
Work

R
ecently, we�ve experienced
a series of problems involv

ing menus. �What?� ask

the wags in the audience.

�Choosing one from column A is too

complicated? Having trouble with

the French translations?� Good

questions. We tend to order a Ia

carte at Chinese restaurants, and we

are both notoriously bad at French,

to the extent that one of us isn�t

even allowed to attempt to speak it

at home.

But the question is, given a prod
uct with an embedded controller,
what�s the best way to do menu

selections from the front panel?
You know the kind of thing we�re

talking about: the microwave oven

that lets you choose 17 different

cooking levels from a 10-key pad,
or the VCR .that has to be pro-

The Problem
with Menus
by Jeffreys Copeland and Haemer

grammed from the digits zero to

nine, using the plus and minus keys
on a remote control. In both cases,

the trick is accomplished with hier

archical menus, which allow you to

traverse a chain of commands like

�VCR setup,� �set VCR clock� or

�time� to cure the blinking �12:00�

on the display.
We had a recent experience that

led us to these questions:
� How can we prototype menus

without having to build the whole

controller?

� What�s a good test harness for

menus?

� How can we encapsulate the

menu text for easy translation from

one country�s language to another?

� What�s an easy way to translate

the prototype into something to feed

into the controller?

Jeffrey Copeland (copelnd@almni.caltech.edu) isa member of the technical staff at QMS�s
languages group, in Boulder, CO. His recent adventures include internationalizing a large sales and

manufacturing system and providing software services to the administrators of the 1993 and 1994

Hugo awards. His research interests include internationalization, typesetting, cats and children.

Jeffrey S. Haemer (jsh@canary.com) is an independent consultant based in Boulder, CO. I-fe

works, writes and speaks on the interrelated topics of open systems, standards, software portability
and porting and internationalization. Dr. Haemer has been a featured speaker at Usenix, llniForum

and Expo Kuwait.

28 RS/Magaztne JUNE 1996

Work

If you�re paying particular attention, or have had we get output of

experience with this sort of embedded software before,
then you�ve probably guessed that the menu text we Identifier main: :y� used only once: possible typo

were looking at was rendered in a quasi-assembler Ian-
at �oc line 12.

guage, which requires item counts at every step and
42 at o line 4.

very little error or redundancy checking. Certainly, this

is a step above programming the menus by twiddling
99 43 at ,oc line 9.

bits directly but having a higher-level programming
Use of uninitialized value at o line 12.

language�a �little language� in Jon Bentley�s phrase�for 42 at ,oc line 12.

the menus would be a big step forward.

As has been our habit lately, we wrote some code in Two points to note: First, by specifying $x as local in

Perl to handle the prototype solution to the problem. It�s the middle block, its scope is restricted�any changes we

a fairly large program compared with our past examples, make do not get reflected outside the block. Second, by
so it will take us a couple of tagging the $y in that same

months to cover it. But first we �
-, block as my, we make it a van-

should explain some features
,-..

�
..

able on the stack in that block�

of Pen that we�ll be using for it shows up as uninitialized later.

the first time. . . / / ,.

That should be enough to get

wiUr .

us started, we�ll add more van-

Some Background �. . i .. ations as we go along.
The code for this problem is

explicitly in Version 5 Perl. Many of the object-oriented What�s a Menu?

features that we�ll be using aren�t available in earlier ver- There are a number of real-world models we can use

sions of the language. to visualize the way menus are laid out. The most obvi

That said, we need to review some of the scoping rules ous way is in a tree form. We need to be able to mark

and new tricks that we�ll be using. Bear with us if you leaves as having been selected in several different ways:

already know these. This is as much for our benefit as � We need to be able to choose from several leaves on

yours. An old professor of ours referred to the �Johnson the same branch. In the VCR example, do we set the

Effect,� named after Prof. Johnson, who always managed to audio to �hi-fi,� �normal� or �mix�?

learn more than his students when he taught a new course. � We need to be able to choose a branch�for example,
First, we�ll make extensive use of Pen packages. In we invoke the �tuner setup� item.

Pen, a package is an independent block of code, with its � We need to be able to provide data�we set the clock

own symbol table. (The object-oriented among you can or program the VCR to record something later.

think of this as an object.) The neat trick here is that the After a bit of fumbling about, Haemer had the leap of

symbol table is just an associative array: For package insight that got us what we needed. After the 14th cup

Dir, the symbol table is %Dir: :. Thus, anywhere in the of coffee, he said, �Hey! We�re implementing a file sys

program, we can refer to the variable blat from package tern.� The leaves are modes. The data at each menu

Dir as %Dir: :blat. The default package is main, item is a file. The file status information is not the

To this we add the notion of a stack frame. Each sep- access permissions but tells us whether an item is set.

arate block�surrounded by curly braces�is a new stack With that in mind, things begin to fall into place.
frame. So, with Let�s start with the Perl package for modes. Inside the

mode, there are attributes and a pointer to the data

*! /opt/local/bin/perl -w stored in the mode. We can build functions to change
that information, such as: $ino�>chdata. This is analo

$x 42; gous to the UNIX functions chgrp and chown, for exam-

warn �$x�; pie.
We start with the normal declarations:

local($x) =99; #! /bin/perl -w

my($y) =43;

warn �$x $y�; # ?n �mode� is a data object that

looks a little like a UNIX mode.

