
Work

The Date

Class, Part 2

L
ast month, we started build

ing a C++ class to handle

dates. We explored the

basics of building a class to

handle a count of days from some

arbitrary �dawn of time,� and over

laying a derived class to deal with the

Gregorian calendar.

We left you with the exercise of

writing a strftime () function to

print the dates out in a useful form,

promising to begin this month�s

column with our solution to that

problem. However, in the mean

time, we discovered some interest

ing things about sonic common

implementations of strf time

which we want to discuss in detail.

So we�ll begin by looking at East

er on the Gregorian calendar. Then

we�ll look at the Julian calendar and

finish with a discussion of the prob

lems in getting a correct strftime ().

For reference, let�s quickly review

the classes we set up last time:

class Date

public:

friend long operator- (const Date& a,

const Date& b);

friend Date operator+ (const Date& a,

const long& b);

voidSetDate(longd) {date=d;

void KdayOriOrBefore(int k)

date= (date- (date-k) %7);

protected:

long date;

class Gregorian : public Date

public:

Gregorian(int month, mt day, mt year);

Gregorian() { month = day = year = 0;

Gregorian) Dated);

void SetDate(int month, mt day, mt year);

Jeffrey Copeland (cooeland@alurnnj
.
caleech edu) Is a member of the technical siciff at QMS�s

Ian�piagcs gz-oLip, in Builder, CO. I-his rcecnt adventui-cs include i tc�inationahiziiig a Iargc sales and

ncinufactiiring system and providing software services to rile administrators of the 1993 ctncl I 994 Hugo
ciwards. His research in (crests include intcrnationaIiation, typesetting, cats and children.

Jeffrey S. Hacnicr (jsh@canary.com) is an independent eonstiltcmt based in Boulder, CO ilc

writes and speaks on the i icrrelated topics of opcii systcms, standai cls, softwai e pomability and

porting and internationalization. Dr l-laeincr has been ci featured speaker at Llsenix, UitiFarum and

Expo I(iiwait.

32 AS/Magazine OCTOBER 1996

Nork

void SetDate(long d);

intDayOfWeekU;

voidprintU;

void Easter(int year);
void

protected: Gregorian::Easter(mt yr

mt month, day, year;
irit GoldenNr = yr % 19 + 1;

bool LeapYear (.i.nt year)
�

lot Century = yr I 100 + 1;
if) (year%400) ==0) return true;
�

mt X = 3 * Century / 4 - 12;
if) (year%lOO) == 0 1 return false;

z = (8 * Century + 5) I 25 - 5;
if((year%4) =0) return true;

mt d = 5 *
yr / 4 - x - 10; II Sunday

return false;

II Epact is a magic number to approximate
mt DayslnNonth(mt month, mt year) { II the full moon by roughly calculating
ntm] = { 31,28,31,30,31,30, II lunar cycles, from the 19 year (rough)

31,31,30,31,30,31); ii �golden cycle�
if)month==2&&LeapYear(year)) mt Epact = (ll*GoldenNr+20+z_x) % 30;

return 29; if (Epact == 25 && GoldenNr > 11) Epact++;

eturnmmonth-l]; if (Epact == 24) Epact++;

1; II calculated full moon

mt N = 44 - Epact;
Easter on the Gregorian Calendar if (N < 21) N += 30;

Easter, of course, is the important movable feast in

the Christian calendar. Historically, it needed to occur II following Sunday

in spring to correspond with older Pagan planting fest- N = N + 7 � (d+N) % 7;

ivals which ii does by being celebrated on the Sunday
II Easter is N-l days after March 1

following the first lull moon after the spring equinox, f > 31)
which is assumed to always fall on March 21. If yOu�ve this. SetDate(4, N-31, yr)

ever wondered why Easter appears to be celebrated near else

a full moon, now you know why. Passover also falls near this.SetDate(3, N, yr)

a full moon�often the same one as Easter�but for differ

ent reasons.

Unfortunately, because of the error in the leap year year because the celebration of Saturnalia came close

rule for the julian calendar, by the time of Pope Gregory enough to the end of the calendar year to interfere with

XIII in the 1500s, the date of the spring equinox had year-end reports. The workaround was to declare the

drifted back 10 days. Remember that the Julian calendar year beginning in March.

has a leap year every four years, which makes its years a With the historical context in mind, we can provide
touch too long, while the Gregorian correction leaves the Easter method for our Gregorian class shown last

three of every four century years as non-leap years, which month (see Figure 1).

pretty much smoothes out ti-ic difference. Remember that we�re using Nachuni Dershowitz

It would have been sufficient simply io change the leap and Edward M. Reingold�s papers on calendric calcula

year rule beginning in 1582 and ignore those 10 days, but tions�Software Practice and Experience, Vol. 20 (1990),

Pope Gregory XIII, in an effort to fight the Reformation, pp 899-928, and Vol. 23 (1993), pp 383-404�as our

declared that in 1582, Thursday, October 4 would be fol- primary reference.

