
Work

Try, Try, Try Again
by Jeffreys Copeland and Haemer

E
arlier this month, Jeffrey
Haerner received email from (an old friend, Tom Schnei

der, who�s a research biologist at

the National Cancer Institute. In it,

Tom says, �You always pointed out

the importance of tool building.. .1

have built a shell script called I
wait forchange that hangs in a loop

watching a file for any change (first

date change then diff).� Doesn�t

sound like much, but, Tom contin

ues, �on top of that I can build

some neat things.�
Tom then describes how he uses

waitforchange inside another script, make it faster, although that isn�t

atchange, that waits for a file to really an issue since at the moment

change and then executes a corn- it uses 100% of the CPU.. However,

mand. atchange has become an inte- it only detects change, not the corn

gral part of Tom�s computing envir- pletion of file writing, so will bomb

onnient. He can edit programs in one on occasion because it will try to

window, while another window run- run a program that is incompletely
ning atchange will recompile the file written... Perhaps you have an idea

whenever he writes it out. about this?�

But Torn is having a few imple- Perhaps.
mentation problems. He asks, OK, remember we had promised
�Maybe you would see a way to you a wrap-up of what we started

Jeffrey Copcland (copeland9alurnni .
caltech. edu) is a member of the technical staff at QMS�s

languages grotq, in Boulder, Co. His rcCent adventures include internationalizing a Ialgc saks and

manufacturing System amid providing software services to the admmtinistraors of the 1993 and 1994

Hugo awards. i-us research interests include internationalization, typesetting, cats and children.

Jeffrey S. 1-Icuemer (jsh@cariary.com) is an independent consultant based in Boulder, CO. Hc

works, writcs and speaks on thc interrelated topics cf open systems, standards, software portability
and porting and internal ionalizat ion. Dr. Haerncr has been ci fcaiurrd spcaher at Usenix, UniForum

and Expo Kuwait.

26 RSIMaazinc MARCH 1996

Work

last month: How to make HTML documents look good

we�ve decided to put that back a month and attack this

instead of letting the browser do whatever it likes? Well,

problem instead. After all, we told you last month where �
0 0

to get the code for the formatter, and besides, helping our
. �

friends always comes first. I I - A I �41

� S S Is �,

atchange, Cut One
�

Tom�s original scheme used a pair of C-shell scripts.

(Hey, Tom still programs in Pascal.) When we attacked

the problem, we started with one of our favorite hammers, _ ._-
pen, reasoning that it would be easier to pick a neutral

language than to engage in shell wars or learn how to .
make the C shell work as a programming language.

S S �.
-

Still, we attempted to match his variable names, logic

- S S � � S S � AUh1]1
______________________and command-line syntax. Tom may have to enhance it

and fixa few bugs.
� S

Listing 1 shows our first rewrite.
S.

�
.��---..�---- -

�

- �.-. I S

Jsting 1
__III.

*!/bin/penl

S

� �

-

5 5��
#basename

$usage = �usage: $0 command�;
Circle No. 5 on Inquiry Card

@ARGV> 1 the $u.sage; * check for proper invocation
__

$file=shift; #peel off thefileriarne
__

= join (��, @ARGV); # and the ccmand
� 1 II ci I .1

�.
i

while(l)

$old=(stat($file))19]; #ngettherTndtime

sleep 1;

$new= (stat($file)) 9J;

if (sold != $new) (* if it�s changed,

wh.ile(l)(

sold = $new;

sleep 1;

$new= (stat($file))(9];

if ($old == $new) { * .it not still changing,

system($aT); # dothecmand

last;

}

-11.�-
We have commented heavily because Tom doesn�t

know perl, but we�ll also do a dramatic reading for you

here.

The first paragraph constructs a usage message and

checks that the command has been properly invoked.

$ atchange

usage: atcharige command
rII(IIr.IIrL.

RSlMagazine MARCH 1996 27

Work

We use the basename of the command because we scan scan to run scan as soon as it has been recom

prefer it to messages such as piled. �Can you do something about that?� Tom asks.

