
Work
by Jeffreys Copeland and Haemer

SunExpert Magazine ■ April 1997 87

A llow us to give you a bit of back-
ground before we begin, for those
of you who didn’t read our column

in RS/Magazine and don’t know us yet.
Jeffreys Copeland and Haemer have known
each other for more than a dozen years. We
met when we were both working for the
now defunct, original UNIX vendor
Interactive Systems Corp., Copeland in
Santa Monica, Haemer in Estes Park. We
were building opposite ends of a very early
object-oriented word processing and data-
base package. It took us about 20 minutes
to discover that we had lived in the same
house at Caltech, separated by eight years.

Since then, Copeland worked for SHL
Systemhouse after it absorbed part of
Interactive Systems but before it became a
subsidiary of MCI Communications Corp.
Haemer spent several years consulting on
issues of internationalization, standardization
and software portability. Now we’re both
working at QMS Inc., building the innards
of laser printers.

This column was originally written as our
56th column for RS/Magazine. We began
with a 12-part series on internationalization,
moved onto a 17-part series on POSIX, did
a quick three-part filler on literate program-

ming, and now you’re reading our 24th
“Work” column. In “Work,” we have been
exploring problems we trip over in our daily
work. Oddly enough, because we’re software
nerds, many of these problems have solu-
tions that require writing some software. If
you are interested in the software we have
developed to date for these columns, take a
look at http://www.alumni.caltech.

edu/~copeland/work.html for a quick
review. Unfortunately, now that RS/Magazine
has suspended publication, we have been left
in the middle of a multipart discussion of
maps and HTML. With that, you’re up-to-
date, and we can proceed with our regularly
scheduled column.

Every Vote Counts
Last time, we developed a CGI form to

help us count the results of the recent U.S.
presidential election. It wasn’t until after the
column went to press that we realized we
had left out some important details for our
non-U.S. (and our U.S.-based, but high
school civics course-deficient) readers.

U.S. presidential elections are not as sim-
ple as those in some other countries. (The
good news is they aren’t as complicated as
Israeli parliamentary elections; but then

Drawing
on the Net

Jeffrey Copeland
(copeland@alumni.
caltech.edu) is a mem-
ber of the technical staff at
QMS’ R&D group in
Boulder, CO. He’s been a
software consultant to the
Hugo award administrators
for several years. He spends
his spare time raising chil-
dren and cats.

Jeffrey S. Haemer
(jsh@canary.com) now
works for QMS, too, and is
having a great time. Before
he worked for QMS, he
operated his own consultancy
firm, and did a lot of other
things, like everyone else in
the software industry.

Work

again, nothing is.) Each state is allocated a number of elec-
toral votes based on its members of congress, which is, in
turn, based on its population. There are 538 electoral votes.
The winner of the plurality of the popular vote in any given
state is awarded all the electoral votes for that state. Thus,
when Bob Dole won 46% of the vote in Colorado (to
Clinton’s 44% and Perot’s 7%) he got all eight of Colorado’s
electoral votes.

Not only did we ignore the mechanics of
the election, but we completely ignored the
issue of how to display the results–We both
voted for Mickey Mouse, but who won the
election? This month, we’ll address that issue.

As you may recall, this all started when our
eldest daughter needed to learn the names of
the states, and we wrote a quick Web page con-
taining a clickable map of the United
States–you click on a state, and it tells you the
name. (“I think that one’s Montana!” (click!)
“Oops! It’s North Dakota!”) The map was stat-
ic, so we didn’t need to worry about the com-
puting power required to redraw it.

However, when we were updating the elec-
tion map, we needed to be able to redraw it
quickly, with states colored in red for Bill
Clinton, the Democrat, blue for Bob Dole, the Republican,
and green for the Ferengi, Ross Perot.

For quick drawing, we will turn to the GDpackage in
Perl. But where do we get the map that we’re going to color?

