
Work

The Date

Class, Part 4

by Jeffreys Copeland and Haemer

ast. month, we described a non-leap year, even though every

I how we built our version of 400th is a leap year. He correctly
strf time () and promised points out that the existence of this

to provide you with the rule is a tribute to the accuracy of

code for it this month. We also 16th-century astronomy.

promised we�d show you how that Our reply is that we can safely
code interfaces to the Date class ignore the problem because our

we�ve been building for months. And code will not be used 2,000 years

we�ll, finally, abandon our flogging from now, but, then again, that�s

of the �date routines� dead horse, what they said when they decided

But first.., to use only two digits for years in

all those COBOL programs written

Fan Mail from a Flounder back in the]960s. Folks in the

We had a long and thoughtful insurance and banking industry
note from Stuart Gathman at Busi- estimate that the bill for fixing
ness Management Systems Inc. that problem is going to run into

(stuart@bmsi .com) concerning billions. Moral of the story: Get it

our first column on the Date class right the first time.

(September 1996, Page 32). Stuart Stuart also takes us to task over

found an error in our code�our leap some style issues. In particular, he

year routine ignores the 4,000-year objects to our preference for succes

glitch. That is, every 4,000th year is sive approximation in converting

Jeffrey Copeland (cope1andalumni .
cal tech. edu) is a member of the technical staff at

Q MS�s languages group, in Boukler, CO. His recent adventures include internationalizing a large sales

and manufacturing system and providing software sers�iccs to the achninistrators of the 1993 and 1994

Hugo awards. His research interests include internationalization, typesetting, cat.c and children

Jeffrey 5. I-Iaemcr (j sh9canary .com) is an independent constmltant based in Boulder, C0 He

works, writes and speaks on time interrelatcd topics of open systems, standards, software portability and

porting and intcrnationctlt ration. Dr. Haemer has been a fcatured speaker at Uscnix, UniForum and

Expo 1<uwait.

RS/Magazimmc DECEMBER 1996

Work

from absolute clay number to a monthldaylyear triple. The Gregorian calendar rules, like those for the Julian
For example, he uses calendar, describe a method of calculating the progression

of dates. We know that the calendars are defined so that

dayofyear = (month*275) 19-32+day; October 5, 1582 on thejulian calendar is followed by
it (month < 3) dayofyear += 2; October 15, 1582 on the Gregorian calendar. Our code

doesn�t worry about what the correct calendar is for the

to convert from month/day to day-of-year. We think it�s country or religious circumstance, it merely provides that

a matter of style. We find our code easier to follow and progression backwards and forwards.

revise, but that�s our opinion. Meanwhile, take a look at The code Stuart sent us, on the other hand, is wired

the GNU version of localtime c: Its underlying service for the actual Gregorian conversion. It uses the Julian

routine, of ftime.c, uses a successive approximation rules up until 10/5/1582, skips to 10/15/1582, and uses

approach to get both the time and the date, the Gregorian rules from that time onwards.

However, Stuart�s comments also made us realize In practical terms, no one is going to worry about

that we weren�t entirely clear in our original article. The using our Gregorian code for dates before 1582, and this

Gregorian derived class doesn�t have a clearly defined means we don�t need to tie our code to a particular coun

starting date. This confused him, and probably the rest of try�s conversion from Julian to Gregorian.

you. It was intentional�no, not the confusion, the design. Last time, we promised to give you the whole listing of

The Whole Listing of strftime()

*include <sys/types.h> char *dprintf (char *fmt, mt n)

#include <time.h> char *S;

#include <stdio.h> s = (char *) malloc(16);

#include <stdlib.h> sprintf(s, fmt, n);

#include <string.h> return(s);

static char *D0WE] =

�Sun�, �Mon�, �The�, �Wed�, char *dcpy(char *)

�Thu�, �Fri�. �Sat�); mt n = strien(s);

static char *DayOfWeeklj = { char *t;

�Sunday�,�Monday�,�Tuesday�,�Wednesday�, t = (char *) malloc(n+l);

