
70 SunExpert Magazine  ■ February 1998

Work
by Jeffreys Copeland and Haemer

I f you hate doing unnecessary work,
then this month’s column is right for
you–we’ll give you some tips on sloth.

On the other hand, if you like doing un-
necessary work, then you should read this
month’s column because you’ll ignore our
advice and, therefore, reading it would be
unnecessary work. Bertrand Russell would
be proud of us. 

The quotation from Larry Wall that intro-
duces this column is taken from Programming
Perl, his book about a language designed to
save us all a lot of work. Some programmers
miss this point. Given an assignment by his
boss to write a Perl script to format and print a
bunch of files, one of our coworkers produced
the following: 

#!/usr/bin/perl 

# Allow files to be written over 

system("unset noclobber"); 

# Set up some environment variables 

$ENV{"PRINTER"} = "Viper";

# Create the files

system("groff file1 > /tmp/file1.ps");

system("groff file2 > /tmp/file2.ps");

system("groff file3 > /tmp/file3.ps");

system("groff file4 > /tmp/file4.ps");

system("groff file5 > /tmp/file5.ps");

system("groff file6 > /tmp/file6.ps");

system("groff file7 > /tmp/file7.ps");

# Print the files 

system("lpr /tmp/file1.ps");

system("lpr /tmp/file2.ps");

system("lpr /tmp/file3.ps");

system("lpr /tmp/file4.ps");

system("lpr /tmp/file5.ps");

system("lpr /tmp/file6.ps");

system("lpr /tmp/file7.ps");

# Cleanup 

system("/bin/rm /tmp/file1.ps");

system("/bin/rm /tmp/file2.ps");

system("/bin/rm /tmp/file3.ps");

system("/bin/rm /tmp/file4.ps");

system("/bin/rm /tmp/file5.ps");

system("/bin/rm /tmp/file6.ps");

system("/bin/rm /tmp/file7.ps");

What’s wrong with this picture? First, while
Perl eschews many sacred computer science
cattle–nowhere, for example, can you find a
Bachus-Naur Form grammar for Perl–loops
and subroutines are both venerable control

Work and 
How to Avoid It

Jeffrey Copeland
(copeland@alumni.
caltech.edu ) lives in
Boulder, CO, and works 
at Softway Systems Inc. on
UNIX internationalization.
He spends his spare time 
rearing children, raising cats,
and being a thorn in the side
of his local school board.

Jeffrey S. Haemer
(jsh@usenix.org ) works
at QMS Inc. in Boulder,
CO, building laser printer
firmware. Before he worked
for QMS, he operated his
own consulting firm, and
did a lot of other things, like
everyone else in the software
industry.

Note: The software from 
this and past Work columns 
is available at http://
alumni.caltech.edu/
~copeland/work.html .

“We will encourage you to 
develop the three great virtues 
of a programmer: laziness, 
impatience and hubris.” 

– Larry Wall

“Work is the curse of the 
drinking classes.” 

– Oscar Wilde



SunExpert Magazine  ■ February 1998 71

Work

structures that even Perl provides. All those nearly identical
system calls could have been replaced with the following: 

sub one_file {

$file = shift;

system("groff $file > /tmp/$file.ps");

system("lpr /tmp/$file.ps");

system("/bin/rm /tmp/$file.ps"); }

foreach $file (file1 file2 file3 file4 

file5 file6 file7) {

one_file($file); 

}

Indeed, though Perl lacks grammatical simplicity, many of 
us use it because it has power and elegance of expression. 
For example, many Perl programmers might at least pare 
the code down to this: 

sub one_file {

$file = shift;

system "groff $file > /tmp/$file.ps";

system "lpr /tmp/$file.ps";

system "/bin/rm /tmp/$file.ps"; }

foreach (1..7) {

one_file "file$_";

} 

And how about making the program more flexible by replac-
ing the hard-wired list of files with a list supplied on the
command line: 

while (@ARGV) { 

one_file shift; 

} 

We Roll up Our Sleeves to 
Do Even Less Work

Not enough, not enough. Each of those system() calls
forks a subshell. We could cut it down from 21 subshells (7x3)
to seven by making each subshell perform more than one action.
For example,

sub one_file {

$file = shift;

system "

groff $file > /tmp/$file.ps &&

lpr /tmp/$file.ps

";

die "one_file($file) failed" if $? != 0;

unlink "/tmp/$file.ps" or

die "can’t unlink /tmp/$file.ps";

