
Work

The Date

Class, Part 3
Ij eejs 'e1a

L
ast month, we delayed build

ing our own version of

strf time () because we

had discovered bugs in

everyone else�s versions. We wanted

to establish the right method before

generating yet another wrong one.

This month, we�ll attempt to build a

correct version of strftime).

strftirne() is the standard C

function to format dates. You give
strftime () a date and format spec

ifier and it returns the formatted

date as a string. For example,

time_t t time(NULL);

strftirne(s, strlen(s)+1, �%H:%M:%S�,

locaitime(&tH;

puts(s)

will produce the same result as

date �+%H:%M:%S

For us, in particular, serftime C)

has some fascinating aspects:
1. It is standard�we�ve written a

series on standards.

2. It is specifically designed for

international applications�we�ve writ

ten a series on internationalization.

3. It is what�s left of the corner we

painted ourselves into last time.

In fact, it�s so fascinating that

we�re going to take a whole column

to show you how to write a routine

that you�ll almost never call (date

is almost always good enough), that

you don�t need to write because it�s

supplied on your system, and that

is so seldom used that most of the

vendor-supplied versions have easily
discovered bugs that no one has

complained about yet.
You don�t need it even if you have

to format dates and don�t have

Jeffrey Copeland (copeland@alurnni.tech.edu) is a member of the technical staff at

QMS�s languages group, in Boulder, CO. i-us recent adventures include internationalizing a large sales

and manufacturing system and providing software services to the administrators of the 1993 and 1994

Hugo awards. His research interests include incernarionalizwion, typesetting, cats and children.

Jeffrey S. Haemer (jsh@canary.com) is an independent consultant based in Boulder, CO. He

works, writes and speaks on the interrelated topics of open systems, standards, software portability
and porting and internationalization Dr. Hae,ner has been afeatured speaker at Usenix, UniForunt

and Expo Kuwait.

RS/Magazinc NOVEMBER 1996 31

Work

strftimeM. For example, here�s another way to pro- #endit / PERL /

duce the same output from a C program: #include <stdio.h>

main(void)

systemVdate �+%j-j:%M:%S��); printf (�Hello, world\n�)

exit (0)

Why go through all the work of creating a library
function, especially when you can use the date corn- #ifdef PERL

mand to do the same thing? Exercise for the reader: =cut

Why does this function exist? Or asked another way, exit 0;

for what specific application is this technique comple- #endif / PERL I

tely out of the question?
Hello. Doze off for a minute there, did you? We need Here we have both legal C and legal Perl. Note: Through-

to devise a way to motivate you to slog through this. out this column, we�ll often use C to mean C or C++.

Here�s what we�re going to do. We�ll show you some Sometimes this is technically wrong, but we don�t think it

interesting tricks you can use to solve a relatively boring will be confusing and it saves us a lot of typing. Let�s walk

problem. Getting there will be more than half the fun. through it both ways.
If you read this and we succeed, please let us know. First, C. The commands #ifdef PERt

.

ifendif

/ PERL *7 hide all the Perl code from the C compiler.
Pounding Square Wheels into Round Ruts By the time cpp is done with this code, it reduces it to

We hate having to reinvent the wheel. Whenever we the following:
need a routine to do something unusual, we begin by
searching our own database, using man -k, or its sn- #include <stdio.h>

onym, apropos. These commands perform keyword main (void)

searches through man page synopses and often find rou- printf (�Hello, world\n�);

tines that do just what we�re looking for. Both work from exit0

a database that we rebuild frequently with catman. Our

crontab entry is

Next, Perl. Per! author Larry Wall has put a piece of

15 2 * * 0,4 /bin/catman -w. syntax into Perl 5 that lets us hide the C in an analogous

way. Any statement that begins with =word (where word

We can�t always find what we want, so the next step is is any word at all) is treated by the Perl compiler as a sig
to search the Net. Sometimes, the routines we find aren�t nal to stop processing until it finishes another line that

in the language that we require them to be. We�ll use begins with =cut.

strftime () to show how we proceed in this situation. This makes it easy to intermix code and docurnen

The Comprehensive Per! Archive Network (CPAN) is a tation. The Per! 5 distribution comes with the man page,

treasure trove of routines that is growing faster than you per!pod(1), which describes the semantics of a suite of

can invent things to look for. Of course, they�re all in Per!. formatting directives, such as =headl and = item. These

Check out http: / /rw
. pascal. org/Family/Freernan/ can be used to embed man pages into Per! modules.