Space, the Final Frontier
We began with map data from the Massachusetts Institute

of Technology. (We don’t have the exact ftp reference. We’ve
had the data for years and have converted it from line seg-
ments into PostScript, but we think the MIT folks derived
the original data from the CIA geographic database. We’ll be
happy to pass the maps to you on request.) These are the out-
lines of the 48 continental states in longitude-latitude coordi-
nates. So we have a bunch of files named things like CAthat
contain lines like the following:

% Begin: CA California

newpath

-120.0109 42.0125 M

-120.0090 41.2002 L

-120.0121 39.7082 L

-120.0020 39.4411 L

-120.0086 39.3135 L

-120.0033 39.1623 L

-120.0092 39.1152 L

The data in that form leaves us with two problems. First,
how do we render the PostScript into a GIF or JPEG image
suitable for display on a Web page? Second, how do we
extract the map data so that we can handle the HTML in-
line MAPtelling us what position on the screen corresponds

to what state on the ground?
Our original solution to the first problem was the com-

plicated and time-consuming pipeline we used to draw the
map in the first case:

• PostScript data piped through a script to color the map.
• Output of the script read into GhostScript to convert it

to Jef Poskanzer’s portable pixel map (PPM) format.
(Yes, we could have converted it directly to
GIF, if our version of GhostScript had had the
GIF driver installed.)

• Rotate the PPM file 90 degrees so north
points up.

• Convert the PPM to a GIF.
Whew! This took about 45 seconds on the

SPARC 5s we normally use on our desktops
and for our Web server at the office, which is
not nearly quick enough.

Next, we investigated the Perl package GD,
which leads us to the solution to both prob-
lems we posed earlier. GDis a graphics package
for Perl (versions also exist for C and Tcl) that
allows us to render our output directly into
GIF. If we convert the original map data from
longitude-latitude space to the appropriate
coordinates for GIF space, we can use the same

map data to both draw the map and to give us the outlines
of the clickable regions displayed on the map.

The program to do the conversion is pretty simple and is
shown in Figure 1. Basically, we read each line in the
PostScript map data, and each time we encounter a line with
an M(move and begin a new polygon), we stop and produce
output. We convert the coordinates as we read them in, pre-
serving our original Mercator projection at 12.6-GIF pixels
per degree, appropriately offset so that Kansas is in the cen-
ter of our picture.

That’s not the whole story, however. We need to do some
small adjustments in the output. We want to eliminate points
that are identical in GIF space, as well as points that we don’t
need because they’re on the same horizontal or vertical line as
points surrounding them. This serves to compress the data to a
shorter list of points for each state outline.

This compression takes place in the print_stuff rou-
tine, which is called each time we need to output a self-con-
tained polygon of the state. We could improve the
compression yet again by eliminating all points that lie in the
middle of a line segment of any orientation, but it’s not
worth the computational hassle.

But that’s not the whole story, either. Some states, such
as Massachusetts and Michigan, are made up of more than
one polygon. We solve the problem by producing several
files for each state, naming them MA_1, MA_2and so on,
and sticking the set in a subdirectory named MA. Making
the subdirectory and splitting up the output file is left as an
exercise for the reader. An alternate exercise for the reader:
Modify our conversion to preserve the notion of one state,
one file. Warning: You’ll need to modify the drawmap pro-

We solve the
problem by
producing
several files
for each state,
naming them
MA_1, MA_2
and so on,
and sticking
the set in a
subdirectory
named MA.

88 SunExpert Magazine ■ April 1997

Work

90 SunExpert Magazine ■ April 1997

gram, which we’ll look at next.
And that’s not all, either. We’ve produced the data to

draw the maps but still haven’t produced the data for the
MAPproduction in the HTML file. You’ll notice some lines
commented out in gifmap with double ##.
Those are the lines that provide the HTML
wrapper for the in-line map.

That’s the whole story. Next, we have to fig-
ure out how to redraw the map from the data.

A Map, a Map, My Kingdom
for a Map

Take a look at Figure 2. It contains the code
for drawmap , our program to redraw and color
the map. There are several interesting features
that we need to note.

First, usage. We use the program by giving
the directory containing the map data, and a
results file. The file contains something like:

CA Clinton red

CO Dole blue

Strictly speaking, the names of the candidates are redundant:
drawmap needs only the state names and colors.