} 

while (@ARGV) {

one_file shift;

} 

Here, each call to one_file() creates a single subshell, which
performs both the groff and lpr for the source file to be
printed. We’ve also done a couple of pieces of noteworthy sani-
ty checking: First, the double ampersand, &&. The sequence

$ command_1 && command_2

translates as “do command_1; if that succeeds, then do 
command_2.” This idiom can be a surprisingly useful safeguard.
We recently helped a coworker restore his home directory from
tape after he had done the following in his home directory: 

$ cd bogus_directory_name; rm -rf *

bogus_directory_name not found

We recommended typing this instead:

$ cd bogus_directory_name && rm -rf *

which only does the rm -rf if the cd command succeeds.
Thus in our rewritten script, we only try to print the file when
our invocation of groff succeeds. 

We’ve also taken the reasonable precaution of checking the
exit status of the system() call, which is held in the predefined
Perl variable, $?. Moreover, instead of calling the shell-level rm
command, we use the Perl function, unlink() . 

As long as we’re trying to be careful, we ought to turn 

#!/usr/bin/perl

into 

#!/usr/bin/perl -w

But when we do so, we get a sharp reprimand: 

Can’t exec "unset": No such file or directory at 1 line 4

Here, what we’re seeing is that unset is not an external exe-
cutable command, but a shell built-in.

$ type unset 

unset is a shell built-in 

Just as a cd in one shell doesn’t affect the current working
directory of another unrelated shell, set and unset change
the values of shell variables for a particular shell and, potential-
ly, its children. Perl is warning you that 

system("unset noclobber"); 

is useless, because it only affects the value of noclobber for 
the subshell invoked by that specific call to system() ; it has no
effect on the subshells invoked by the other system() calls. 

Each system() call executes a miniature shell script. The
original program is nothing more than a shell script broken
into 23 little, one-line shell scripts, sequentially invoked by the
Perl interpreter. Even experienced programmers will occasion-
ally forget that rules in a Makefile have this same property.



72 SunExpert Magazine  ■ February 1998

Work

The production 

clean_tmp:

cd /tmp

rm *

will change directories to /tmp in one subshell and then, in a
separate subshell, remove all the files in your current directory.
The correct way to write this production is: 

clean_tmp:

cd /tmp; rm *

Lazier and Lazier 
So this brings us to the crux of the matter: Why fork 

all of these subshells? Here’s the more-or-less-equivalent 
shell script:

#!/bin/sh 

# Allow files to be written over 

unset noclobber;

# Set up some environment variables 

PRINTER=Viper; 

# Create the files 

groff file1 > /tmp/file1.ps 

groff file2 > /tmp/file2.ps 

groff file3 > /tmp/file3.ps 

groff file4 > /tmp/file4.ps 

groff file5 > /tmp/file5.ps 

groff file6 > /tmp/file6.ps 

groff file7 > /tmp/file7.ps 

# Print the files 

lpr /tmp/file1.ps 

lpr /tmp/file2.ps 

lpr /tmp/file3.ps 

lpr /tmp/file4.ps 

lpr /tmp/file5.ps 

lpr /tmp/file6.ps 

lpr /tmp/file7.ps 

# Cleanup 

/bin/rm /tmp/file1.ps 

/bin/rm /tmp/file2.ps 

/bin/rm /tmp/file3.ps 

/bin/rm /tmp/file4.ps 

/bin/rm /tmp/file5.ps 

/bin/rm /tmp/file6.ps 

/bin/rm /tmp/file7.ps 

If nothing else, there’s a third less typing to do–639 characters
instead of 900. But it isn’t just “nothing else.” If we do timing
tests, this version runs about 12% faster. Of course, just as we
did with the first script, we can make the program more gener-
al and shorter by adding loops and subroutines:

#!/bin/sh 

unset noclobber 

PRINTER=Viper 

one_file() { 

groff $1 > /tmp/$1.ps 

/usr/bin/lpr /tmp/$1.ps 

/bin/rm /tmp/$1.ps 

} 

for i in file* 

do 

one_file $i; 

done 

Oh, but that’s still far too much work. Because lpr and rm
will both take more than one file name, we can drop their
invocations to a single call apiece, like this: 

#!/bin/sh 

set noclobber 

for i in file* 

do 

groff $i > $i.ps 

done 

/usr/bin/lpr -PViper /tmp/file*.ps 

/bin/rm /tmp/file*.ps 

We eliminate the extra variable assignment by using the -P
argument to lpr . We’re down to one invocation of the shell,
one of lpr , one of rm and a handful of groff s. 