CPAN
.
html for pointers to master and mirror sites. Note: Pod stands for �plain old documentation,� an

A search at our nearest mirror site quickly turns up a apparent tip-of-the-hat to the ISDN phone folks who refer

package that implements strft.ime ()
,
called ptime . p1 to normal phone service as POTS�plain old telephone

by Paul Foley at Cambridge, MA-based Acsent Technology, service. Many of the modules in Per! 5 have embedded

The package includes two other routines�asctime () and pod directives, and the distribution comes with four trans

ctime ()
,
but we won�t attempt to rewrite these. lators�pod2htnil, pod2latex, pod2rnan and pocl2text�which

We could extract the code for sub striftime and do a can interpret these directives to produce documentation

translation, reverting to the original when necessary to pick in four popular formats.

up missing pieces. But often when two things are related, We�re not that ambitious. We just use :rcomment and

it�s a good idea to keep them together so they don�t get out =cut to bracket C code. In our case, the Per! compiler
of sync. Time for a trick, reads the following:

Consider the following code fragment:
#ifdet PERt

#ifdef PERL print �Hello world\n�;

print �Hello world\n�; exit 0;

rcomment #endif 1* PERL /

32 RS/Ma,gazinc NOVEMBER 1996

Work

And because Pen�s comment character is #, the #ifdefi

PERL and #endif / PERL */ pair is ignored.
Now we�ll embed our C translation of Foley�s module

in the original. Depending on your viewpoint, either the

C becomes a comment to help make the Perl more read

able, or the Perl is pseudo-code documenting the design
of the C implementation.

Designing strftime()

Foley�s package is nicely laid out. He defines a few

tables and a handful of utility routines and then lets the

table lookups and Perl�s rich regular expressions do most

of the work. C doesn�t have Perl�s regular expressions, but

we�ll follow the same basic design.
First, we look at the tables. It�s almost no work to

translate these:

#ifdef PERL

=cut

@DoW = (�Sun�, �Mon� �Tue�, �Wed�, �Thi.i�,

�Fri�, �Sat�);

@DayOfWeek = (�Sunday�, �Monday�, �Tuesday�,

�Wednesday�,

�Thursday�, �Friday�, �Saturday�);

@M0Y = (�Jan�, �Feb�,�Mar�, �Apr�, �May�,

Subscribe Today!
For Managers of World Wide Web Sites

If your job function includes one of the following:
Manager of World Wide Web Site

World Wide Web Site System Administrator

World Wide Web Site Software Developer � Networking Specialist

The Corporate
Web Site and

Intranet
Publication

You may qualify for a FREE SUBSCRIPTION to

WebServer Magazine by filling out the Web subscription form at:

http://www.cpg.com/ws/subscribe. html
To ADVERTISE in the FEBRUARY ISSUE call

(617) 739-7001 for your area sales representative

�Jun. �Jul. Aug�, �Sep�, �Oct�,

�Nov�, �Dec�);

@MonthOfYear = (�January�, �February�,

�March�,�April�, �May�, �June�,

�July�,�August�, �September�,

�October�, �November�, �December�);

= C omrnen t

#endif / PERL /

static char D0TIJJ = { �Sun�, �Non�, �Tue�,

�Wed�, �Thu�, �Fri�. �Sal:�);

static char Dayofweek] = C

�Sunday�, �Monday�,

�Tuesday�, �Wednesday�,

�Thursday�, �Friday�, �Saturday�);

static char *Moyf] = {�Jan�, �Feb�,

�Mar�, �Apr�,�May�,

�Jul�. �Aug�. �Sep�,�Oct�,

static char MonthOfyearJ = C

�January�, �February�, �March�,

�April�,�May�, �June�,

�July�,�August�, �SeptembEr�,

�October�,�November�,�Decemnber�i;

Let�s skip over the utility routines for a second and go

I.removes
the uncertainty from

open system security.

