
SunExpert Magazine ■ July 1997 87

Work
by Jeffreys Copeland and Haemer

mkdir RCS

ci -l *

T hese two lines are 90% of what you
need. If you’re waiting for a bus,
or for a compile to finish, or eating

lunch, we can help you kill some time. Kill,
yes. Waste, no. If you already use Revision
Control System (RCS), then by the time
you’re done reading this column, you’ll feel
more comfortable about what’s going on
underneath and you’ll know some new
tricks. But if you don’t use RCS, start now.

Not knowing about the basics of RCS is
as silly as not knowing the basics of sed or
awk. It’s a fundamental and useful tool,
freely available, that runs on just about
every kind of machine you can imagine,
UNIX and non-UNIX. We use it daily.

‘Use the Right Tool for
the Job’ – Mr. Natural

What’s the job that RCS is the right tool
for? Revision control. If you already know
about revision control, skip this section.

Last month, we talked about how to
make backup copies of files. We’ve all inad-
vertently deleted files, so we don’t have to be
sold on the idea of making snapshots of our

work, but making frequent copies clutters
up our directories, uses up a lot of space and
becomes hard to organize and administer.

A lovely, and now venerable, alternative
is provided by Walter F. Tichy’s RCS,
which lets you store all your backup snap-
shots of a file in a single repository.

To illustrate some advantages of RCS,
let’s look at a real example: pclmain.c , a
file from one of the products that we work
on. We have versions of pclmain.c that
date back to 1992. The file itself is currently
642 lines long, and we have 152 distinct
versions. Some of these versions are inter-
mediate development versions, but others
are actually parts of commercial releases,
currently in the field, which require ongoing
maintenance.

And pclmain.c is only one of 445
files that we use to build our interpreter for
Hewlett-Packard’s PCL printer language,
which is just one of many components that
go into our products.

Keeping track of all of this variation
could be a tremendous amount of work.
However, all the versions of pclmain.c

are stored in a single file, pclmain.c,v ,
which is only about 5,500 lines long, near-
ly 1,000 of which are administrative notes

Practical RCS

Jeffrey Copeland
(copeland@alumni.
caltech.edu) is a mem-
ber of the technical staff at
QMS’ R&D group in
Boulder, CO. He’s been a
software consultant to the
Hugo award administrators
for several years. He spends
his spare time raising chil-
dren and cats.

Jeffrey S. Haemer
(jsh@canary.com) now
works for QMS, too, and is
having a great time. Before
he worked for QMS, he
operated his own consulting
firm, and did a lot of other
things, like everyone else in
the software industry.

Work

88 SunExpert Magazine ■ July 1997

outside the source code itself.
The file has grown substantially in the last

five years. However, even if it had stayed at its
original size (about half its current size), storing
all our revisions would have required more than
10 times as much space if we had stored them as
complete files.

So RCS saves space and keeps the file system
namespace manageable. What else?

• RCS automatically assigns identifiers to
every stored revision, to permit future retrieval.
We can also group components of a system
under a single symbolic name, rather than need-
ing to know the identifying number for each
individual source component.

• RCS tags each revision of a file with the name
of the person who made the revision and the exact
time the revision was made. It also stores the
author’s comments on the revision external to the
code itself, cleanly separating revision history from
sources while joining the two physically, so there’s
no danger that one or the other will be lost.

• RCS controls access to the files, allowing
everyone to read any version (RCS calls these
“revisions”) of a file, but only letting one person at
a time lock a version of the file to make changes.

One of the things we like about vi is that we’re not afraid to
make global, sweeping changes; if we make a mistake, we can
always undo them with a single keystroke. RCS gives us a file-
level “undo’’ key. We keep even trivial files (such as this column)
under RCS control, confident that whenever we go down a
dead-end street, we can always retreat to an earlier version–all
the way back to our first draft, if necessary.

How’s It Work?
Let’s look at an example:

$ echo "Use the right tool for the job." > jeff

$ ci jeff

jeff,v <-- jeff

enter description, terminated with single '.' or

end of file:

NOTE: This is NOT the log message!

>>

Here, we create a test file, then use the ci (check-in) command
to put it under revision control. We’ll use ci again later to
check in revised versions of our file, but ci can tell that our test
file isn’t already under revision control, so it begins by asking for
a description of the file, NOT the log message! . We type in
an answer:

>> This is a test file

>> to illustrate the basics of RCS.

>> .

$ ls

jeff,v

When we started, we had a file called jeff . Now, we have
a file called jeff,v . What does it look like? (See Figure 1.)

