Jeffrey Copeland
(copeland@alumni.

caltech.edu) isa mem-
ber of the technical staff

at QMS R&D group in
Boulder, CO. Hes been a
software consultant to the
Hugo award administrators
for several years. He spends
his spare time raising chil-
dren and cats.

Jeffrey S. Haemer
(jsh@usenix.org) now
works for QMS, too, and is
having a great time. Before
he worked for QMS, he
operated his own consulting
firm, and did a lot of other
things, like everyone else in
the software industry.

Work

or several articles, we have been devel-
F oping a theme. Three months ago, we
discussed how to back up individual

files with cp. (If you didn't read the article,
you're probably thinking, “How you write
an entire article about cp?” Utilities from
the Free Software Foundation, like love, are
many-splendord things.) Next, we progressed
to Revision Control System (RCS), which
lets you maintain a detailed revision history
of a file. Last month, we discussed the basics
of Concurrent Versions System (CVS), which
extends RCS to let you manage the full com-
plexity of entire product releases.

Significantly, all of these are free and avail-
able from the Net: CVS is available at http:
Ihwww . loria.fr/ ~molli/cvs-index.
html ; and the current version of RCS can be
found in your favorite GNU tools directory,
ftp://prep.ai.mit.edu/pub/gnu/
rcs-5.7.tar.gz , for example.

This month, we'll sketch some of the more
sophisticated features CVS offers to multi-
developer, multisite, multirelease products.

Keeping Tags on Releases
Students and professors sometimes ask us

how professional programming differs from

programming for courses. One unique fea-

Practical CVS,
Part 2

ture of professional programming is that
because products evolve as time goes on,
so much of it deals with multiple releases:
preparing releases, documenting releases,
freezing releases, fixing bugs in releases,
upgrading releases, merging features from
one release into another and so on. Academ-
ic software engineering, in contrast, often
focuses on development toward a defined
goal. When the “final version” of the soft-
ware is finished, so is the project.

One thing that CVS provides to help
manage product releases is tags.

Like RCS, on which it's built, CVS lets
developers check out particular file revisions:

cvs co -r 30.2 main.c

The convenience of symbolic names was not
lost on the authors of CVS, and so

CVs co -r prometheus main.c

will check out the revision named
“prometheus.” Not only is this easier to
remember, but you can use a single name
to check out an entire release. Assuming
we have a module named “Il,” instead of
saying this:

SunExpert Magazine m September 1997 87

cdll

cvs co -r 100.43 README

cvs co -r 30.2 main.c

cvs co -r 12.1.9.6 abracadabra.pl

we can say
cvs co -r prometheus |l

assuming you've already attached the tag “prometheus” to
release 100.43 of READMErelease 30.2 of main.c and so on.
And how do you attach tags to versions?

cvs tag prometheus I

Like most other CVS commands, cvs tag understands trees
and will traverse the entire hierarchy that you name, tagging
every file in it. As an aside, you can block this file-tree walk
by invoking it as cvs tag -I

CVS uses the same flag in the same way for different com-
mands wherever it’s sensible, and the -1 (local) flag also pre-
vents subdirectory traversal for checkout , commit , diff ,
export , remove, rdiff ,rtag , status and update .

This brings us to an interesting distinction: tags versus
sticky tags.

Implementing Sticky Tags

There are two reasons to name a release: (a) because you
want to work on it and (b) because you dont. For example, if
I’'m running a project and announce a code freeze, | probably
want a label for all the file versions that make up that frozen
release. This label provides a snapshot of the code at the point
of the freeze.

Tags are the tool of choice here, and cvs freeze isa syn-
onym for cvs tag . (Actually, many CVS commands have
mnemonic synonyms. Try cvs --help-synonyms for a list.)

On the other hand, when | release products to the field,
doing maintenance on those products means being able to
check out old versions of files, revise them, and check those
revised versions back into the repository without interfering
with main-line development.