Still, the restriction on file names means we might have 
to rename our input files to suit the script before invoking it.
Moreover, in all these versions we’ve been assuming that the
files are in the current directory, and that the only files named
file*.ps in /tmp are the ones we have put there. We fix
these problems by again pulling the file names from the com-
mand line, and by constructing our own temporary directory
for output, removing it when we’re done. In the end, we
arrive at this 12-line script: 

1) #!/bin/sh 

2) PRINTDIR=/tmp/$$.dir 

3) mkdir $PRINTDIR || exit 1 

4)
5) for i in $* 

6) do 

7) OUTFILE=$PRINTDIR/${i##*/}.ps 

8) groff $i > $OUTFILE || rm -f $OUTFILE 

9) done 

10) cd $PRINTDIR 

11) lpr -P${PRINTER:-Viper} * 

12) rm -r $PRINTDIR 

Here’s what it all means: 
Line 1 makes UNIX pass the script to the correct shell,

even if it isn’t the user’s login shell. 
Lines 2 and 3 create a directory for our temporary files,

using the process ID $$ to generate a unique name. 



SunExpert Magazine  ■ February 1998 73

Work

Lines 5 through 9 are a loop that formats all the input files
named on the command line. Line 7 strips any directory infor-
mation from the input file name, in case it was specified with an
absolute path, so that if the file name is $HOME/project/

printfiles/foo , $OUTFILE becomes $PRINTDIR/foo.ps . 
In older shells, this sort of manipulation was done with the

stand-alone executable /usr/bin/basename , but POSIX-
conforming shells allow users to extract substrings of shell vari-
ables with a built-in facility called parameter expansion. In this
case, the expression ${i##*/} means “Give me the value of
$i stripped of the longest possible prefix that matches the glob
(shell) expression */ ” – in other words, the file name, but with
any directory name stripped off. 

Line 8 formats an input file, taking care to remove any unsuc-
cessful attempts. 

Lines 10 and 11 print all successful formatting efforts. In line
11, we see another example of parameter expansion. The expres-
sion ${PRINTER:-Viper} means “use the value of $PRINTER,
if it’s set in the environment (after all, you might, someday, want
to print to another printer). If it isn’t set, use the value Viper as
the default.’’ You can find more information about other kinds of
parameter expansion in the shell manual page. 

Line 12 removes all temporary files by removing the tem-
porary directory. You may wonder whether you can remove a
directory while you’re still in it. You can, and because we have
finished, we do. In a more robust version, we might use a signal
handler to remove the temporary directory if the script termi-
nates prematurely, but that seems like overkill here. Finally,
because the call to set noclobber seemed questionable to 
us in the first place, we’ve eliminated the call altogether. 

OK, where are we? We’ve gone from a 34-line Perl script to a
12-line shell script that’s both more robust and more general. At
the same time, we’ve made it run faster by reducing an invoca-
tion of the Perl compiler/interpreter plus 22 separate invocations
of the shell, to a single invocation of the shell. 

Unfortunately, all of this presupposes that we can go to our
boss and say, “Please don’t micromanage me by forcing me to use
Perl for a job better done with a simple shell script.” If you can’t
do that, we suggest an easier, alternative approach. First, write a
simple shell script, as above, and place it in the directory /usr/

local/real_code . Second, for your boss, write the following,
easy-to-maintain Perl script: 

#!/usr/bin/perl -w 

$real = "/usr/local/real_code"; 

$0 = ~ s(.*/)(); # basename 

system "$real/$0 @ARGV"; # call real version 

And Now We Rest
That’s all for this month. Next time, we’ll eschew sloth and

take as the text for our sermon a sentence from the introduction
to The Art of Computer Programming by Donald Knuth: “The
process of preparing programs for a digital computer is especially
attractive, not only because it can be economically and scientifi-
cally rewarding, but also because it can be an aesthetic experience
much like composing poetry or music.” 

Until then, happy trails.   ✒


	Work and How to Avoid It
	We Roll up Our Sleeves to Do Even Less Work
	Lazier and Lazier
	And Now We Rest