Fact number one: It’s a simple UNIX text file; you can
read and make sense of it. (If we had tried to put a binary file
under revision control it would have worked, but the extra
information added by RCS would still have been ASCII.)

In Figure 1, lines 1 to 5 contain administrative informa-
tion. We’ll talk more about them in a minute, but they con-
tain keywords, such as head and locks , together with val-
ues, such as 1.1 (the last version number).

Fact number two: It’s a file full of key-value pairs. Lines 10
to 13 contain the description we typed in. Notice that the key is
desc , but the value–our description–is surrounded by @char-
acters. This is how RCS represents strings. If we have an @sign
within our text, RCS handles that by duplicating our @sign.

The remainder of the file is a series of versions, or “deltas,’’
which let us extract any given version of the file. The easiest
way to see how they work is to add a few versions and look at
the file again (see Figure 2).

What is all this stuff? Well, first, let’s look at the current
revision, which we get by checking it out:

$ co jeff

jeff,v --> jeff

revision 2.1

done

$ ls jeff*

jeff jeff,v

We now have both an RCS file, jeff,v , and the current
version of the file, jeff (which is up to revision 2.1). We

$ nl jeff,v
1 head 1.1;
2 access;
3 symbols;
4 locks; strict;
5 comment @# @;

6 1.1
7 date 97.05.02.16.50.41; author jsh; state Exp;
8 branches;
9 next ;

10 desc
11 @This is a test file
12 to illustrate the basics of RCS.
13 @

14 1.1
15 log
16 @Initial revision
17 @
18 text
19 @Use the right tool for the job.
20 @

(Note: The UNIX nl command numbers the nonblank lines of a file.)

Figure 1. File jeff,v Under Revision Control

SunExpert Magazine ■ July 1997 89

Work

know what the RCS file looks like, but what about the
other one?

$ cat jeff

$ Id: jeff,v 2.1 1997/05/02 17:44:44 jsh Exp $

Snowy, Flowy, Blowy,

Showery, Flowery, Bowery,

Hoppy, Croppy, Droppy,

Breezy, Sneezy, Freezy.

-- George Ellis, "The Twelve Months,"

This, too, is a regular file, even though it’s very different
from where we began. (How often do you suppose Sun-
Expert prints poetry? Though contrast this with the names
of the months in the French Revolutionary Calendar used
between 1792 and 1806: Vintage, Fog, Sleet, Snow, Rain,
Wind, Seed, Blossom, Pasture, Harvest, Heat and Fruit.)
The first line may look mysterious, but it’s only there
because we put it there; it isn’t required for RCS.

Now, let’s look at the RCS file shown in Figure 2.
Lines 1 to 5 are still administrative, global information
about the file, and tell us that the most recent version
is now 2.1.

Lines 6 to 17 list the individual revisions. Among
other things, they tell us the number of each revision,
who created it, which revision it was created from, and
when it was checked in.

We occasionally find that we want a version of a file
from a specific date or time. Accordingly, RCS takes dates
and times very seriously. The check-in date is stored in
UTC (what we used to call “Greenwich Mean Time’’),
which means that even if you have the RCS file on a file
system that’s NFS-mounted across time zones (yes, we
sometimes do that!), the date will still make sense.

On the other hand, it’s critical that all the machines
that manipulate an RCS file have their clocks synchro-
nized. On Suns, you can do this using rdate . For oth-
er machines, there are publicly available packages that
use the Network Time Protocol. If all else fails, you
can even create your own time-synchronization utility,
which we showed you how to do a few months ago in
RS/Magazine (see “Let’s Synchronize Our Watches,”
January 1997, Page 30, or check out the software on
our Web page at http://www.alumni.caltech.

edu/~copeland/work.html).
The next part, the description, is unchanged. This is

provided by the person who created the file and describes
the file as a whole, not any particular revision, so there’s
no reason that creating new revisions should change any-
thing. Comments on individual revisions will come later.

But what do you do if you want to change the
description? This brings us to the catch-all command
rcs . A quick look at the rcs man page reveals that this
command lets you do all sorts of out-of-the-ordinary
operations, including things like rcs -t- 'Here’s

$ nl jeff,v
1 head 2.1;
2 access;
3 symbols;
4 locks; strict;
5 comment @# @;

6 2.1
7 date 97.05.02.17.44.44; author jsh; state Exp;
8 branches;
9 next 1.2;

10 1.2
11 date 97.05.02.17.40.38; author jsh; state Exp;
12 branches;
13 next 1.1;

14 1.1
15 date 97.05.02.16.50.41; author jsh; state Exp;
16 branches;
17 next ;

18 desc
19 @This is a test file
20 to illustrate the basics of RCS.
21 @

22 2.1
23 log
24 @A third version, which changes a line.