Second, we can explore some of the innards of drawmap .
(For space reasons, we’re going to do this quickly.) We begin

the program with our usual “shebang” line spec-
ifying the path of the Perl executable. Notice,
however, that we’ve added the -T flag. “T” is for
“taint” and checks for possible security breaches.
For example, the PATHis set explicitly because
the taint checking feature is turned on–without
the explicit set, the program won’t run.

We turn on taint checking because we’re
going to use this routine as part of a CGI script,
and we want code used by folks outside our
local net to have a higher level of suspicion
about its environment.

Given that, we can begin talking about the
GDpackage, which is available from the CPAN

archive at http://www.perl.com/cpan/ . It has an
excellent man page as part of the installation set.

In general, when using GD, we define an image object
using a line like this:

Notice
that we’ve
added the
-T flag. ‘T’
is for ‘Taint’
and checks
for possible
security
breaches.

#! /usr/local/bin/perl
generate the cgi outline map
from the PS outlines

$n = 0;

while(<>) {
if(/^% Begin: ([A-Z][A-Z]) (.*)/) {

$state = $1;
$full = $2;
$full = ~ s/ /_/g;
print "# $1 $2 \

\$Id: gifmap,v 1.3 1997/01/06 23:38:01 jeff Exp $\n";
}

if(/([\d.-]*) ([\d.-]*) ([LM])/) {
print_stuff() if($3 eq 'M' && $n);
$x[$n] = int(12.6 * $1 + 1610.7);
$y[$n] = int((-12.6) * $2 + 762.7);
$n++;

}
}
&print_stuff();

sub print_stuff
{

print " <AREA SHAPE=poly \
HREF=/cgi-bin/state.cgi?state=$state”;
print " ALT=\ "$state\" COORDS=\"";
print "$x[0] $y[0]\n";

now we go through the points in sequence,
eliminating those we can::
begin with identical ones
for($i = 1; $i < $n-1; $i++) {

$x[$i] = 0 if($x[$i] == $x[$i-1]
&& $y[$i] == $y[$i-1]);

}
skip one of vertically co-linear pairs
for($i = 1; $i < $n-1; $i++) {

$y[$i] = 0 if($x[$i] == $x[$i-1]
&& $x[$i] == $x[$i+1]);

}
skip one of horizontal co-linear pairs
for($i = 1; $i < $n-1; $i++) {

$y[$i] = 0 if($y[$i] > 0 &&
$y[$i] == $y[$i-1] &&
$y[$i] == $y[$i+1]);

}
now print those not eliminated
for($i = 1; $i < $n-1; $i++) {

print "$x[$i] $y[$i]\n"
if($x[$i] > 0 && $y[$i] > 0);

}
print "$x[$n-1] $y[$n-1]\n";
assume the last point and the first
are the same to close the polygon
print "\">\n";
$n = 0;

}

Figure 1. Converting to GIF Space

Work

92 SunExpert Magazine ■ April 1997

#!/usr/local/bin/perl -Tw
$Id: drawmap,v 1.7 1997/01/06 23:29:52 jeff Exp $

use GD;
use FileHandle;
use DirHandle;
use Getopt::Std;

use strict; # Perl’s lint
use subs qw(draw_state draw_chunk);
use vars qw($opt_h $opt_d $opt_c %color);
$ENV{PATH} = '/usr/bin';

my $usage = "$0 [-h] [-c color_file] \
[-d states_directory] [state ...]";
getopt("cd");
die $usage if $opt_h;

Create an image object
my $im = new GD::Image(800,500);

Give the image’s colors symbolic names
my $white= $im->colorAllocate(255,255,255);
my $black = $im->colorAllocate(0,0,0);
my $red = $im->colorAllocate(255,0,0);
my $green = $im->colorAllocate(0,255,0);
my $blue = $im->colorAllocate(0,0,255);

Make the background transparent and interlaced
$im->transparent($white);
$im->interlaced('true');

Frame the picture
$im->rectangle(0,0,1000,1000,$black);

