
Work

30 RS/Magazine JANUARY 1997

H
ow did you know when it
was midnight? Really mid-
night? Nerds like us might
have called 303-499-7111,

and spent the evening listening to
the National Institute of Standards
and Technology’s (NIST, nee,
National Bureau of Standards) time
signal as broadcast on WWV.

(Cinematic aside: Which movie is
your New Year’s Eve favorite? We
are agreed on “It’s a Wonderful Life’’
as the Christmas movie of choice,
but have been debating the merits of
“The Fabulous Baker Boys’’ versus
“The Apartment’’ for the best New
Year’s Eve flick.)

But we digress. There’s an easier
way to find out the time than sitting

with the telephone pressed to your
ear all night, and that’s to resync
your computer’s clock directly to
someone who knows the right time,
like NIST.

Your Friend, telnet
The Internet utility telnet dates

back more than 20 years. Usually,
it’s used to connect one computer to
another remotely. Because it doesn’t
require tight communications on
both ends, it works better over long
distances than rlogin .

However, logging into a remote
computer isn’t the only trick that
telnet knows. If you take a look at
/etc/services , you’ll find a list of
functions that can be accomplished

Let’s
Synchronize
Our Watches

Jeffrey Copeland (copeland@alumni.caltech.edu) is a member of the technical staff at QMS’s
languages group in Boulder, CO. His recent adventures include internationalizing a large sales and
manufacturing system and providing software services to the administrators of the 1993 and 1994
Hugo awards. His research interests include internationalization, typesetting, cats and children.

Jeffrey S. Haemer (jsh@canary.com) is an independent consultant based in Boulder, CO. He
works, writes and speaks on the interrelated topics of open systems, standards, software portability and
porting and internationalization. Dr. Haemer has been a featured speaker at Usenix, UniForum and
Expo Kuwait.

by Jeffreys Copeland and Haemer

10. . .9. . .8 . . .7 . . .6 . . .5 . . .4 . . .
3...2...1...HAPPY NEW YEAR!

Work

RS/Magazine JANUARY 1997 31

across a TCP or UDP link. One of telnet ’s tricks is to
allow you access to any of those functions.

For our first experiment, pick a machine close by–for
argument’s sake, we’ll dub it barney–and utter,

telnet barney echo

to your computer. You’ll find yourself connected to barney,
and have it repeat back everything you type. Next, try,

telnet barney daytime

You’ll be rewarded with barney’s notion of the correct
date and time. Quick, type date and see if your clock
agrees with barney’s. It almost certainly doesn’t.

OK, let’s head off a bunch of mail by admitting that
we know there are standard utilities for solving this. We
use rdate on our Sun desktop machines, for example.

Ultimately, the machines in our local cluster all syn-
chronize their clocks to QMS’s firewall, which synchro-
nizes to the clock at pogo.udel.edu , which, in turn,
relies on an atomic clock for its time.

Perl 5 for Making Remote Links
Perl 5 provides a number of features for connecting

to a remote computer. We’re going to use a variety of
them. Basically, we’ll establish a TCP connection with
the remote machine, set up a socket to communicate
with it, read the time from the remote computer and
set our time to be the same.

Let’s begin with some setup:

require 5.002;

use strict;

use POSIX;

debug flag

my $d = $main::d ? $main::d : 0;

This ensures that we’re executing at least Version 5.002
of Perl, that we strictly enforce safety, that we include

the POSIX.1 interfaces and that we have an alias for the
debug flag. The latter is necessary because we are using
strict –thus, we must fully qualify the variable.

Having done the setup, we’ll proceed from the bottom
up and write the service routines first, beginning with
one to set up the connection to the remote computer.
For example,

sub establish_connection {

use socket;

Declare variables to keep

’use strict’ from whining.

Here, we declare them all

at the top of the routine.

my $s_host = shift;

my($c_host, $c_socket, $c_addr);

my($s_addr, $s_socket, $port);

my $pnum;

my $pname = ’tcp’;

my $stype = SOCK_STREAM;

We use socket to include the interfaces for interprocess
communications. Then, we declare all the variables we
need, beginning by collecting the socket host, $s_host ,
from the argument list. We finish this by declaring the
protocol and socket type we’ll use.