25 The file is now so different
26 that we’ve given it a new major revision number.
27 @
28 text
29 @# $ Id:$

30 Snowy, Flowy, Blowy,
31 Showery, Flowery, Bowery,
32 Hoppy, Croppy, Droppy,
33 Breezy, Sneezy, Freezy.

34 -- George Ellis, "The Twelve Months,"
35 @

36 1.2
37 log
38 @Create a second revision by adding a few lines.
39 @
40 text
41 @d1 1
42 a1 1
43 Use the right tool for the job.
44 d7 2
45 @

46 1.1
47 log
48 @Initial revision
49 @
50 text
51 @d2 5
52 @

Figure 2. File jeff,v with Some Revisions

90 SunExpert Magazine ■ July 1997

Work

a new description.'

Fact number three: When all else fails, the rcs(1) man
page often provides a solution. (This is, we note, a corollary
of the more general Fact number zero: RTFM.)

The remainder of the file is a series of “deltatext’’ seg-
ments, each consisting of a revision number, a log comment
and a string enclosed, as always, within @symbols. The first
of these, the “head’’ or “top-of-the-tree’’ revision, is the cur-
rent version of the file. The command co jeff retrieves a
copy of that text.

Before we go any further, we’ll digress to point out line 29,
the RCS Id keyword. RCS provides several such keywords,
described in the co (1) man page, which let RCS insert various
kinds of descriptive text into files as they are checked out. In
Figure 2, the checked-out version of our file is labeled with the
name of the repository, the version, the date and time that the
version was created, and the developer who created it.

The deltatext segments that follow are instructions on how
to reconstruct each version from the version that follows it.
For example, lines 36 to 45 say that Version 1.2 can be con-
structed from Version 2.1 by deleting line 1, (line 41), adding
one line after line 1 (line 42), the text of which is "Use the

right tool for the job " and then the information on
line 43 of the RCS archive tells us to delete several lines start-
ing at line 2 of the file.

Of course, these instructions look just like instructions to
ed . Instead of reinventing the wheel, RCS just uses existing
UNIX tools to generate these deltatexts. A quick glance at the
man page for diff or diff3 will show you that both these
utilities have options that generate ed scripts of this sort.

Broken down like this, the RCS file becomes quite compre-
hensible, and you can imagine that it would be simple both to
generate and to interpret such files. You may be thinking you
could write your own RCS substitute without much trouble.
You probably could. For example, Brian W. Kernighan and Rob
Pike do just that in The UNIX Programming Environment pub-
lished by Prentice-Hall, 1984, ISBN 0-13-937699-2. Their ci

equivalent, put , is a 30-line shell script, counting blank lines
and comments. Their co equivalent, get , is three lines longer.
“get is more complicated than put ,’’ they comment dryly,
“mostly because it has options.’’

So what makes RCS any better than a roll-your-own ver-
sion, and why has it swept the field, nearly completely displac-
ing commercial competitors and its intellectual parent, SCCS
(an older, historically important, UNIX version control system
developed at AT&T by Marc Rochkind)? We can’t speak for
anyone else, of course, but we like it for these reasons:

1. It doesn’t break.
Once you put a source under RCS (or anything like it), the

RCS repository stores the accumulated history of that file: who
worked on it, when it changed, why it changed and so on. In
practice, RCS files are kept, used and maintained for years,
and nothing that handles them can ever afford to break. RCS
files become like the family jewels, and you can’t afford to have
them stepped on when you run into an obscure error condi-
tion that someone’s forgotten to consider.

2. It’s available in source code form, for free.
Not only does the price fit everyone’s budget, but the

availability of source means that as your organization switch-
es from Suns running SunOS to DEC Alphas running
OSF/1 to Pentium Pros running Linux, your old RCS files
will migrate smoothly from each system to the next. In fact,
there are versions of RCS for DOS, Windows and OS/2 for
the unconvertible Microsofties out there.

3. It’s easier to use than not to use.
First, RCS comes with scads of options and several auxil-

iary commands, but almost all of the work is done with two
basic commands, ci and co , which you can learn in less
than a minute.

Second, we all back up old versions in various ways, but
with RCS, you end up backing them up into a single file and
not cluttering up the directory listing. Better still, if you create
a subdirectory called RCS, RCS will automatically store and
look for its repository files in that directory. (See the first cou-
ple of lines of this column for an example.)