�Thursday�, �Friday�, �Saturday�]; strncpy(t, s, n+l);

static char MoY] = { return(t);

�Jan�, �Feb�,�Mar�, �Apr�,�May�, �Jun�,

�Jul�
, �Aug� , �Sep� ,

�Oct�
,
�Nov�

,
�Dec�

static char MonthOfYear] = { char *b2z(char *s)

�January�, �February�, �March�, if sO] �

�April�, �May�, �June�, O] = �0�

�July�, �August�, �September�, return S;

�October�, �November�, �December�];

inC wkyr(int wstart, inc wday, mt yday) { #defne LOCAL_STRFTIME

if (wstart == 0) #define TEST

return (yday wday + 7)/7; #ifdef LOCAL_STRFTIME

else if (wstart == 1) sizet strftime(char s size_t maxsize,

return (yday - ((wday+6)%7) + 7)17; consr. char *foat,

else (const struct tm *timeptr)

fprintf(stderr, �%s\n�,

�first arg to wkyr must be \ sizet strftime(char s, size.t maxE.ize,

0 (Sunday) or 1 (Monday) �) ; const char *foat,

const struct tm *tp)

II the abbreviated weekday name

static char dstr256]; str�a�] = cpy(D0Wtp->tm_wday]);

RS/Mci,,�izr,ie DECEMBER 1996 35

Work

Our
code doesn�t worry

here; you�ll need to refer back to last month�s column, �The

Date Class, Part 3,� Page 31, for an explanation of what�s

about what the correct going on. Send us email if you would like complete inter-

lineal translation.

calendar is for the
-

.. country or religious So How Does It Fit into Date?

Last month, we promised to tell you how this code fits

circumstance, it merely into the Date code. Basically, we generate a method for the

Gregorian class that sets up an appropriale struct tm

provides that progression backwards
and feeds it to the strftime () routine we wrote last time.

and forwards. For example,

our C++ translation of the Pen strf time () by Paul Foley void

at Ascent Technologies in Cambridge, MA. The Perl ver- Gregorian: :_strftime(char *fmt, FILE *fp)

sion is available at your favorite CPAN (Comprehensive
Pen Archive Network) site�see http: //www.cpan.com char ufBUFSIZ]

for mirror sites. Gregorian dayl(1, 1,year)

For space reasons, we�re only providing the C++ version struct tm tt;

II the full weekday name II seconds after minute

str�A�] = cpy(DayOfweektp->tm_wdayj); str�S�] = dprintf(�%2d�,

II the abbreviated month name tp->tm..sec); 2z(dstr�S�]);

str�b�] = cpy(MoYtp->trn_mon]); 1/ Sunday of year

II the full month name strtJ�] = dprintfV%2d°,

str�B�J = cpy(MonthOfYeartp->tm_mon)); wkyr(0, tp->tm_.wday, tp->tm_yday));

II date Ii day of week (Sun == 0)

str�c�) = asctime(tp); str�w�] = dprintf(�%2d�, tp�>tmwday);

// trim off newline II Monday of year

strc�)(strlen(dstr�c�l)-l] =
� \0�; dstr(�W�] = dprintf(�%2d�,

Ii day of month wkyr(l, tp->tm_wday, tp->tm_yday));

str�d�j = dprintf(�%2d�, tp->tm_mday); mt ysc = tp->tm_year % 100;

b2z(dstr(�d�]); II year since century

II hour of 24hr clock str�y�] = dprintf(�%2d�, ysc);

str�H�] = dprintf(�%2d�, tp->tm_hour); II year

b2z(dstr�H�)); str�Y�] = dprintf(�%4d�,

mt hr = tp�>tm..hour % 12; ysc + ((ysc < 70) ? 2000 : 1900)

if (hr == 0) hr = 12; str�x�] = (char *)malloc(12)

II hour of l2hr clock II date

dstrf�I�) = dprintf(�%2d�, hr); sprintf(dstrl�x�], �%3s %2s %2s�,

2z(dstr�I�fl; strb�],dstr�d�],dstrl�Y�]);

