
Work

The Problem
with Menus,
Part 2
7fl7''M1

I
ast month, we began our

discussion of menus.

Because we found ourselves

needing to prototype the

front-panel menus for a system with

an embedded controller, we tried to

build a simple analog in Pen.

Basically, we began with the

insight that a menu is analogous to

a file system: We have branches

and nodes, with files standing in

for individual menu items. We had

already explored the Pen package
for modes and had begun exploring
the package for Directories. As our

real-world example, we�ve been

thinking about the menus to pro

gram our VCR�an example that

works for those of us whose VCRs

aren�t blinking �12:00� at us.

When we left off last month, we

had just glanced at the function for

listing the elements in our directory
class. We gave a quick sketch of the

function, which we realize was not a

good explanation. So let�s look at

that function again (see Figure 1).

We can invoke the function with

an irtode number and some optional
flags�the available flags are identical

in functionality to the analogous
ones for the UNIX is command.

For example, to obtain a recursive

listing of the whole directory tree,

we�d say

$dir->is(i, -R�);

We begin this routine by extracting
the (lags. Then, if we�re using the -d

flag, we just list the file we�re point

ing to, invoking the mode: :ls

routine for it. Without the �d flag, we
list the name of every file at this level.

Jeffrey Copeland (copeland@a lurnni
.
cal tech. edu) is a member of the technical stcff at QMS�s

languages group, in Bou Icier, CO. Hi recent adventures include internationalizing a large sales and

ntanuJoctu ring system and providing software services to the adzni,i istrators of thc 1 99.3 and 1994 Hugo
awards. His research intelests include i,itcrnatio,iolizatioa typesetting, cats and children.

Jeffrey S. Haemer (j sh@canary .
Corn) San iiclcpenclcnt consultant based in Boulder, Co. He works,

writes cicl Speaks on the interrelated topics of open systems, standards, soft ware portability and porting
and intcrrationalization. Dr. Hacmcr has been a feat urecl speaker at lJscnix, UniForuni and Expo Ku wait.

RSlMagazinc JULY 1996 29

Worh

EFigure 1. Listng Elements in a

Directory Class

sub is { * always takes an indenting level

my($self, $inderit, @args) =

local(@dflags) = grep(/-/, @args)

local(@margs) = grepH/-/, @args);

if (grep(/-d/, @dflags))

Inode::ls($seif, $indent, @rnargs);

else

foreach $file (@{$selL->(data�}))

local($name) = $file->{narne);

print �\t� x $indent

Name: $name\n�;

$ino = $file�>{ino};

if ($ino->(ftype) eq regular)

$ino->ls($indent+i, @margs);

else {# a little complicated

if (dotname($narne))

$ino->ls($indent+l, @margs,

@dflags, -d);

elsif (grep(/�R/, @dflags)) C

$ino->ls ($indent÷l, @margs,

@dflags);

else

$ino->ls($irident+l, @margs,

@dflags, -d);

If we have a regular file, we can use mode: :ls to deal

with it. If we do not have a regular file (that is, a direc

tory), we do something a little complicated. First, we

must check if the file entry is either
.
or

. .
to prevent

infinite recursion.

Why? Think about what happens if we list a directory
recursively, including the directory itself�we list the

directory, and then list the directories in the directory,
beginning with the pointer to ourselves. Then we list

the directories in that directory, beginning with the

pointer to ourselves. So, we make a special case, listing
the current directory pointer and the pointer to our

parent with the �d flag. If we aren�t examining one of

the special directories, we simply invoke the mode list

ing with the appropriate flags.
For our next trick, we add another familiar UNIX util

ity with a two-character name:

sub rm

my($self, $name) =

my($i)

$data = $seif->(�data�};

for ($1 = 0; $i < @$data; $i+÷)

$file = {$data}$i];

if ($file->(name} eq Sname) C

splice(@$data,$i,l)

return 1;

}

This function takes our directory mode and a file name

and puts them on the stack in our local block (remem

ber, that�s what the my() construct is for!).

Next, it extracts the data from the directory into an

array. It then loops through the entries in the directory,
until it finds the one we named in our argument list,

and removes it from the data array with the splice))

routine. We return a 1 to indicate success.