lowed by Friday, October 15. For Easter, we also like to refer to Donald E. Knuth�s

The Catholic countries of Europe adopted the change The Art of Computer Programming, Vol. 1, Section 1.3.2.

immediately, but the Protestant countries dragged their We�ll shortly refer to his paper on Easter under the

feet. Great Britain�ancl its colony on the western fringe of Julian calendar from Communications of the ACM, Vol. 5

the Atlantic�finally adopted the new calendar in 1752. (1962), pp 209-210. (Notice that the longer of the two

Russia wailed until after the revolution, and, in fact, implementations is in COBOL.)

the Russian Orthodox church still operates on the Julian When we know Easter�s date, it�s easy to calculate

calendar. There�s a good article about the history of the Mardi Gras, the all-important movable feast for those of

Gregorian calendar in the May 1982 issue of Scientific you in New Orleans:

Amc rica ii.

While we�re discussing the history of calendars, it is Gregorian z;

interesting to note that the Ronians invented the fiscal cout << �Easter 1997:

RS/Ma,�ane OCTOBER 1996 33

Wor!

z.Easter(1997) ; z.print))

cout << Mardi Gras: �; void

z = z + (�47); z.print(); Julian::SetDate(mt month_,

mt day_, mt year_

Notice that we need to say z=z+ (-47) ; rather than

the iiiore obvious z=z-47; because of the way we over- month = month_;

loaded our plus and minus operators last time. In any day = day_;

case, the following code gives us the expected output: year = year_;

date = 0;

Easter 1997: 3/30/1997 (729113) -�year_;

Mardi Gras: 2/11/1997 (729066) II basic years

date += year_
* 365;

At this point, we�ve got enough grounding to explore // leap years

the historical companion to the Gregorian calendar, the date += year_ / 4;

Julian calendar. ii days until this month

for) mt i = 1; i < month_; i++

The Basics of the julian Calendar date += DayslnMonth(1, year_

We�ve dealt with most of the basics of the julian cal- ii days in this month

endar already�the notion of leap year, the idea that each date += day_;

abstract date has a corresponding month, day and year, ii correction for base difference

and methods to convert from the civil calendar to our date - 2;

abstract one. The difference between the Julian and Gre

gorian calendars is in their leap year rules. Therelore, it

makes sense to make Julian a subclass of Gregorian, void

so we can inherit most of the methods we�ve already Julian: :SetDate(long dd

written. We declare Julian thus:

date = dd;

class Julian : public Gregorian C /1 we approximate this from below

public:
year = dd / 366;

Julian(int month, mt day, mt year);

Julian(Date d);
Julian guess(l,1,year);

Julian() (month = day = year = 0;

void SetDate)int month, while) guess.date <= dd

mt day, mt yearj;

void SetDate(long date);
guess.SetDate(1,l,++year);

void Easter(int year);

private:

bool LeapYear(mt year) { guess.SetDate(1,l,---year);

if) (year%4) == 0) return true;

return false; II now approach the month

month 1;

while) guess.date <= dd

We play similar games with the constructors forJulian guess.SetDate)++month, l,year)

dates as we did with those for Gregorian dates. Our con

structors use service routines that can also be used as guess.SetDate(--month, l,year)

stand-alone routines.

/1 now get the difference for day of month

Julian::Julian(int month, mt day, mt year) day = (int) dd - guess.date + 1;

SetDate(month, day, year);

Notice the last line of the first SetOate method is a cor

rection to align absolute clay one on both the Gregorian
Julian::Julian(Date d) andJulian calendars.

We can confirm the operation of this code with a simple
SetDate (d

-

date) ; test that checks the date of Pope Gregory�s change:

34 RS/Mgazint OCTOBER 996

Julian qj (10,5,1582); Sunday. Any day before the first Sunday is in week zero. %W

Gregorian qg(10, 15,1582); is the same, but the week begins on Monday. In effect, this

cout Julian vs Gregorian << endi; gives us the number of Sundays or Mondays from the

qj.print(); qg.print(); beginning of the year.

�Yeah, so what?� you might ask. Well, otrftime))

four code works, we should get the following output: and date now recognize the same set of data specifiers,
so in general date is now implemented by passing all its

Julian vs Gregorian arguments to strftime ()
.

This means that a bug in

10/5/1582 (577736) strftime () will also make itself known in date.