// day of year dstr�x�]ll] =
� \0�;

str�j�J = dprintfV%3d�, str�X�] = (char *)malloc(9);

tp->tm.yday + 1); Ii time of day

2z(dstr�j�]); printf(dstr�X�l, �%2s:%2s:%2s�,

II month number str�H�), str�N�], str�S�]);

str�m�) = dprintf(�%2d�, tp�>tm_mon + 1); strX�]8) =

b2z(dstrt�m�J); II timezone of machine

1/ minutes after hour str�Z�] = dcpy(tp�>tm_zone);

str�M�] = dprintf(�%2d�, tp->tm_miri); str�%�] =

2z(dstr �M� J

/1 AN/PM indicator char *CP;

str�p�] = dcpy(tp->tm.hour > 11 ? char *cq;

�PM� : �AN�); mt space = maxsize;

36 AS/Magazine DECEMBER 1996

Work

// set time to something arbitrary nan andJulian calendars�which we haven�t done in our

tt tm_hour = 12; code�provide a strftime () that, in concert with the

tt tm_mm = 0; country information from the locale, knows when to make

tt. tm_sec = 0; the switch from Julian to Gregorian calendars. Remember,

/7 extract the date information that date will range from 1582 for Italy, to 1917 for Russia.

tt. tm_mday = this->day; What have we left out? We never did a derived class

tt. tm_mon = this->month; for Hebrew or Arabic calendars. However, those of you

tt. tm_year this->year - 1970; who are interested can take a look at the De:showitz and

tt. tm_wday = this->DayOfWeek () ; Reingold paper that started us on this calendar quest, in

tt. tm_yday = this->date - dayl date + 1; the September 1990 issue of Software Practi:e and Experi
Jstrftime (but, BtJFSIZ, fmt, &tt) ; ence. Alternately, you can look up our excursions into

fputs (buf, fp) ; Japanese and Arabic calendars in the midst of our POSIX

series two years ago: see our columns in the August 1994

and September 1994 issues of RS/Magazine.
Exercise for the reader: Now provide an interface to Last exercise for the reader: Generate Hebrew and

strftime () for the Julian class. Arabic derived classes from Date.

In addition (thanks to Stuart Gathman), assuming we That�s it until next time. Until then, happy holidays
are willing to make a hard differentiation between Grego- and a wonderful new year! A

memset(s, 0, space); strftime(tstr, sizeof(tstr),

for (cp = (char *) format; �a = %a, A = %A, b = %b, B =

*p && (space > 0); cp++)) time_struct);

printf (�%s\n�, tstr)

jf (*cp == % &&

((cq = str*(cp+1)]) NULL)) { strftime(tstr, sizeof(tstr),

if ((space -= strlen(cq)) < 0) return 0; �c = %c, d = %d, H = %H, I %I�,

strcat(s, cq); time_struct);

cp++; printf(�%s\n�, tstr);

continue;

strftirne(tstr, sizeof(tstr),

*(s+maxsjze_space) = *cp; �i = %j, m = %m, M = %M, p =

if (--space < 0) return 0; time_struct);

printf(�%s\n�, tstr);

1/ Now free everything strftime(tstr, sizeof(tstr),

irit i; �S = %S, U = %U, w = %w, W =

for (1=0; i<256; i++) time_struct);

if (cp = stri)) { printf(�%s\n�, tstr);

free(cp);

stri] = NULL; strftime(tstr, sizeof(tstr),

= %x, X = %X, y = %y, Y =

return strien(s); time_struct);

printf(�%s\n�, tstr);

#endif

strftime(tstr, sizeof(tstr),

= %Z, % = %%, F = %F, & =

#ifdef TEST tirne_struct);

main)) printf(�%s\n�, tstr);

struct tm *timestruct;

char str128); exit(0);

time_t t = time(NULL) ;

tirne_struct = localtime(&t); #endif

RS/Magcizinc DECEMBER 1996 37

	The Date Class Part 4.pdf