RCS permits this kind of work on individual files with
“pranch deltas.” If the main-line development version of foo.c
is revision 20.17, then checking out that version and checking it
back in produces revision 20.18. If, however, you also need to
fix a bug in an older version, say, revision 16.35, you can check
out that revision with the command co -r 16.35 foo.c
Modifying the file and checking it back in produces a branch,
with revision 16.35.1.1, and further work on that branch can
produce 16.35.1.2, 16.35.1.3 and so on. The branch this creates
i5 16.35.1, and you can request the most recent revision of that
branch by just typing co -r 16.35.1 foo.c

88 SunExpert Magazine m September 1997

This sort of maintenance work is frequent for real soft-
ware releases, so CVS lets you tag an entire collection of par-
ticular files for future checkout and maintenance. If you have
a particular suite of file versions checked out, the command
cvs tag -b prometheus_maintenance puts a “sticky
tag” on all the modules in the current directory hierarchy.
Not only will this let you check out the tagged version in the
future—say with cvs co -r prometheus_maintenance
Il —but when you check any changes back in, they will go
in as a branch off of the appropriate revision of each of the
changed files. Future checkouts of this same tagged version
will get the most recent file revisions associated with that
label. The tag “sticks to” the tip of the branch and grows
with it.

There is a second sense in which the tag is sticky: If you check
out a version with a sticky tag, chances are you're doing mainte-
nance, so CVS remembers that you're working with this product
release. Thus, a typical cycle looks like this:

begin by checking out the
"prometheus_maintenance" version
of module "lI".
cvs co -r prometheus_maintenance I
cdll
work to upgrade some of the files,

save the changes in the branch
CVSs Ci

work to upgrade more files

in the same branch

pick up everyone else’s
changes to this branch
cvs update

and so on

To return to working on the main-line, you can reset the
sticky tags with

cvs update -A

or you can simply discard the prometheus_maintenance
tree and start from scratch with a new cvs co .

Administrative Files
Try this:

cvs co CVSROOT
Is CVSROOT

As we discussed last time, when you create a tree with cvs

init , CVS automatically creates a suite of administrative files

SunExpert Magazine m September 1997

89

in the directory $CVSROOT/CVSROO{If we were designing
CVS, wed pick a better name. If we were designing CVS, wed
have to implement it and maintain it. Actually, the name’s not
all that bad.)

Because the files are kept in the repository itself, we can
check them out, modify them and check them back in. Fig-
ure 1 shows us the files in $CVSROOT/CVSROONOotice that
$CVSROOT/CVSROQCNtains both an RCS version and a
checked-out master version of each file. The checked-out
master is the administrative file that governs CVS’ behavior.
The RCS version is the repository version that contains that
file’s entire history. Whenever you check in a new revision of
one of these files, CVS automatically updates the checked-
out master with your changes.

One file, history , has no RCS version. This isn't a file
that you can edit. It’s just a record CVS keeps of what’s been
done. Each of the other files lets you configure how CVS
behaves in interesting ways. Here are some highlights:

e commitinfo lets you specify what sorts of sanity checks
should be made on files at check-in time. On our system, we
run all files through a program that does a suite of fairly sim-
ple, but still useful, checks. For example, we require that all
files have a “Header” or “Id” line (see the man page for the
RCS co command). If they fail the check, CVS warns us of
the problem, and the check-in fails until we fix it.

e editinfo lets you specify sanity checks on the log com-
ments. Ours makes you say something. Anything. No more
empty log comments in our tree, but we still get comments
like “Fixed a bug.”

* modules is a key file because it helps CVS users man-
ipulate collections of files as entities. Some of this is well-
documented, but some isn't. For example, if you have three
top-level modules, called “curly,” “larry” and “moe,” each
of which you can check out individually, you can make a
sort of compound module with an entry like this in the
modules file:

stooges stooges & curly & larry & moe

This will check out the stooges module, but then also check
out curly ,larry and moe, making each of them a subdirec-
tory under stooges .

e rcsinfo lets you specify log entry templates. If you have
a form—or 40 forms, a different one for every module—that you
want developers to use when they change files, this is the place
to specify them.

These files, and the other administrative files, are well-
documented internally. We encourage you to check out a
copy and read through them.