Next, we’ll get the protocol number from /etc/

services and establish the socket .

Make the socket filehandle.

$pnum = getprotobyname $pname;

socket(S, PF_INET, $stype, $pnum)

or die "socket: $!";

warn "socket ok" if $d;

Note: getprotobyname() is not the best name for a
function call; it’s too confusing. Do we mean to get the
prototype, or the proto-what? A better name would have
spelled it out as getprotocolbyname() .

Following that, we set up the socket and its address,
bind the socket to handle S, and issue more status mes-
sages if we have debugging turned on.

Give our socket an address.

$c_host = (POSIX::uname)[1];

$c_addr = inet_aton $c_host

or die "no address: $c_host";

$c_socket = sockaddr_in(0, $c_addr);

0 means let kernel pick

bind(S, $c_socket) or die "bind: $!";

warn "bind ok" if $d;

The daytime service
gives us the local
time on the remote
machine as text,

without the time zone, while the
time service provides a UNIX
time_t word in binary form.

Work

32 RS/Magazine JANUARY 1997

Last, we establish the connection with the other com-
puter, and read not the daytime service but the time

service. The difference is that the daytime service gives
us the local time on the remote machine as text, without
the time zone, while the time service provides a UNIX
time_t word in binary form. So, we continue with

Call up the server.

$port = getservbyname(’time’, $pname)

or die "No port";

$s_addr = inet_aton $s_host

or die "no address: $s_host";

$s_socket = sockaddr_in($port, $s_addr);

connect(S, $s_socket) or die "connect: $!";

warn "connect ok" if $d;

}

Now that we’ve got a routine to do the communica-
tions, we need a way to set the time on our local
machine to match the time on the remote machine.

sub synchtime {

Here, we declare variables as they’re used.

my $rtime = shift;

my $SECS_of_70_YEARS = 2208988800;

From 1900 to the Epoch

70*365*24*60*60 (70 regular years)

+ 17*24*60*60 (17 leap-days)

my $histime = unpack("N", $rtime)

- $SECS_of_70_YEARS ;

"N" is network-order long

my $settime = POSIX::ctime $histime;

chomp($settime);

We are assuming that we take time_t as an argu-
ment, and our task is to decode that word. We now
need to know how many seconds in 70 years to enable
us to correct the clock for the UNIX epoch, January 1,
1970.

Next, we use the Perl unpack() function to expand
the word we got across the network and, after correct-
ing for the epoch, we use that value to get the ASCII
rendition of the current time. We finish by removing
the trailing new lines from $settime .

The chomp operator is a slightly safer version of the
older Perl chop operator, because it ensures the charac-
ter it’s chopping is actually a new line.

What good does it do us to have the remote date in
text format? Well, it’s a convenient form to feed to the
GNU date utility. Why use the GNU version? Because
every version of date we looked at requires its argu-
ments for the -s flag (to set the date) to be in a slightly

different form. Some have seconds separated by a dot,
some have the year preceded by the century, some pro-
hibit inclding two digits for the century: 1997 becomes
97, for example. POSIX.2 specifies the format specifiers
for outputting the date, but not the format for inputting
it. We use the common, and widely available, GNU ver-
sion to provide a lingua franca date format. Thus,

assume GNU ’date’

my $cmd =

"/usr/local/bin/date -s ’$settime’";

warn $cmd if $d;

my $rc = system($cmd);

warn "system($cmd) failed" if ($rc != 0);

}

By the way, because GNU date allows you to set the
date in nearly any format, it has the interesting feature
of being a date format translator. For example, if we say

date +"%D" --date "31 Oct 1996"

we get 10/31/96 back. Even better, if we say

date --date "a week ago"

date responds 10/22/96 . This improves the useful-
ness of the utility by a large measure.

This leaves us with the main program to write. Given
the subroutines we’ve already written, it’s pretty short:

my $s_host = shift || ’localhost’;

establish_connection $s_host;

chomp($_ = <S>);

warn $_ if $d;

synchtime $_;

close (S) or die "close: $!";

exit 0;

We begin by getting the target off the command line.
Next, we use our first subroutine to get the connection
to the remote host, providing status if we have debug-
ging turned on. Last, we set the local time and finish.

