
Work

The Problem

with Menus,

__

_

Part 3
-

.

by Jetfreys C'peOad lieme

s
you�ll no doubt recall, of directory tree. To that end, we

we�ve been discussing have written a skeletal file system in

menus. Not the kind you Per! using modes and directories.

see at restaurants but the Now, we�re ready to layer our menu

kind found in embedded controllers, system on top of the code for imple
like those in a microwave or VCR. menting a directory tree. (Refer to

As we�ve explained in previous the previous two months� columns

columns, this all came about because for the structure of the base mode

a few months ago we found ourselves and Dir classes.)

having to prototype the front-panel
menus for a new system, and it was Making Menus

easier to do so by analogy in Per! We begin our menu class with

than using the baroque one-step- the normal declarations as shown in

removed-from-assembly-code Ian- Listing 1.

guage that the system itself used. We make this a subclass of our

We�ll warn you that we still directory class and declare the

haven�t written the compiler from beginning of a new Menu class. We

our prototype system to the also tell Perl that we are inheriting
baroque native one. We�re leaving methods from the Dir class. Note

that as an exercise for later. that Perl�s ISA array contains a list

The critical realization we have of packages from which this package
made is that menus are really a form inherits methods. Copeland keeps

Jeffrey Copelaud (copeland@aiumni .
caltech. edu) is (I rneznbez of the technical staff at QMS�s

Ianguagcs group in Boulder, CO. i�fin recent adventures include in(crnationaliziiig a large stiles and

man ujact Li ri zig system and providing software services to the adnz in st rawrs of the 1993 czzicl I 994

Hugo awards. Hi research interests include internationalization, typcsctti tg, cats and children.

Jeffrey S. Hczcmer (jsh@canary.com) is an indepcndent consultant l�ascd in Boulder, C He

works, and speaks on the nt i�rrclat ccl tOpiCs cf OC?t systems, standards, software portability and

porting and internal ionalizat ion. Dr. Hae,ner has been a featured speaker at Usezuix, UutiFaru,n and

Expo Kuwait.

RS/Mzugazinc AUGUST 1996 35

Work

� �
menu level. Because we have done some data-hiding by

Listing 1
using the object-oriented package construct of Pen, it

* Ibm/pen -w
should be easier to change the implementation without

* $Id: Menu.pm,v 1.1 1996/03/17 20:36:09 jsh Exp $ causingvastdestructiontothecode.
Of course, we also need to be able to navigate within

* A Menu� is a directory with added features:
our menu. Thus, we have left, right, up and down

* markable items
procedures. We begin with left, which creates a cm-

* a �current� item, cular shift of the entries in the directory to the left,
* traversal left, right, up, and down

skipping the current directory and its parent, for those

entries for which Dir: : dot.narne (.
) returns true.

For example,
forgetting this and ends up having to look it up in the

manual. Thus, sub left

my($self) =

use Dir; my($data, $sfx);

package Menu; $data= $self->(�data�};

@ISA = qw(Dir) ; return if (@{$data} == 2); * just � � and

do

Of course, we need a constructor for the menu item. $sfx = pop (@$data)

Remember that we create the object with new and then unshift (@$data, $sfx)

bless it to declare it as an item generated by the cur- } while

rent package. In the case of a new menu item, we make (Dir: :dotnarne($self->pointname))

the file type �menu.�

sub new { Our routine for shifting right is almost identical, except we

my($type) = @_; shift and push() instead of pop)) ing and urishift()ing
to get the data to rotate to the right. For example,

my($self) = new Dir;

$self->chftype(�menu�); sub right)

bless $self; my($self) =@_;

my($data, $pfx);

We need to know what menu item we are pointing to $data = $self-> �data);

in each submenu�that is, what entry we�re pointing at return if (@{$data) == 2); # just � � and �

in each directory. I-low can we tell which one it is? do

We rely on a routine pointname to return the current $pfx = shift (@$data)

item. How does pointname know the current item? push(@$data, $pfx);

The current item is the first one in the directory. For while

example, (Dir: :dotname($self->pointname))

sub pointname (

my($self) = @_; After that, up is simplicity itself: We just go up a level in

the directory tree.