We�ll skip cp and move directly to in. Actually, we

don�t bother with cp or my: Longtime readers will remem

ber from our series about POSIX.1 that in, my and cp are

effectively the same command.

sub in (# doesn�t do sanity checking

my($self, $ino, $name) =

$self->rm($narne);

unless (dotnarne($name))

$ino->chdotdot ($seif)

if ($ino->{�ftype} ne regular�);

$entry = {�ino=>$ino, �name=>�$name�);

$self->append($entry);

Just like in the UNIX kernel, we attach a name to an

mode. We begin by removing the existing name. Note

that UNIX doesn�t do this: Say touch foo bar; in foo

bar and you get an error. The odd unless clause ensures

that if we are linking the current directory, we link it into

the parent directory, too. Of course, we could have writ

ten it using a compound if, but we�re showing off. To do

that link, we need a utility routine:

sub chdotdot

my($self, $new) =

ln($self, $new,

30 RSIMagczinc JULY 1996

And last, for our directory package, we need to emu

late the namei function from the kernel, If you�re not

familiar with it, name! takes a path and returns an

mode number.

sub namei

my($self, $name) =

my($i)

Sdata = $self->{�data�)

for (Si = 0; $i < @$data; $i+÷)

$file = ($data}$i];

if ($file->{�narne�) eq $name)

return $file->(�mo�);

return(-l);

We look for the named file in the current directory,
looping through the directory entries with a for. When

we find it, we return the mode number entry from the file

structure. If we don�t find the named file�an error�we

return �1.

Testing Our Program
To finish our directory package, we provide a set of

tests as we did for our mode package.
In the normal case�we�ve included the Dir package in

another prograrn�wc set $TEST = 0;, which prevents

the test from being run.

$TEST 0;

if ($TEST) {

At the END of input, if $TEST is set, we run our tests.

We begin by throwing up a header and beginning a new

test directory. We finish the first paragraph of our test by
taking a directory.

print �== Testing package Dir\n\n�;

print �Create a directory:\n�;

$dir = new Dir;

$dir�>ls(l, ��ci�);

Next, we add two files to our test directory, and again
list it, to make sure the new files are actually there.

print �Now add some files:\n�;

Work

$ino = new mode;

$ino->chdata(f�This is file 2\n�j);

$ino->chftype(�regi.ilar�);

$dir->ln($ino, �Bar�);

Sdir�>ls(l)

We can create files. Can we remove them?

print �Delete a file:\n�;

$dir->rm(�Foo�);

$dir->ls(l)

Next, we make sure we can add a second directory and

make it a subdirectory of the first.

print �Create a second directory:\n�;

$subdir = new Dir;

$ino = new mode;

ino�>chdata(�File in a subdirectory\n�J);

$ino->chftypeVregular�);

$subdir->ln($ino, �Mumble�);

$subdir�>ls(l)

print �Now make it a subdirectory:\n�;

$dir�>ln($subdir, �Sub-directory�);

$dir�>ls(l);

We also want to manipulate the parent directory and

convince ourselves thai we can do a recursive listing.

print �Check that dot-dot is reset:\n�;

$subdir->ls(l)

print �Now try a recursive list:\ri�;

$dir->ls(l, �-R�);

And then we close it all tip.

1;

This gives us some reassuring output that shows us our

directory code is working:

Sino = new mode;

$ino->chdata({�This is file l\n�J);

$ino->chftype(�regular�);

$dir->ln($ino, �Foo�);

== Testing package Dir

Create a directory:

fi type: directory

data: ARRAY(0xa2e54)

Now add some files:

RS/Mw,gaziiic� JULY 1996 31

Work

Name: ftype: directory

f type: directory data: APRAY(0xa2e54)

data: ARRAY(0xa2e54) Now try a recursive list:

Name: Name:

f type: directory f type: directory

data: ARRAY(0xa2e54) data: ARRAY(0xa2e54)

Name: Foo Name:

f type: regular f type: directory

data: ARRAY(Oxc78ec) data: ARRAY(0xa2e54)

Name: Bar Name: Bar

f type: regular f type: regular

data: ARRAY(0xc7964) data: ARRAY(0xc7964)

Delete a file: Name: Sub-directory

Name: Name:

f type: directory

data: ARRAY(0xa2e54) f type: directory

Name:

f type: directory data: ARRAY(0xc7934)

data: ARRAY(0xa2e54) Name: Mumble

Name: Bar

f type: regular

f type: regular

data: ARRAY(0xc7964) data: ARRAY(Oxc7bbc)

Create a second directory: Name:

Name:

f type: directory f type: directory

data: ARRAY(0xc7934)

Name: data: ARRAY(0xa2e54)

f type: directory

data: ARRAY (0xc7934) Something Completely Different

Name: Mumble Our last step in this effort is to produce the menu sub

ftype: regular system itself, which will sit on top of the directory pack-
data: ARRAY(Oxc7bbc) age. The code for this takes up about twice the space we

Now make it a subdirectory: have left, so we�ll take a short digression to finish out

Name:
.

this week�s class.

f type: directory Recently, we found a file containing a list of book titles

data: ARRAY(0xa2e54) that we wanted to alphabetize. No doubt your first reac

Name:
. .

tion would be the same as ours: sort -o books books

f type: directory should do the trick. Not quite. In the normal library cat-

data: ARRAY(0xa2e54) alog, we want to do the sort without the articles.