Miscellaneous Tricks

The title of this column is “Practical CVS,” and we want to
leave you with a few useful tricks that we couldn't figure out
where to fit in earlier:

e CVS understands dates. The flag -D, which lets you
specify a date, is often a useful alternative to -r , which makes
you specify a revision. The variety of acceptable date formats
is surprising. For example, if you broke your product some-
time in the last two weeks, but you don't know how or when,
you can get back a working version like this:

cvs update -D ‘a fortnight ago'
and work your way forward. Or, you can just see the changes:
cvs diff -D 'a fortnight ago’

e CVS understands the Internet. If you have networked
development machines, CVS will work across the Net. We do
not just mean that you can remote mount $CVSROOTWe
have a CVS repository in Mobile, AL. Working on machines
in Boulder, CO, we routinely work with modules from the
Mobile, AL, repository like this:

CVSROOT=jsh@moe.gms.com:/proj_storage/cvsroot
export CVSROOT
CVS CO mvp

The first line says the CVS repository is on the Mobile machine
moe.gms.com in directory /proj_storage/cvsroot ,and
we want to work with this repository as user jsh . The second
line uses the local CVS program as a client and the remote CVS
program as a server, and checks out a copy across the Net. All
subsequent CVS commands within our checked-out copy
know that the repository is remote, and just work. (Note: Your
rhosts file must be set up correctly on the remote machine.)

If performance is a problem, we use the -z flag, which
automatically gzips commands and data at one end, and gun-
zips them at the other. You also need to give it a degree of
compression, like this:

cvs -z 5 update

e CVS understands the idea of merging changes into the
main-line. We often want to merge our changes from branches
into the main-line development tree. Sometimes, these are bug-
fixes to field releases that we want to fold into the main-line.
Other times, we create branches to do experimental develop-
ment. If the experiment is a success, we add it to our product.

Figure 1. The $CVSROOT/CVSROOT Directory.

$Is -C $CVSROOT/CVSROOT

checkoutlist cvswrappers,v loginfo,v rcsinfo verifymsg,v
checkoutlist,y editinfo modules rcsinfo,v

commitinfo editinfo,v modules,v = taginfo

commitinfo,v history notify taginfo,v
cvswrappers loginfo notify,v = verifymsg

A traditional, and tedious, way to
approach problems like this is with diff
CVS provides a labor-saving -j flag that
does much of the work for us. A single -j
flag joins changes from the named revision
into the current version. For example, using
the command below, we join changes from
the prometheus_maintenance revision

90 SunExpert Magazine m September 1997

to the tree we're currently working on:
cvs update -j prometheus_maintenance

To merge changes from the top-of-the-tree into the version
you have checked out use

cvs update -j HEAD

The manual will also show you how to use a pair of -j flags to
merge a specific pair of revisions, and even to remove all changes
between a pair of revisions.

e CVS understands changes in the hierarchy. If you
remove a file, you expect to stop seeing it. Well, at least up
to the point that you need to reproduce last week’s build.
The command

cvs rm foo.c

schedules a file for removal, and the next check-in “removes”
it. Under the covers, CVS actually moves the underlying RCS
file into a subdirectory within the CVS repository, called the
“Attic.” When you ask for old versions, CVS will go into the
Attic and find them, where they're stored with their entire
revision history intact.

On the other side of the coin, if we want to add a new file,

cvs add

does the trick. A subsequent cvs co of a version before the file
existed will omit that file from the check-out.

Directories are more complicated. When we've removed all
the files in a directory with cvs rm , we're left with a bunch of
empty directories. We can prune those dead branches with

cvs update -P

When someone else has created new directories that we want to
bring in, we can fall back on cvs co , but we can also use

cvs update -d

 Using diffs. When we're checking things in, we find it useful
to have the diffs around to help us write our log comments:

cvs diff > /tmp/DIFFS 2>&1
CVs Ci

By now, you should have an overview of how CVS works,
and some tricks to make your use of it more productive. Next
time, we’ll begin discussing the problem of printing over the
Net, and how our old UNIX standby Ipr and its daemon
Ipd are insufficient to the task. Until then, happy trails. ©

SunExpert Magazine m September 1997 91

	Practical CVS, Part 2
	Keeping Tags on Releases
	Implementing Sticky Tags
	Administrative Files
	Figure 1. The $CVSROOT/CVSROOT Directory

	Miscellaneous Tricks