$data = $self->{�data�};

($data}0I->{�name�}; subup(

my($self) @_;

rny($up) r$se1f_>najiei(� ..�);

This is probably not the best implementation of the $up;

current pointer. Wehave discussed this among ourselves

and come up with a few alternative ways of implement

ing it. down is a little more complicated. Jf we aren�t looking
Exercise for the reader: Come up with at least one at a menu type node, we exit with an error. However, in

other way of marking the entry of interest at the current the mainline code, we move to the child of this node and

36 RS/Mciazuic AUGUST 1996

Work

to the next menu item on the right, if ($TEST)

sub down { We begin by creating a menu, and listing it�remember

my($self) = a menu is a directory and inherits all the directory meth

$data = $self->{ �data�); ods. Therefore, we can use the directory is function to

$ino = @($data) 0) ��(�mo�) ; list the contents of the menu.

if ($ino->{�ftype�} eq �menu�)

my($down) r$ino; print �== Testing package Meriu\n\n�;

$down�>right unless ($seifeq$down); print �Create a menu:\n�;

return($down); $menu = new Menu;

else C $rnenu�>ls(l, ��d�);

return(-l)

Next, we add some items to the menu, and list it again.

print �Now add some items:\ri�;
A Fundamental thing we need to do with menu items is

mark them. We really need to make that part of our hand
$ino = new Iriode;

1mg of modes, so we go back to the mode package to add
.

$ino->chdata �This is item l\ri�]
this functionality. For example,

$ino->chftype(�regular�);

$menu->ln($irio, �Foo�);
package mode;

AnextensiontoInodetopeit �marking� modes.
$ino = new mode;

sub chinark {
ino->chdata(�This is item 2\n�J);

my($self, $mark) @_; $irio->chftype(�reguiar�);

$mark =
�� unless ($mark); $menu->ln($ino, �Bar�);

if ($self->{�rnark�)) ($ino = new mode;

unset($seif->(�mark�H; ino->chdata(�This is item 3\n�))

else { $mno->chftype(�regular�);

$self->(�mark�) = $rnark; $menu->in($irio, �Mumble�);

$menu->ls (1)

@default_args = (@defauit_args, �mark�);
We follow this by marking an item in the menu and

showing the mark.
package Menu;

print �Next, mark an item:\ri�;

Notice that we�ve just bodily included this package switch $ino = $menu->namei (�Foo�)

in the single source lile. We must remember to switch $ino->chmark;

back to the Menu package when we have finished with the

mode additions. $menu->is(l)

That�s about it for the Menu package itself. There just
remains the task of resting. We cycle through the items at the current level of the

menu, first widdershins, then deasil.

Adding Some Code to Test

We complete the Menu package by adding some code to print �Find the point item: \n�;

test it. As we�ve done before, ve just include this test in the print $menu->pointname, �\n�;

same source file, setting the value of $TEST to zero most of print �A problem! Not once we move, though\n�;

the time.

for (Si 0; $i < 5 $i++)

$TEST1; print �Move left:\n�;

END { $menu->left;

RS/Mci,azinc AUGUST 1996 37

Work

print $menu->pointname, �\n�; == Testing package Menu

Create a menu:

for ($i = O $i < 5 $j++) ftype: menu

print Move right:\n�; data: ARRAY(Oxbc42c)

$menu->right; Now add some items:

print $menu->pointname, �\n; Name:

ftype: menu

data: ARRAY(Oxbc42c)

We add a submenu tree, to test that functionality. Name:

We begin by adding a regular file in the menu/direc- f type: menu

tory. Then we make it into a submenu. Again, we list the data: ARRAY(Oxbc42c)

directory tree to convince ourselves that we�ve made the Name: Foo

directory tree correctly. ftype: regular

data: ARRAY(OxddeOc)

print �Next, addasub-menu:\n�; Name: Bar

$submenu=newMenu; f type: regular

$ino=newlnode; data: ARRAY(Oxddecc)

ino->chdata(�Thisfileisinasubdir\n�]); Name: Mumble

$ino->chftype(�regular�); ftype: regular

$submenu->ln($ino, �ZZazz�); data: ARRAY(Oxddf38)