We’ve always been fascinated by things like self-repli-
cating programs. So the notion of including the docu-
mentation in the program itself is a natural trick for us.
We can do this in Perl because there are some com-
mands that are valid in both troff and Perl.

For example, we begin our script with the lines:

’di’;

’ig 00 ’;

Work

RS/Magazine JANUARY 1997 33

$Id: synchtime,v 1.11 1996/10/09

The di and ig lines are simple string declarations to
Perl, and tell troff to divert and ignore the text until
a line containing .00 appears.

Then, we finish the Perl code with the lines:

exit 0;

.00 ;

’di

.nr n1 0-1

.nr % 0

’; _ _END_ _

The first two lines exit from the Perl program, and
then complete the lines that troff is ignoring. We
begin a new Perl string declaration that contains the
troff directives to close the diversion, and pretend
that we’re starting the first page of the man page again.

Finally, we declare the end of the Perl text and the
beginning of the documentation text. This trick works
in large part because a delimiter for Perl strings is also
one of the two valid characters for starting a troff

directive.
We also occasionally use a similar technique in our

C code, and bodily include the man page surrounded
by #ifdef DOC and #endif . As we’ve discussed in
this column before, we still disagree about the utility of
Don Knuth’s literate programming technique.

In any event, the man page text we include is

SYNCHTIME(1)
NAME

synchtime–synchronize the system clock with
another machine on the Net.

SYNOPSIS
synchtime [-d] hostname

DESCRIPTION
Synchtime uses the network ‘time’ service (port 37) to
get the time from the named host, then calls GNU’s
date -s to set the time on the local machine.

FILES
/etc/hosts , /etc/services

AUTHOR
Jeffrey S. Haemer

SEE ALSO
date

DIAGNOSTICS
The -d flag produces some debugging information.

Whines if you don’t run it as root, but doesn’t
do any damage.

BUGS
Must be run as root.

Requires GNU date because of the wild variety

of formats that various vendors use for setting
dates. Unfortunately, POSIX.2 specifies formats for
getting dates but not for setting them. Luckily,
GNU date is both widely available and has the
best format going. Fortunately, GNU’s date -s

will let you give it almost any reasonable, verbose
format, such as those returned by ctime() . It
would be nice to use the “daytime” service (13),
but the format returned doesn’t give a time zone.

More Follies in Time Libraries
An anonymous correspondent points out that our

chums at Sun Microsystems goofed in SunOS 4.1 and
its successors. SunOS doesn’t provide the standard
ANSI C mktime() routine to convert a struct tm

into a time_t value. Because mktime() hadn’t been
standardized by the time of its release, SunOS provides
similar functionality with timelocal() . In principle,

mktime(localtime(time(NULL)))

should be the same as

time(NULL).

Unfortunately, the Sun routine ignores the tm_isdst

flag in the struct tm , so during the summer, time
isn’t exactly invertible using timelocal() .

The other day, a copy of the November 1996 Scien-
tific American came across our desk. In this issue, Ian
Stewart devotes his Mathematical Recreations column
to calendar calculations and points out that the book
Calendric Calculations, by Dershowitz and Reingold,
has been published by Cambridge University Press,
ISBN 0-521-56474-3. We’ve already ordered our copy.

Stewart also provides a pointer to Reingold’s Web
page at http://emr.cs.uiuc.edu/~reingold/

calendars.html , which features excerpts and sample
code from the book.

That’s all for now. Next month, we’ll be looking at
HTML again. This time, we’ll discuss CGI techniques,
and show you a bit of software we wrote for our eldest
daughter’s geography drills–and how we extended it to
count electoral votes for the recent U.S. presidential
election. If history is any guide, this will generate a lot
of correspondence.

We ended up writing this month’s column twice. We
committed the sort of mistake that two professional
nerds who have been at this for close to half a century
shouldn’t have made. One of us had a brain-skip and
typed rm 22.mm instead of rm 22.ps as we were near-
ing completion. So, in the column following the
HTML/CGI exploration, we’ll discuss adding fail-safe
protection to rm. Until then, happy trails. ▲

	Let's Synchronize Our Watches
	Your Friend, telnet
	Perl 5 for Making Remote Links
	More Follies in Time Libraries

