
90 SunExpert Magazine ■ June 1997

Work
by Jeffreys Copeland and Haemer

Several months ago, we wrote our col-
umn twice. Not because we thought
it was a cool idea, but because we

typed rm 17.mm when we meant rm
17.ps and, as a result, deleted the source
file for our column, rather than the format-
ted output. (We came back to this thought
because QMS is currently moving its
Boulder office and after 90 years of experi-
ence of moving houses and offices between
us, we’ve come to expect disasters.) In any
event, we had to ask ourselves what we
could have done to prevent a slip of the fin-
gers from doubling our workload.

We typically use the GNU file utilities
layered on top of whatever UNIX we run on
our workstation. This gives us a couple of
advantages: Not only do we get the same
commands with the same options on each
machine, but the GNU utilities allow us to
write and run POSIX.2-conforming scripts
even on old systems like our still-BSD-based
Suns. (This is also why Interactive Systems
Corp.’s Programmer’s Work Bench, which
provided UNIX utilities for VMS, was a
good idea, and why we install Mortice Kern
Systems Inc.’s MKS toolkit on all our DOS
and Windows machines.)

Haemer, being older and wiser than
Copeland, has installed Linux on his desk-
top machine so that he gets the GNU tools
as his regular commands.

A few years ago when widespread com-
puter voice recognition was forecast, some
wag suggested that a particularly effective act
of corporate terrorism would be to stand in
the middle of a bank of cubicles and yell:
“File … Delete … Yes.” Most of us are still
safe from this kind of joke, yet we terrorize
ourselves by deleting files we wanted to keep
more frequently than we’d like.

When we started to figure out how to
unshoot ourselves in the foot, we quickly
discovered that GNU’s fileutils have a back-
up capability that lets us preserve versions
of files we overwrite. For example, we can
say cp -b foo bar , and if there is a file
named bar in our directory, it is renamed
bar~ before foo is copied to bar .

Why is the backup file named bar~ ?
Because the Free Software Foundation
(FSF) folks are emacs-centric and use
the emacs backup file conventions. For-
tunately, if the environment variable
SINGLE_BACKUP_SUFFIXis set, its value
is used for the backup name. Thus,

Hoist
with Our
Own Petard

Jeffrey Copeland
(copeland@alumni.
caltech.edu) is a mem-
ber of the technical staff at
QMS’ R&D group in
Boulder, CO. He’s been a
software consultant to the
Hugo award administrators
for several years. He spends
his spare time raising chil-
dren and cats.

Jeffrey S. Haemer
(jsh@canary.com) now
works for QMS, too, and is
having a great time. Before
he worked for QMS, he
operated his own consulting
firm, and did a lot of other
things, like everyone else in
the software industry.

SunExpert Magazine ■ June 1997 91

Work

$ SINGLE_BACKUP_SUFFIX=.bak

$ ls

foo bar

$ mv -b foo bar

$ ls

bar bar.bak

The truly paranoid, or the recent immigrant from VMS-
land, can even set the VERSION_CONTROLenvironment
variable to add version numbers to the backup files.

Alas, of all the fileutils, rm is the only one that does not
provide backup capabilities. So that brings us back to
square one.

Defusing the Petard
Why don’t fileutils perform backup for rm? We’re not

sure. Still, it seems like a small enough hole to fill, so we’ll
tackle it here. Rather than trying to layer the backup func-
tionality into the FSF code, we can just write a shell script
replacement for rm built from mv and cp . We do this
because we’re lazy–it saves us wasting time on two columns
explaining the FSF fileutils library functions–and because
doing so illustrates a useful feature of the shell: error han-
dling with the trap command.

First, let’s build something that just removes a single file
while backing it up. We can use something like this:

#!/usr/local/bin/bash

TMPFILE=$$

touch $TMPFILE

mv -b $TMPFILE $1

rm $1

This has the advantage that our new command–for now, we’ll
call it saferm –understands the same environment variables
as GNU’s mv.