One approach would have been to let each file

$ atchange change trigger a sequence of commands That�s not dii

usage: /usr/local/bin/atchange comarid ficult hut would still require a separate invocation of

atchange for every file he wanted to watch. However,
but we use so because we sometimes agonize over what it didn�t require much more code to tweak the corn-

to call a command. (In three days, we changed its mand to permit input files such as the following:
name to watch, haunt and back to atchange again.)
Having guaranteed ourselves that there are at least /usr/local/biri/atchange

two arguments, the second paragraph grabs the first

argument for the name of the file to watch and con- /trnp/f 00 echo foo changed

catenates the remainder of the command line to get the

command to execute when that file changes. /tmp/bar echo bar changed

The third paragraph does the real work. Instead of

trying to diff the files, we�ll just track the modilica- For backward compatibility, we allowed an argument
tion time of the file. As we discussed in detail in an count of more than one to trigger the original behavior.

earlier article (sec �In Which We Write in,� October However, when otir improved atchange is invoked

1993, Page 34), a file�s stat strticture has three times. with exactly one argument, it treats that argument as a

Of these, the mod time is the last time the file was command file.

written�the time shown when we do an is -l (except As a bonus, this behavior makes it easy to take

that in the stat structure the time is stored to the see- advantage of the magic cookie that we discussed in

ond). This means that if someone reads the file and detail in an earlier column (see �Envelopes,� May 1995,
writes it out unchanged, it will still trigger atchange. Page 35). Thus,
We can live with that, as long as we document it.

At each iteration of our infinite loop, we sleep for a $ at change /tmp/hello echo hello, world &

second, and then compare the current modification $ touch /tmp/hello

time to the last modification time, which weve stored hello, world

away. If the modification time has changed, we loop
again, cat-napping until it stops changing and then but,

execute the command.

There are a handful of problems with this design. $ example &

First, it can take up to two seconds after a change $ touch /tmp/foo

before the command executes. An advantage of foo changed

atchange over something like make is that actions are $ touch /tmp/har

triggered immediately and automatically. The longer bar changed

the delay, the smaller that advantage.
Second, if anything changes the lile a second time dur- The code is straightforward, but we should point

ing the sleep interval, atchange will still run hut the out a few things. First, instead of a singI file and corn

command will only run once. We�re satisfied to live with mand, we now have an array of commands, %cmd,

these design choices. We can always go back and dc- indexed by file name. Similarly, the mod. time, $old, is

crease the sleep time to, say, a quarter of a second by replaced by an array of mod times, %old. We�ve turned

replacing sleepw; with select (undef, undef, undef, the inner loop of our earlier program into a subroutine

0.25) ;. Exercise for the reader: let the user set the sleep that checks to see if the file�s modification time has

time with a comnianci-line argument. changed. If it has, we look up and execute the appro

priate command, poking the new mod time back into

atchange, Cut Two the %old array for future reference.

We sent the code to Tom, who announced that it The subroutine takes a single argument, the file

worked better than his old code and that he�d already name. This design means that when we catch a file

switched over. But he had discovered another problem. changing, we still wait until it has stopped before

Tom often finds it necessary to run several atchange doing anything. But if changes arc rare, :here�s only a

jobs at once. For example, he might have one window delay of about a second before we notice a change in

running atchange pc scan to recompile scan .p when- any file.

ever he writes it out, and another running atchange Listing 2 shows the code.

28 RS/Magizwe MARCH 1996

Work

know how many times it has been called, or for what.

Listing 2 Then, there�s the nagging issue of efficiency. We have

*/usr/bin/perl already eliminated the need to have a separate atchange

process for every file we watch, but we still fork a sub

$0 s (*/) 0; # shell each time a file changes.
$usage = usage: $0 filename $0 coirnantflle�; Our latest version fixes all of these problems and

