yields an entire sec-
tion of the CPAN, which begins like that shown in Listing 1.

Getopt::Std (“Implements basic getopt and

Listing 1
12) Option, Argument, Parameter and Configuration File Processing

Name DSLI Description Info
--------- ---- -- ---------
Getopt::
::EvaP Mdpr Long/short options, multilevel help LUSOL
::Gnu adcf GNU form of long option handling WSCOT
::Help bdpf Yet another getopt, has help and defaults IANPX
::Long Supf Advanced option handling JV
::Mixed Rdpf Supports both long and short options CJM
::Regex ad Option handling using regular expressions JARW
::Simple RdpO A simplified interface to Getopt::Long RSAVAGE +
::Std Supf Implements basic getopt and getopts P5P
::Tabular adpr Table-driven argument parsing with help text GWARD +

Listing 2
19) Mail and Usenet News

Name DSLI Description Info
------------- ---- --- --------
Mail::
::Address adpf Manipulation of electronic mail addresses GBARR
::Alias adpO Reading/Writing/expanding of mail aliases GBARR
::Cap adpO Parse mailcap files as specified in RFC1524 GBARR
::Field RdpO Base class for handling mail header fields GBARR +
::Folder adpO Base-class for mail folder handling KJOHNSON
::Header RdpO Manipulate mail RFC822 compliant headers GBARR +
::Internet adpO Functions for RFC822 address manipulations GBARR
::MH adcr MH mail interface MRG

::Mailer adpO Simple mail agent interface (see Mail::Send) GBARR
::POP3Client bdpO Support for clients of POP3 servers SDOWD
::Send adpO Simple interface for sending mail GBARR
::Util adpf Mail utilities (for by some Mail::* modules) GBARR

82 SunExpert Magazine ■ March 1998

Work

getopts ”) should do the trick, working to match the famil-
iar POSIX.1 call, getopt() . What’s more, the “S” in the
second column means that this module is a standard part of
the Perl 5 distribution, so we don’t even have to pull a copy
off the archive. What else? Well, Section 19 looks pretty
good (see Listing 2).

Most of these are packaged up in a single tar file, by
Graham Barr, called “MailTools,” so we pull over the most
recent version, MailTools-1.1003.tar.gz . After we
unpack it (assuming we have GNU tar with a decompres-
sor–the -z flag–otherwise, we can pipe gzcat into tar),
building and installing the module and its documentation
requires only following the instructions in the README(see
Listing 3).

A little manual page perusal reveals that this is enough. A
small amount of work–some of it cut-and-paste, which one of
our colleagues calls “snarf-and-barf ”–gives us the code shown
in Listing 4.

Exegesis
Lines 1 through 4 are

boilerplate: They guarantee
that the script is interpreted
by a version of Perl that has
enough features to support
it; they provide an RCS ID
string, to let us know what
revision of our code we’re
dealing with; and turn on
lots of warnings, both at
compile time and runtime,
to prevent us from wasting
time debugging really stupid
mistakes. We are trying to
minimize development time,
not running time.

Lines 5, 6 and 7 pull
in the three modules from
which we’ll be using func-
tions. Lines 8 and 9 declare
variables. (Line 4 tells the
compiler to complain about
undeclared variables, which
helps catch typos.) We could
declare them as we use them

but have found that if we collect most of our declarations in
one place then it’s easier to notice when we’re using several
different variables to do almost the same thing. We also like
to declare our scalar, hash and array variables in separate state-
ments, but that’s idiosyncrasy, not Perl.

Lines 10 through 16 process the command-line arguments
and give them default values. After the call to Getopt::

Std::getopts() , all option values are contained in the
hash %opt_args , and the only things left in @ARGVare the
pattern to search for and the file names–no muss, no fuss,
nothing to tidy up. The loop beginning on line 14 gives any
unselected options the value zero. (For the really nitpicky,
we are aware that it also sets $opt_arg{':'} to zero: mean-
ingless, but harmless.)