Is that enough? What happens if, by analogy with rm, we
say saferm foo bar mumble ? Clearly, only foo gets
backed up. Unlike mv and cp , which require two file names
as arguments, rm takes one or more.

Just as annoying is a misstep such as rm -rf foo , which
translates into mv $TMPFILE -rf , and then into the fol-
lowing complaint:

mv: illegal option — r

Try 'mv —help' for more information .

We need to both handle non-file name arguments and to
provide for graceful failures. We’ll show you how in the next
section.

You could argue that people using our new shell script
should know better than to type things like that, and should

92 SunExpert Magazine ■ June 1997

Work

just RTFM. That’s not a very persuasive argument to those of
us who have read the manual for rm and still mistakenly type
rm 17.mm .

Argument Handling
First things first. We can handle multiple files by just loop-

ing through the arguments:

#!/usr/local/bin/bash

TMPFILE=$$
for i
do

touch $TMPFILE
mv -b $TMPFILE $i
rm $i

done

This requires rather a lot of temporary file creation and
removal, however, which we can short-circuit by changing
the algorithm slightly:

#!/usr/local/bin/bash

TMPFILE=$$
touch $TMPFILE
for i
do

mv -b $TMPFILE $i
TMPFILE=$i

done
rm $TMPFILE

Any scripts we write always check for the correct number of
arguments, and this one will be no exception. We ensure that
our utility is being passed at least one file name with this sim-
ple test:

test $# -gt 0 || die $USAGE

We have discussed the magic of shell functions, parameter
expansion and shortcut evaluation of logical expressions, all of
which are used by this line, in our previous columns–most
recently, last month. If you don’t have a copy of the May 1997
issue handy, then you can read about all these topics in the
man page, shell(1) .

Handling optional and incorrect arguments is a little tricki-
er. We could use getopts , but for simple argument handling,
we prefer the flexibility of the shell’s case statement, whose
ability to recognize shell “glob’’ expressions such as *foo* lets
us whip up quick-and-dirty argument parsers.

For starters, let’s reject all switches. The regular expression
-* will recognize any leading switches, but to recognize a bad
call such as saferm foo -r requires a slightly trickier
expression, *’ -’* . Combining all of these, we get this:

#!/usr/local/bin/bash

ARGV0=${0##*/}

USAGE="usage: ${0##*/} filename [filename]"
warn() { echo $ARGV0: $* 2>&1 }
die() { echo $* 2>&1; exit 1; }

test $# -gt 0 || die $USAGE
case $* in

-*|*’ -’*) die $USAGE ;;
esac

TMPFILE=$$
touch $TMPFILE
for i
do

if mv -b $TMPFILE $i 2>/dev/null
then

TMPFILE=$i
else

warn "cannot back up $i"
fi

done
rm $TMPFILE

Exercise for the reader: Figure out what switches saferm

should take, and add them.
Notice that we’ve also taken care to issue our own warning

message whenever one of the renames fails, instead of letting
mv issue the message.

Oops!
So, we’re done. Right? Would that we were. Early on, we

remember telling a junior systems administrator that he could
do what he wanted by typing rm *.out . After a long pause, he
asked, “What does it mean when it says, ‘.out: no such file or
directory’?’’ His thumb had accidentally typed in a space between
* and .out . Looking on the bright side, after that, it wasn’t hard
to convince him of the importance of doing backups.

At this point, saferm * .out is safer. But what happens if
we accidentally issue such a command, notice it, and quickly
type ^C to avoid renaming all our files? Consider the case where
we type it right after creating the temporary file, $TMPFILE. All
our files will be intact, but we end up with an extra file in the
directory, named after our process ID. If it’s run longer than
that, then things are more complicated. If, for example, xyzzy

has just been backed up to xyzzy~ and has been replaced by
the temporary file. Then, after killing saferm , we’ll have to
search through our directory listing to discover that we have
both a xyzzy and a xyzzy~ , in order to know that xyzzy is
the extra, temporary file.