warn �$x $y�; package mode;

RS/Magavne JUNE 1996 29

Work

Note: What is called a class in C++, is called a package my($seif, $indent, @args) =

in Pen. We immediately follow this by providing a my($vai)

method to create a new mode: $indent I 1=

sub new (@args = @default_args unless �:@args);

my($type) = @_; foreach (@args)

$val =

my($self) = C); next unless ($val);

$self�>{data) = 1]; print �\t� x$irident �$_:

$self->{ftype�) = �ETYPE�; print �$val\n�;

bless $self;

This puts the object on the stack with my and initializes Notice the useful trick for printing several tabs by using
it. The type is ETYPE, our error type. We then bless the the x operator in a print statement. Similarly, to get the

new object, which tags it as a member of this class, data out of our modes, we use the cat method. Again,
Next, we need a method to change the �file type� and we can provide an indent level:

�data� of our mode:

sub cat

sub chftype C rny($seif, $indent) =@_;

my($self, $ftype) = @_; Sindent 1= 0;

$data = $self->(clata�);

$self->{ ftype } = $ftype; foreach $line (@$data)

print �\t� x ($indent)
,
$iine;

sub chdata

rny($seif, $data) @_;

Now we test it. One of the claimed advantages of

$seif->{ �data�) = $data; object-oriented programming is that we can carefully
encapsulate our classes and test them individually
before we use them in larger programs. In this spirit,

This is pretty straightforward. We take the arguments we bundle some test code into the package:
and make them local stack variables, and then drop
them into the appropriate place in the data structure. $TEST = 1;

If we have existing data, we may want to add more to E2D

the tagged array. In the VCR example, we add an item if ($TEST)

to the list of programs to record. Again, this is very print �== Testing package Inode\n\n�;

simple: print �Create afile:\n;

$ino = new mode;

sub append ($ino->chf type (�regular�);

my($self, @data) =@_; $ino->ls;

push(@($seif�>(data�}L @data); print �Put somethinginit\n�;

$ino->chdata(�Hello\n�]);

print �Contents: \n�;

We are left with the relatively complicated procedure $ino�>cat (1)

to get information out of the mode. By analogy, we call

this is. This method always takes an indentation level print �Append a line: \n�;

so that we can get nested listings of our modes pointing $ino->append(�there\n�, �world\n�);

to other ides. $ino->cat (1)

@default_args= (�f type�, �data�);

subls{ 1;

30 RS/Magazinc JUNE 1996

V%/orh

This gives us the reassuring test output: We also need a method to provide the directory listing,
as in Listing 1.

== Testing package mode

Create afile: -

Listing I
f type: regi.ilar

data: ARRAY(0xa9958) sub is C * always takes an indenting level

Put something in my($self,
$indent, @args) =

Contents:
local(@dflags) =grep(/-/, @args);

Hello

locai(@margs) =grep(!I�-/, @args);
Append a line:

Hello

there if (grep(/-d/, @1ags))

world Iriode: :ls($self, $irident, @margs);

else

Simulating UNIX Directories foreach Stile (�{$self->{data�}})

Next, we add a layer on top of our mode pack- local ($name) = $file->{ name };

age to simulate UNIX directories,
print \t x $indent Name: $nanie\n�;

$ino=$file->{ino�);
#! fbJ.n/perl -w

use bode;
if ($ino->(�ftype}eq�regular)

$ino�>ls($indent+l, @margs);

package Dir;) else C # a little conlicated

@ISA=qw(Iriode); if (dotname($name))

$ino->ls($inderit+l, @rrtargs,@dflags, -dl;

sub new) elsif (grep(I-R/, @ags))

rny($type) @_;
$ino->ls($indent+l, @margs, @dflags);

else
rrry($self) =newlnode;

$ino->ls($indent+i, @margs, @dflags, �-d);
$self->chftypeVdirectory�);

bless $self;

$dot= (�ino=>$self, name=>�.�};

$dotdot = (�ino�=>$self, �name=>�. .�

$self->append($dot, $dotdot);)

$self;

We begin our Dir package by setting the ISA array. This This is a recursive subroutine that uses the is

tells us where else to look for a method if it�s not in the subroutine of the mode method to help produce the list-

current package. We also provide a creator. This creates a ing. Generally, we use the mode routine if we�re looking
directory by first creating an Diode of type directory. It at an mode with the name of �.� or �..�; otherwise, we

adds pointers to the directory node and its parent: We call run through the individual items in the mode.

these �dot� and �dotdot� to match our directory analog. We�re out of space for the

Next, we need a query function to tell us if the given � moment, so we�ll continue

argument is a directory or its parent.
. where we left off next month,

and finish covenng the Dir

sub dotnarne {

package and Menu package
my($name) = @; built on top of it.

In the meantime, we�re

if ($name eq
� I $riame eq

� �) {
-

expecting simultaneous visits

return 1;
.,

from a passel of relatives,

else C .

including metalsmiths in

return 0; both families. We hope your

I month is as entertaining as

ours will be. A

RSlMagazine JUNE 1996 31

	The Problem with Menus.pdf