With Stalker, you know who did

what, when and how... and you

have the evidence to prove it.

Stalker actively monitors your

entire UNIX network, identifies

external and internal misuse, and

automatically reports directly to

you via email or printed report.

For more information and a free

white paper on UNtX system

security, call us or visit our Web

site today!

(

Haystack Labs, Inc.

10713 Hwy 620 North Austin, Texas 78726 Active Security for

512.918.3555 Fax 512.918.1265 Open Systems

Circle No. 13 on Inquiry Card

RS/Migazixc NOVEMBER 1996 33

Work

directly to sub strftirne. Heres the prototype for the

standard C function:

size_t strftime(char s, size_t maxsize,

const. char * format,

const struct tm *timeptr)

Note: In ptime.pl this function becomes # strftime

($template, @time_struct). $template is the format

string and @time_struct is an array whose elements cor

respond to the fields of C�s struct tm. For example,

($sec, $min, $hour, $mday, $mon,

$year, $wday, $yday, $isdst) = @time_struct;

instead of

struct tm

mt tm_sec;

mt tm_mirl;

mt tm_hour;

mt tm_mday;

mt tm_non;

mt tm_year;

mt tm_wday;

mt tm_yday;

mt tm_isdst;

Inside the routine, most of the code represents the

assignments of values to variables with the same names

as the field descriptors.
For example strft.ime () and date use %A to desig

nate the day of the week, and %I for the hour on a

12-hour clock.

Here�s what you see inside sub strftime:

* the full weekday name

local($A) = DayOfWeek$wday];

1...)

local($I) = sprintfV%2d�. $hour % 12);

$1 y/ /0/; # hour of l2hr clock

SI = 12 if $1 == 0;

To parallel this in C, we build an array of 256 elements,
indexed by the format characters. Most of the elements

will be NULL pointers, but legal format characters will have

pointers to string representations of the corresponding
information. Here�s what the same code translates into:

II the full weekday name

str�A�J = cpy(DayOfweektp->tm_wday]);

mt hr tp->tm_hour % 12;

if (hr == 0) hr = 12;

II hour of l2hr clock

dstr(�I�] = dprintfV%2d�, hr);

b2z (dstr �I�]);

We�d like to use this code to make a few points before

going any further:

1. Pen makes copies of strings for you. allocating space

as necessary. We have to do all this by hand and write a

handful of utility routines to ease the workload.

One, dcpy(), creates a malloc�d copy of the string

you pass it. Another, dprintf H, does a sprintf () into

a string that it creates on the fly.
2. Per! scripts often rely heavily on Peil�s typeless

scalars. Programmers don�t need to take special steps to

convert numbers to strings, so no one worries about how

a number is being represented. C doesn�t have that fea

ture, so we�ve chosen to keep track by converting every

thing to strings.
In the above code, we do all the arithmetic operations

on tp->tm_hour first, then we convert the result to

a string before storing it.

3. String substitutions have to be hand-crafted in C.

Perl has built-in operators to handle this. Fortunately,

nearly all of the string substitution in substrftime is

done to change one-digit numbers to two-digit numbers.

For example,

SI = y/ /0/;

will turn numbers like �9� to �09.� For our purposes, we

wrote a utility routine, b2z ()
,
that does nothing more

than change a leading blank to zero.

4. Most of our strftime () function is straight-line
code that we could have written in vanilla C. Our code

isn�t object-oriented, but we�ve still used .a couple of C++

features. One feature was to use C++ comments to turn

the following:

* the full weekday name

local($A) = DayOfWeek$wdayl;

into this:

II the full weekday name

str�A�] = cpy(DayofWeektp->tir_wdayl);

Another was the freedom to declare variables where we

first use them, which often makes things easier to read.