$submenu->ls(l); Next, mark an item:

Name:

print �Now make it a submenu,\n�; ftype: menu

$menu->ln($suhmenu, �Sub-menu�);
data: ARRAY(Oxbc42c)

$menu->ls(l, �-R�);
Name:

f type: menu

data: ARRAY(Oxbc42c)

Last, we check our menu system to ensure that we can go Name: Foo

up and down the menu hierarchies. f type: regular

data: ARRAY (OxddeOc)

print �find it,\n; mark: *

while($menu->pointnamene �Sub-menu�) { Name: Bar

$menu->left; ftype: regular

data: ARRAY(Oxdclecc)

Name: Mumble

print � Pointnarne is �, $menu->pointnarne, �\n�; ftype: regular

print �descend it,\n�; data: ARRAY(Oxddf38)

$menu = $menu->down; Find the point item:

print �Pointname is now �, $menu->pointname, �\n�; A problem! Not once we move, though

print �andascendagain.\n�; Move left:

$menu = $menu->up; Mumble

print �Pointnameisnow�, $menu->pointname, �\n�; Move left:

Bar

We finish by closing up our big if statement and our Move left:

Menu package. Foo

Move left:

Mumble

Move left:

Bar

1; Move right:

_END Mumble

Move right:

To reassure us, the correct test output is as follows: Foo

38 RS/Mipzciie AUGUST 1996

Work

Move right: laying out the menus. Furthermore, as we mentioned

Bar earlier, we still haven�t built a compiler from our menu

Move right: package to the embedded one that we were originally
Mumble working with.

Move right: The second of these is our problem, but –e first one

Foo is an exercise for the reader: Construct a simple Ian-

Next, add a sub-menu: guage to describe an embedded menu system. It must

Name: allow submenus, the marking of an item�in the VCR

f type: menu example, I want the counter displayed on-screen�and

data: ARRAY (Oxddf98) allow selecting from a list of items.

Name:
.

For example, whether i�m connected

f type: menu to a cable or an antenna. It must p

data: ARRAY(Oxcldf98) also allow input values�tape from

Name: ZZaZZ channel 4, for example�and support -1�
f type: regular range checking for those input I 4
data: ARRAY(Oxe29dc) values�27 o�clock is an invalid

Now make it a submenu, time and 18 hours is an un

Name: Foo likely program duration.

f type: regular We�re just about done

data: ARRAY (OxddeOc) with our discussion on

mark: *
menus, next month :

Name: Bar we�ll be leaving Perl

f type: regular behind and taking a

data: ARRAY(Oxddecc) lookatcodein

Name: Mumble C++. A

f type: regular

data: ARRAY(Oxddf38)

Name:

f type: menu I! 1.data: ARRAY(Oxbc42c)

Name:

f type: menu
:.

data: ARRAY(Oxbc42c)

Name: Sub-menu RELIABLE, EASY DELIVERY OF

Name:
. MESSAGES ANYTIME ANYWHERE

f type: menu

data: ARRAY (Oxddf98) � Email forwarded to pager automatically
Name: ZZazz � Pages can be generated from scripts, and

f type: regular network monitoring programs
data: ARRAY(Oxe29dc) � GUI and command line interface

Name: � Works with any paging service
f type: menu � Automatic email confirmation, history logs
data: ARRAY(Oxbc42c) and error reporting

find it, � Client-server technology
Pointname is Sub-menu � Works with digital and alphanumeric pagers
descend it,

pointriame is now ZZazz Personal Productivity Tools

and ascend again, for the Unix Desktop
Pointname is now Sub-menu

14141 Miranda Rd

Los Altos Fulls, CA 94022
Finishing Up Our Work

Email: sales@ppt.com
While we have completed the basic menu soft-

Tel: (415) 917-7000
ware�meaning that we have a way to test the menu trees

Fax: (415) 917-7010
we develop�we still don�t have a simple language for

http://www ppt corn

Circle Na. 11 on Inquiry Card

RS/Mcgizinc AUGUST 1996 39

	The Problem with Menus Part 3.pdf