Third, several other ubiquitous UNIX software development
tools, including emacs and GNU’s version of make, know
about RCS and RCS files. Fourth, RCS is built around simple
command-line tools and normal files. UNIX has long made it
relatively easy to build elaborately tailored interfaces on top of
simpler ones, and graphics toolkits such as Tk now make it pos-
sible to layer on an attractive GUI. Going the other way is
another story: It’s usually extraordinarily hard to take an elab-
orate, integrated, one-size-fits-all, source-code-control database
and tailor it for environments not contemplated by the vendor.

In addition to the three commands we’ve already men-
tioned–co , ci and rcs –RCS provides a handful of other use-
ful, related utilities–including ident , rcsclean , rcsdiff ,
rcsmerge and rlog –that have their own man pages, which
we encourage you to look over (review Fact number zero).

4. It’s a de facto standard.
RCS is certain to be installed at nearly every company you

will ever work for, and on almost every machine that you will
ever work on. Time invested in learning RCS will continue to
pay back for years, and once you’ve learned it, the knowledge
will stay useful across projects, machines and employers. What’s
more, it’s easy to continue to build your knowledge over the
years by rereading the man pages every few months to learn
something new.

Some Drawbacks
Over the years, we’ve learned that whenever someone tries

to sell us on a new tool, product or idea, the question that cuts
through the hyperbole faster than any other is this: “What’s it
not good for?’’ If we get an answer like, “It’s good for everything.
You should always use it,’’ we say, “Gosh, thanks. Well, will you
look at the time? We really must be going.’’ Haemer was the
first of us to discover this trick, which he applied at the first
Usenix Conference on “very high-level languages” in October
1994. He asked everyone what C++ wasn’t good for. The some-
times interesting answers are discussed in his conference report

in the February issue of the Usenix newsletter ;login:.
What are RCS’ shortcomings?

1. It’s space intensive.
Whenever you have a lot of users looking at each file simul-

taneously, it’s space intensive. RCS lets you extract a copy of any
version you want, but if five people each get their own copy,
then they take up five times as much disk space as a single copy.

2. File locking can be abused.
We once took charge of a source-code-control database with

thousands of source files. A little investigation uncovered dozens
of files that had been locked for years, most of them by employ-
ees who no longer worked at the company.

3. There is no way to force useful log comments.
This one is a little like complaining that there’s no way to

force programmers to write readable, maintainable C or Perl,
but it’s still a problem. We have seen too many log comments
like “Fixed bug.’’ (To be honest, we’ve even written too many
like that ourselves.) Worse still, there’s not even a way to force
nonempty log comments.

4. RCS is built to handle files, not projects.
No project we’ve ever worked on has been confined to a

single file. When we work on particular releases, we don’t want

to say, “Give me Version 1.3 of foo.c and Version 2.91 of
main.c and …’’ we want to say, “Give me Release 2.02 of
the product.’’ Similarly, when we make changes, we’re typically
checking in new versions of a suite of files rather than a single
file. Moreover, RCS has no provision for saying: “When we
check out revisions older than January 1, 1995, the checked-
out file should be called jeffrey , but for all newer revisions,
the file should be called jeff .’’

On a related note, if we delete a file from a project, we
must not delete the RCS file–otherwise, we could never recon-
struct older releases–but RCS has no convenient way of mark-
ing the RCS files that correspond to deleted files. Files added
partway through a project pose analogous problems.

One way to handle these sorts of problems is to abandon
RCS for a product that has the needed functionality. This
throws the baby out with the bath water. Another is to write
a layer on top of RCS that provides the needed functionality.
Most of us who have been in the UNIX industry for several
years have done this more than once.

The good news is, that’s no longer necessary. A few years
back, Brian Berliner, at Prisma, wrote such a layer, called
Concurrent Versions System (CVS), that has many of the
advantages of RCS: It’s mature, it’s stable, it’s well-designed,
it’s available in source form and it’s free. Next month, we’ll
talk about CVS.

Until then, happy trails. ✒

SunExpert Magazine ■ July 1997 91

Work

	Practical RCS
	'Use the Right Tool for Job' - Mr. Natural
	How's It Work?
	Figure 1. File jeff,v Under Revision Control
	Figure 2. File jeff,v with Some Revisions
	1. It doesn't break.
	2. It's available in source code form, for free.
	3. It's easier to use than not to use.
	4. It's a de facto standard.

	Some Drawbacks
	1. It's space intensive.
	2. File locking can be abused.
	3. There is no way to force useful log comments.
	4. RCS is built to handle files, not projects.