Lines 17 through 23 actually interpret some of the options.
As long as we are looking for mail messages that contain strings,
why not let users specify what part of the mail message to look
in? As it turns out, the Mail::Internet module lets us get

Listing 3

tar -zxvf MailTools-1.1003.tar.gz # unpack the archive
cd MailTools-1.1003 # enter the source directory

perl Makefile.PL # build a Makefile for your system
make # build the package
make test # test (!) it
make install # install it

Listing 4
1 #!/usr/local/bin/perl -w
2 # $Id: mgrep,v 1.4 1997/12/27 00:11:13 jsh Exp $

3 require 5.004;
4 use strict;

5 use Getopt::Std;
6 use Mail::Util qw(read_mbox);
7 use Mail::Internet;

8 my ($options, $parts, $pattern, $usage);
9 my %opt_args;

10 # parse args and check for proper invocation
11 $usage = "usage: $0 [-b|-h|-H Header_field|-W] [-i] [-v] pattern [mailbox ...]";
12 $options = 'H:Wbhiv';
13 getopts $options, opt_args or die $usage;
14 foreach (split //, $options) {
15 $opt_args{$_} ||= 0;
16 }

17 $parts = $opt_args{'b'} + $opt_args{'h'} + ($opt_args{'H'} ? 1 : 0);
18 $part s < 2 or die $usage;
19 $opt_args{'W' } = ! $parts;

20 $pattern = shift;
21 if ($opt_args{'i'}) {

SunExpert Magazine ■ March 1998 83

Work

each of these, separately, so we use the options
-b , -h , -H and -W to tell mgrep to look in the
body, header, specific header field or whole
message, respectively. (The same flags given to
grep aren’t all that interesting, so we’ll use the
letters for something more meaningful.) Lines
17 and 18 enforce a prohibition against mixing
these options and make -W the default.

Line 20 grabs the pattern. This pattern can
be any Perl regular expression, which means
that our tool will actually be a little easier to
use than grep , or egrep , which only under-
stand POSIX regular expressions. Lines 21
through 23 implement the -i (case-insensi-
tive matching) option, with Perl 5’s new syn-
tax for regular expression extensions. Unlike
the syntax / pattern / i, which specifies case-
insensitivity at compile time, putting (?i) at
the beginning of a pattern makes case-insensi-
tivity part of the pattern itself, so you can
specify case sensitivity at runtime.

Lines 24, 27 and 29 are hacks, impelled
by the current implementation of Mail::

Util::read_mbox() . Lines 27 and 29,
which bracket the call, are there to temporari-
ly turn off the -w flag and block a complaint
about the internals of read_mbox() .

Line 24 lets mgrep read from standard
input if no files are named in the argument
list. Here again, the normal Perl idiom,
while(<>) , is unavailable because of a detail
of the implementation of read_mbox() .
This brings up an important point: We could
have avoided having to put in these three
hacks, by writing our own replacement. But
how much work would that be?

Lines 26 and 28 grab the mailbox named
on the command line and transform the
mailbox into an internal form–an array of
individual mail messages–for processing. The
remainder of the program loops through that
array, looking inside each message for the
pattern, and printing the requested messages.

Line 32 turns an individual mail message
into an object with methods listed in the
Mail::Internet module, and lines 33
and 34 use these methods to extract the
header and body.

Lines 35 through 45 use other methods
from the same module to create an array of
text lines to search for the pattern. What gets
stuffed into the array depends on the value
of the -b , -h , -H and -W flags, but the end
result is a reference to the target array, $tgt .
(You might think that lines 43 through 45
are superfluous. You might think you could
even prove, mathematically, that earlier code

22 $pattern = "(?i)$pattern";
23 }

24 if (@ARGV == 1) {push @ARGV, "/dev/stdin";}
25 while (@ARGV) {
26 my $mbox = shift;
27 $^W = 0;
28 my @msgs = read_mbox $mbox or die "Can’t read $mbox:$!";
29 $^W = 1;
30 foreach (@msgs) {
31 my ($tgt, $mail);
32 $mail = Mail::Internet->new($_);

33 my $head = $mail->head;
34 my $body = $mail->body;

35 if ($opt_args{'W'}) { # the default
36 $tgt = [@$body, @{$head->header}];
37 } elsif ($opt_args{'b'}) {
38 $tgt = $body
39 } elsif ($opt_args{'h'}) {
40 $tgt = $head->header;
41 } elsif ($opt_args{'H'}) {
42 $tgt = [$head->get($opt_args{'H'})];
43 } else {
44 die $usage;
45 }

46 $mail->print
47 if (grep /$pattern/, @$tgt xor $opt_args{'v'});
48 }
49 }

50 =head1 NAME
51 mgrep - look through mailboxes for messages containing a string

52 =head1 SYNOPSIS

53 mgrep [-bhiv] pattern [mailbox ...]