10/15/1582 (577736) We were going to use the Date class we�re develop

ing to prim labels for our daily backup tapes. Those

This leaves us with the issue of Easter under the old tapes are in two sets, one each for even and odd weeks.

calendar. Easter from 325 A.D. through the adoption of Bitt the driving shell script for the backup kept resulting
the Gregorian calendar was based on rules invented by in different notions of which week it was and, hence,

the First Council of Nicaea. The calculation is a relatively whether it was an evcn or odd week. We wcre very con-

pure implementation of the rule we stated earlier�the fused. We both got different results. Haemer�s results

Sunday after the first full moon after March 21. were the same as Henry�s, bitt Copeland�s results were

the same as Robin�s.

void Finally, we realized that the SunOS strftime() was

Julian: : Easter) mt year) { giving different results for %W and %tJ from the version in

Julian paschal_rnoon (4. 19, year) ; 7/ presumed the GNU shell utilities. Further investigation revealed that

mt apace = ((11 * year%19) + 14) % 30 the Sun version was correct, and queries indicate that the

// corrected for calculated moon version of the shell utilities about to be released by the Free

paschal_moon = paschal_moon + (-epact); Software Foundation fixes this problem (heep: //www.

/7 get the following Sunday
gnu.ai .mit.edu/fsf/).

7/ (note that this gives us the absolute

/7 date, but not the Julian calendar day

/7 so we�ve got a little work to do)

Date following_sunday; Keep up with the latest in RS

technology with the best minds in the
following_sunday.date = paschal_moon.daee+7:

industry. Use reprints to promote,
following_sunday.date

inform, and sell.
following_sunday.date -

TM

(following_sunday.date % 7);
Reprint Management Services

provides you the opportunity to obtain

reprints of reviews, articles, and features
Julian easter)following_sunday); in RS/Magazine.
this->date = easter. date;

High-quality editorial reprints will
this->month = eastermonth;

help your company in manvways:
this->day = easter.day;

� Increased EXPOSURE for
this->year = easter.year;

your product or service

� Credible, believable inform

ation that consumersTRUSl

We�ll leave it to you to write the test fragment for this U Excellent SALES tool for trade

shows, mailings and media kitsmethod. Suffice it to say that Easter in 325 fell on April 3.
� Powerful EDUCATIONAL

The next step is to develop a version of strftime () 50
RESOURCE for consumers

that we don�t have to keep looking at this ugly debugging and employees
output. Our first thought was to adapt some existing ver

Reprints are completely customized
sion of the routine. Unfortunately, a funny thing happened S to your needs. Call today for additional

on the way to doing that. information!

JODY LISTER

Problem of the Week Reprint Operations Spec.a/ist

It turns out that this section heading is literally true, REPRINT

as we will explain. In the XPG and POSIX standards, we
MANAGEMENT
SERVICESTM

added the %tJ and %W specifiers to the date command, and
147 west Airport Road

to strftime ()
.

In the case of %U, we should get the week 5 P.O. Box 5363

number in the year, with the First clay of week one being Lancaster, PA 17606

Phone: (717) 560-2001 Fax: (717) 560-2063

RSlMagizi�w OCTOBER 1996 35

VJork

So, we thought, let�s try to find a quick fix to the exist

ing GNU version of strf time (I, rebuild date and then

everyone will be back in sync. Easier said than done, it

seems. We began by looking at the version of strftirne ()

in P.J. Plaugher�s Standard C Library, Prentice-Hall, 1992,

ISBN 0-13-131509-9. But that appears to have week num

bers off by one in most cases. Some versions of the Berke

ley BSD UNIX code were found to be wrong. In fact, over

all we found more implementations that were wrong on

this minor point than were correct. So, we did what comes

naturally, we wrote a replacement.
From the observation above�that we were in effect

counting the number of Sundays from the beginning of

the year�and given a tm structure as defined in the stan

dard time. h header file, we can provide a correct code

fragment. We find the preceding Sunday, round up to

the next week and return the number of days since

January 1 divided by seven.

static mt

sun_week (Cm>

struct tm *tm;

mt lastsun = tm->trn...yday -

Cm-> tm_wday;

return (lastsun+7) /7;

This is predicated on the assumption that tm._wday is zero

for Sunday. The Monday case is similar but requires a bit of

hand-waving because tm_wday for Monday is one.

static mt

mon_week (Cm)

struct tm *tm.

inC lastmon = tm->tm.yday -

((tm->tm....wday+6)%7)

return (lastmon+7) /7;

That doesn�t solve the problem for our Date class, of

course, because we don�t have a Cm structure. However,

creating one from the data available shouldn�t be very

difficult. We�ll leave that as an exercise for the reader,

and take up next month with a Date method equivalent
to strftime ()

Meanwhile, have a good October. A

bEVELOPIVIENT INTERNET
� GE

� Rapid Application Bonus Distribution TECHNOLOGIES FOR THE
Development Tools

U Multiprocessing and RSI6000
Multithreading I UItraSCSI

U Serial Storage Architecture

� Cross Platform Solutions

Survey: RAID

To advertise cal/your area

RS/Magazine
Sales Representative listed elsewhere in this issue.

Visit Our Web Site

http://www.cpg.corn
I

DCI CLIENT/SERVER
Chicago, IL

36 AS/Magazine OCTOBER 1996

	The Date Class Part 2.pdf