Read state colors
my %c;
if ($opt_c) {

my $fh = new FileHandle $opt_c
or die "Can’t read $opt_c: $!";

while (<$fh>) {
next if /^\s*\#?.*$/; # skip comment lines
Color file has format
"state_name candidate color"
my($state, $c);
($state, undef, $c) = split;
$c{$state} = $c;

}
close ($fh);

}

Get a list of the states
my @states;
$opt_d ||= "."; # the directory of state outlines
unless (@ARGV) { # individually named states

get all the states from the named directory
my $dh = new DirHandle $opt_d

or die "Can’t read directory $opt_d: $!";
@states = grep /^[A-Z][A-Z]$/, $dh->read;
$dh->close;

}
@states = map {"$opt_d/$_"} @states;

Draw each of them
foreach (@states) {

my $state = $_;
s|$opt_d/||; # strip directory and suffixes
my $cname = $c{$_};
draw_state $state, $cname;

}

Convert the image to GIF and print
print $im->gif;

Draw a state
sub draw_state {

my($state, $cname) = @_;

Most states are single files.
If the state needs to be drawn in chunks
we make the state a subdirectory,
and the chunks individual files

draw the whole state at once
unless (-d $state) {

draw_chunk(@_);
return;

}

my $dh = new DirHandle $state
or die "Can’t read directory $state: $!";

my @chunks = grep /\w/, $dh->read;
$dh->close;
foreach (@chunks) { # draw it in chunks
draw_chunk("$state/$_", $cname);
}

}

Draw a chunk (and maybe color it)
sub draw_chunk {

my($chunk, $cname) = @_;
my (@x, @y);
my $i = 0;

my %color = (# for convenience
'white' => $white,
'black' => $black,
'red' => $red,
'green' => $green,
'blue' => $blue,

);

A "chunk" contains X,Y coordinates of the
vertices. It can also contain comment lines,
which have a '#' as the first non-whitespace
character. We like to allow comments.

Read coordinates of vertices
my $fh = new FileHandle $chunk

or die "Can’t read $chunk: $!";
while (<$fh>) {

next if /^\s*\#/; # skip comment lines
($x[$i], $y[$i]) = split;
$i++;

}
close $fh;

Now draw the polygon
my $poly = new GD::Polygon;
for ($i = 0; $i < @x; $i++) {

$poly->addPt($x[$i], $y[$i]);
}
if ($cname) {

$im->filledPolygon($poly, $color{$cname});
} else {

$im->polygon($poly,$black);
}

}

Figure 2. The Code for drawmap

Work

SunExpert Magazine ■ April 1997 93

my $im = new GD::Image(800,500);

for an image 800 pixels wide by 500 high. We can allocate col-
ors and add items to the image with lines like the following:

my $red = $im->colorAllocate(255,0,0);

$im->rectangle(150,150,250,250,$red);

which draws a 100-pixel red square outline with its lower left
corner at (150,150). We finish up and render the picture to
standard output with the line

print $im->gif;

Caveat emptor: There’s a bug in the Perl version of GD

that leaves blank stripes in flood fills of complicated poly-
gons like the state of California. We don’t know what the fix
is yet, but if we find it, we’ll pass it on.

One final thing to notice is that we’ve used Perl’s
FileHandle and DirHandle packages. The former is used
to safely read the map components, and the latter is employed
to open the directories for states consisting of multiple poly-
gons. Note that the Handle package, which obsoletes both
FileHandle and DirHandle , has been announced, but is
not yet available–though it may be by the time you read this.

In Summary
Here’s where we’ve done: Earlier, we showed you a CGI

script to allow the input of candidate/state pairs for the elec-
toral college, and now we’ve just finished another CGI Perl
program to turn the data we generated into a colorful map.
We’ll leave you with one last exercise: Combine the two pro-
grams into a single CGI script that allows you to click on the
candidate and state, and then redraws the whole map, which,
in turn, you can click on.

Next month, we’ll return to a topic of long ago, building
things, with implications for Web page development.

Until then, happy trails. ✒

	Drawing on the Net
	Every Vote Counts
	Space, the Final Frontier
	Figure 1. Converting to GIF Space

	A Map, a Map, My Kingdom for a Map
	Figure 2. The Code for drawmap

	In Summary