Of course, if this were a C program, we’d write a signal han-
dler to delete the temporary file before exiting. But this is a shell
script, so we’ll write a signal handler to delete the temporary file
before exiting. (Didn’t know we could do that, huh?)

At your shell prompt, try typing trap 'echo Hello,

world' SIGINT , then, type some ^C characters to send the
current shell an interrupt. Each ^C should produce Hello,

world as its output.
Resetting this to restore standard shell behavior is a little

trickier. trap '' SIGINT makes the shell completely ignore ^C,

Work

instead of providing a new prompt. What works for us is trap

'echo -n' SIGINT .
Before using trap to put a signal handler into our program,

we offer one last trick: If you list all the signals using trap -l ,
you’ll see that the first one is the pseudo-signal, EXIT . Setting a
trap for EXIT causes that signal handler to be executed on pro-
gram completion. This means that instead of having an rm
$TMPFILE statement at the end of our program, we can set
a signal handler at the beginning to get it removed.

Our final program looks like this:

#!/usr/local/bin/bash

ARGV0=${0##*/}
USAGE="usage: ${0##*/} filename [filename]"
warn() { echo $ARGV0: $* 2>&1 }
die() { echo $* 2>&1; exit 1; }

test $# -gt 0 || die $USAGE
case $* in

-*|*’ -’*) die $USAGE ;;
esac

TMPFILE=$$
trap 'rm -f $TMPFILE; exit 1' \

SIGHUP SIGINT SIGQUIT SIGTERM
trap 'rm -f $TMPFILE' EXIT
touch $TMPFILE ||

die "$ARGV0: cannot create $TMPFILE"

for i
do

if mv -b $TMPFILE $i 2>/dev/null
then

TMPFILE=$i
else

warn "cannot back up $i"
fi

done

We now have a full-blown saferm program, replete with
argument parsing, usage messages and error and signal han-
dling, in less than a page of code. Not bad.

Undeleting
OK, now we’re feeling pretty confident and demo the soft-

ware to our boss, who says, after we’re done, “Great! You’ve
moved all your files to some new name. Now, make an unrm

to put them back.’’
How to design this isn’t as obvious. For example, if we had

just saferm ’d two files, named JJ and Allie , we could imag-
ine undeleting them by typing something like unrm JJ

Allie . An unrm that worked like this might look for JJ~ and
Allie~ and move them back to their original names. But sup-
pose we start with hundreds of files, named xaa through xzz ? If
we delete them using saferm * , then we can’t just type unrm

* to bring them back, because this would translate into unrm

xaa~ xab~ ... , which would, of course, look for files named
xaa~~ and so on to rename.

We could make unrm * work by having it look through its

file name arguments for ones that end in ~, but that causes
other problems. Imagine this: We’ve already done a few saferm

commands in the current directory, so that there are many files
with legitimate backup versions. We type saferm ’* .out’

by accident. Realizing our error, we then type ^C to kill the
command partway through. Now, we have a complete mess:
some files with legitimate backup versions, some with backup
versions that need to be renamed to their original names, and
some with no backup versions at all.

We could expand the signal handler for saferm to keep
track of the files that have been backed up, and either undo
the damage or report which files will need unrm -ing, but
it’s not hard to invent special cases where not even that is
good enough. What’s worse, if we’ve set SIMPLE_BACKUP_

SUFFIX or VERSION_CONTROL, then straightforward algo-
rithms that look for files named *~ aren’t going to work
either. What should we do? Our first instinct is to fall back
on our favorite technical answer: We don’t know.

Some further reflection, however, leads us to a more useful
conclusion, and to another column. In concert with a safe ver-
sion of rm, there is another strategy. If you have a lot of impor-
tant files, and you want to be able to keep backup versions and
restore them whenever you accidentally delete them, do what we
usually do: use a source-code control system. Next month, we
will look at Revision Control System, or RCS.

Until then, happy trails. ✒

SunExpert Magazine ■ June 1997 93

	Hoist with Our Own Petard
	Defusing the Petard
	Argument Handling
	Oops!
	Undeleting