54 =head1 DESCRIPTION

55 =over 2

56 I<mgrep> looks for mail messages containing a pattern,
57 and prints the resulting messages on standard out.

58 By default looks in both header and body for the specified pattern.

59 When redirected to a file, the result is another mailbox,
60 which can, in turn, be handled by standard User Agents,
61 such as I<elm>,
62 or even used as input for another instance of I<mgrep>.

63 =back

64 =head1 OPTIONS AND ARGUMENTS

65 Many of the options and arguments are analogous to those of grep.

66 =over 8

67 =item B<pattern>

84 SunExpert Magazine ■ March 1998

Work

has guaranteed that one of these
flags has to be set. Sure it has. We
put stuff like this in because experi-
ence tells us it always saves us a lot
of debugging time.) Whew.

Now, if you look back, you’ll
see that most of what we’ve done
so far is really just argument han-
dling. We’ve tried to do things
sturdily, so that when the code
gets this far, it’s likely to look for
what we think we are asking for.
Moreover, we’ve tried to do things
professionally enough that if the
code doesn’t get this far, it fails
cleanly. Even so, it’s taken us only
45 lines of code and comments.

But what about the real work?
Oh, you mean the remainder of the
program: lines 46 and 47. Line 47
uses Perl’s built-in grep function,
which searches an array of lines for
a Perl regular expression, to impose
selection criteria on each message,
for example, the xor implements
the -v flag. Line 46 uses one of the
mail-message methods to print any
selected messages in RFC 822 for-
mat. Done.

Lines 50 through 104, more
than half the total number of lines
in the file, are documentation.
Even though we’ve designed this
so that you shouldn’t need to look
at a man page very often, that
doesn’t keep us from writing one.
As is usual for Perl utilities, the
documentation is in POD (plain
old documentation) form. Not
only does POD documentation
live in the same file as the code it
describes–it’s normally ignored by
perl –but tools that come with
the standard distribution let you
transform such code-documenta-
tion chimeras into a variety of
attractive documents, including
flat text, UNIX man pages and
Web pages. The CPAN even has
a module that will let the code
part use the documentation part
to generate runtime usage and
help messages.

And that, gentle reader, is that.
We’ll be back next month with
more amazing programmer tricks.
Until then, happy trails. ✒

68 The pattern to search for in the mail message.
69 May be any Perl regular expression,
70 but should be quoted on the command line
71 to protect against globbing (shell expansion).

72 =item B<mailbox>

73 Mailboxes must be traditional, UNIX C</bin/mail> mailbox format.
74 If no mailbox is specified, takes input from stdin.

75 =item B<-b>

76 Look only in the bodies of mail messages.

77 =item B<-h>

78 Look only in the headers of mail messages.

79 =item B<-H>

80 Look in the specified header of mail messages.
81 Field names are case-insensitive.

82 =item B<-i>

83 Make the search case-insensitive (by analogy to I<grep -i>).

84 =item B<-v>

85 Invert the sense of the search, (by analogy to I<grep -v>).

86 =item B<-W>

87 Look through the entire mail message (default)

88 =back

89 =head1 EXAMPLE

90 find . -name '*mbox' -print | xargs mgrep -i alstadt > /tmp/alstadt.mbox

91 This finds every file whose name ends in C<mbox>
92 under the current directory, searches each for messages containing
93 the strings "alstadt," "ALSTADT," "Alstadt," etc.,
94 and puts a copy of everything it finds into C</tmp/alstadt.mbox>

95 find . -name '*mbox' -print | xargs mgrep -H to brother

96 This searches the same set of files for messages containing
97 the string "brother" in the "To:" field.

98 =head1 AUTHOR

99 Jeffrey S. Haemer, <jsh@boulder.qms.com>

100 =head1 SEE ALSO

101 elm(1), mail(1), grep(1), perl(1), printmail(1), Mail::Internet(3)
102 Crocker, D. H.,
103 Standard for the Format of Arpa Internet Text Messages, RFC822.

104 =cut

	Looking Through Our Mail
	Design by Analogy
	More Theft
	Listing 1
	Listing 2
	Listing 3
	Listing 4

	Exegesis