For example,

mt hr = tp->tm_hour % 12;

if (hr == 0) hr = 12;

II hour of l2hr clock

str�Il = dprmntf(�%2d�, hr);

b2z (dstr �I�]);

Taking Out the Garbage
Another noteworthy issue that we have to deal with by

hand in C is that of freeing up heap storage. When we say,

34 RSIMac;zmc NOVEMBER 1996

Work

7/ the full weekday name

str �A] = cpy(Dayofweektp->tm_wday]);

we�ve allocated several bytes on the heap to hold a copy of

the weekday name. Analogous code in Per!, for example,

* the full weekday name

local($A) = DayOfweek$wday];

puts data into the heap but gives it a reference count, so

that when it�s no longer in use, the storage is freed up.

This works like files in UNIX. UNIX frees up storage used

by a file as soon as there are no longer references to the

file in the directory hierarchy, and once the last process

using it has closed the file.

In C, we need to free up heap storage by hand. In

strf time I), we do this by freeing up everything in

dstr 1 before we exit. For example,

II Now free everything

mt i;

for (i0; i<256; j++)

if (cp = stri))

free(cp)

In a more complicated conversion, we might either

free every malloc�d pointer or keep a separate array of

pointers to allocated space, instead of making a single

array do double duty.

Parsing the Format String
The remaining big task is to parse the format string

and substitute in the right values. In Pen, it�s a four-liner:

$template = s/\\/\200/g; # hide �\Y

* replace each control sequence with

* value of corresponding variable name

* (we�ve done it in two lines for

* typesetting purposes it�s really one)

$template = /\(aAbBcdHljmN])/�\$$l�Ieeg;

$template = I\(pSUwWxXyYZ])I�\$$l�Ieeg;

* restore �\\� as single Y

$template = s/\200/\Ig;

In C, there�s more to do, but it�s not too bad:

char *Cp;

char *cq;

mt space = maxsize;

rnemset(s, 0, space);

for (op (char *) format;

cp && (space > 0); cp++)

if (*cp == �%� &&

(cq = str*(cp÷l)]) NULL))

Notice that we hae to check at every step to make sure

we have enough space. If we run out of space, we return

zero, which is what the standard says we should do, and

the resulting string may be a mess�the standard says its

contents are undefined.

Testing the Final Code

We once worked on a project where the manager ended

every team meeting with �Remember, don�t ship it until it

compiles.� When we finished converting the code, we

decided to try it out.

First, we wrote a driver that exercises every required
format option. Next, we surrounded our strftime ()

functionwitha#ifdef LOCALSTRFTIME / #endif

pair, and wrote a script that would build and run the

program with either the standard strf time () or our

homegrown version.

Last, we compared the outputs. We found several

interesting differences:

1. Bugs in our code. Yes, bugs.
2. Optional behavior in the specification. The standard

says that %x, %X and %c should all print out a locale�s

�appropriate representation.� For %x, our code prints t�Iov

11 1918, where the vendor�s version prints 11/11/18.

3. Trivial bugs in ptime.pl. The specification requires
that %j, day of the year, produce a number from 001 to

366. However, ptime p1�s days run from 000 to 365, just
like tm_.yday.

4. Bigger bugs in ptime. p1. If you�ve read the previ
ous two columns in this series, you�ll remember we said

that implementation errors in the %tJ and %W format

specifiers are ubiquitous. Well, the implementation in

ptime.pl was wrong too. All of these problems were

easy to fix. To correct the last problem, we just stole

code from our earlier columns.

So far, we�ve shown you an approach to implementing
strftime () that has several interesting features:

� We�ve converted a freely available Per! package into

a useful C program.
� We�ve left the Perl code in as documentation.

� We�ve shown you how to use one implementation to

find bugs in another.

Next time, we�ll show you our version of the full code.

We encourage you to try your hand and compare it to

ours. Until then, have a fine November. A

if ((space -= strlen(cq)) < 0) return 0;

strcat(s, cq);

continue;

*(s÷maxsize_space) = *cp.

if (--space < 0) return 0;

stri] = NULL;

RS/Magazinc NOVEMBER 1996 35

	The Date Class Part 3.pdf