Name: Bar Given the command above, our sample list would be

fi type: regular sorted into:

data: ARRAY(0xc7964)

Name: Sub-directory A passion for excellence

f type: directory In search of excellence

data: ARRAY(0xc7934) Penn & Teller�s how to play with your food

Check that dot-dot is reset: The Klingon thctionary

Name:
.

The Standard C dictionary

f type: directory The cartoon guide to computer science

data: ARRAY(0xc7934) Xenocide

Name: Mumble

f type: regular Aside from the oddness of our library shelves, we�d also

data: ARRAY(Oxc7bbc) like our Klingons to appear directly after our search for

Name:
. . excellence, for example. We�d ask �What to do?� but you

32 RS/Migazine JULY 1996

Work

already know the answer: Let�s write some software. Boheme and Die Fledermaus�the other variation in alpha-
A glance at the above list will show you that we also betical order that we�re used to seeing in libraries is to

want to sort without regard for the nonaiphabetics and sort �Mc� and �Mac� as though they are identical. This

uppercase and lowercase. The standard UNIX sort does means that correct alphabetical order is McDonald,
that for us with the �df flags, so a command like sort - MacMillan. We can also jigger our sort to take care of

df becomes the center of our solution. this variation with a conversion like

Next, we need to cause the English articles to be s/\bMc/Ma\009c/g.

ignored by the sort command. The easiest way to do that Given all that, we can put our Per! �inpw� and �out-

is to convert them to something that the sort command put� scripts together, thus

will ignore�something nonaiphabetic. We could try a

command like this: pen -pe

s/\bThe /\033\OOl/g;

sed �s/The /\]/g� I s/\bthe /\033\002/g;

sort -df s/\bTHE /\033\003/g;

sed �s/\}/The /g� s/\bA /\033\004/g;

s/\ba /\033\005/g;

However, this code is going to cause two types of prob- s/\bAn /\033\006/g;

lems. First, if we have some of those nonalphabetic char-

acters in our list, a title with a notation like �In search of s/\bPN /\033\008/g;

excellence ({paperback edition)),� will transform our
s/\bMc/Ma\009c/g;

sort -fd pen -pe

s/\033\OOl/The /g;

s/\033\002/the /g;
By the time we ye included

s/\033\003/THE /g;

all the variations for each s/\033\004/A /g;

s/\033\005/a /g;
article, we II need a lot of

s/\033\006/Ari /g;

variations of nonalphabetic s/\033\007/an /g;

s/\O33\OO8/N /g;

L
.

characters
to cover them.

s/\OO9c/Mc/g;

This gives us the output we want:

output lines oddly: �In search of excellence An An

paperback edition The The.� The cartoon guide to computer science

Second, by the time we�ve included all the variations for In search of excellence

each article�initial capital, all caps, all lowercase, at the The Klingon dictionary

beginning of a line, interior to a line�we�ll need a lot of A passion for excellence

variations of nonaiphabetic characters to cover them.
Penn & Teller� s how to play with your food

We can solve the first problem by converting the arti-
The Standard C library

des temporarily into control characters. For example, xenocide
�the� becomes \033\OOl. The second problem is not

completely soluble because we need to preserve some Notice that we�ve built software that�s strictly a filter.

of that information�on output, we need to distinguish Exercise for the reader: Adjust this script sc that it recog

between �The� and �THE��but we can solve part of the nizes file names on the command line and acts correctly.

problem by relying on the more powerful regular expre- We�ve also written this as a shell script, where we

ssion matching in Per!. If we do the conversion as invoke Perl twice. Exercise for the reader: Rewrite this

so that it�s strictly a Per! script and uses the Per! inter

perl �pe s/\bThe /\033\OOl/g� I nal sort routine in its middle step. Or even better, use

sort -fd I one of the interprocess communications tricks available

perl -pe s/\033\OOl/The /g in Per! 5 (see the perlipc(]) man page, for hints).

That�s all for this month. Next time, we�ll complete
we�ve pretty much got things under control. our discussion of menus. After that, we�ll finish our dis

Notice that we�re using the Perl regular expression \b cussiori of �Work� and move onto a new series, unless

to signify a word boundary. Aside from the English arti- any of you have a topic you feel we have missed. Mean

des�notice that we�re ignoring foreign ones like La while, we hope your summer is going nicely. A

RS/Ma�azinc JULY 1996 33

	The Problem with Menus Part 2.pdf