@ARGV II die $usage; # check for proper invocation more. But before we present the code, Listing 3 shows

an example of an input file.
if (@ARGV>1) (#it�saflleandaconirand

__

$fiie=shift; #peeloffthefilename
Listing 3. Example Input File

$and($file) =join(� �, @ARGV); * and r.hecomiand

$old{$flle) = (stat($flle)) 9]; *mdtiffle.
#!/usr/local/bin/atchange

else { # it�s aprogramn

open(P, shift) die �Can�t open $_: $! # Here�s aprograin for atchange
while(<t1>)

s/*.*//; #coments
HELLO=�helloworld� * set avariable

@F=split; echo $PS1
nextif (@F<l); #blanklines

if (@F==l) (warn �oddline�; fl }, /tir/hello echo $HELLO #all one script
$flle =shift(@F)

$am($flle} =join (��, @F);
datefn() { *d.nea function

$old($flle} (stat($flle))9]; *modtime. echothedate: $(date)
) I

/tnp/date datefn
while(l) echo -n �D

sleep 1; *waitasecond, then

foreach (keys %cd) C * ripthroughthewhole list
counter=0

atchange($_);

/t.mtp/counter * cormands can span rnult:iple lines

echo $counter

let counter=counter+l

subatchange(*if$fllehaschanged, da$a($flle)

my($file) �@_; CLEARSTR=$ (clear)
niy($new);

/trrip/iterator
$new= stat($fllefl9]; echo $CLEARSTR
return 0 if ($old{$file) = $new); let iterator=iterator+l
while (1) *waituntilitstopschanging echo $iterator tee/tn/iterator

$old{$flle} =$new;

sleep 1; /tnip/zero_counter
= (stat ($flle)) let counter0

if ($old($flle) = $new) C touch /tnp/counter
systern($and{$flle});

return 1;

The actions for /trr/hello and /trup/d.ar.e illustrate

that our third version of atchange allows users to define

variables and functions. The actions for /tnp/counter and

Itmnp/iterator show that this atchange has a memory.

atchange, Cut Three The action for /tmplzero_couriter shows that actions

At this point, Toni is pretty happy, but we aren�t satis- taken for one file can interact in interesting ways with

fled. We would like to make it easier to tie a file change to actions for other files.

an entire list of commands. We can say Because we�re passing paragraphs of commands to the

shell, we don�t need to escape the new lines in for loops
atchange /tmp/foo �date; echo hello, world�, in the atchangescriptas wewould inaMakefile. One

way to provide this much functionality would have been

but writing a for loop with a lot ol commands, or a case to rewrite atchange to have a lexical analyzer and a

statement with a lot of cases, would be inconvenient, parser, and to maintain a symbol table. We decided to

Also, atchange has no nlcmory. There�s no way for it to let someone else do the work for us.

RS/Magazinc MARCH 1996 29

Work

We began by inserting the following paragraph near s/*.

thebeginning: ($file, $crnd) = /(%S*)%s+US%OOO)+)/;

$shell $�W(�SHELL�) ? $E�JV{ SHELL�) : �/bin/sh�; This reads a paragraph at a time, taking the first word to

open(SHELL, � $shell� cUe �Can�t pipe to $shell: $ �; be the filename and the rest of the paragraph to be the

select(SHELL); $ = 1; associated command.

For convenience, we add one relatively simple rule: Any
This spawns a single subshell and connects the default paragraph that lacks a file name (i.e., begins with white

output from our program to the stdiri of that shell. With space) is executed directly.
this change, whenever we want to execute a command,

instead of saying system($cmd) we can say print $cmd, unless ($file) { print $crnd; next;

because there�s a shell waiting to execute it. Note that the

statement $ 1 turns off buffering to make the shell get Looking back at our example, you�ll see that this is how

all our writes iminecliately. we define functions and set variables unconditionally.
All the triggered commands share the same shell, which Functions, variables, control flow. We now nave a little

runs for as long as atchange is running. Whenever we set programming language. Thus, an input file for atchange

an environment variable or define a function, those van- is a single program.

ables of functions are available from then on in every We began by trying to rewrite a pair of shell scripts For a

action triggered by a subsequent file change. friend but, without much work, wound up with a pro-

Next, we permit multiple lines per action by making gramming language. We won�t reproduce the final version

pen read its input file in paragraph mode, as in the fol- of atchange here, but the whole thing is less than a page

lowing example: long. You can find it at http://www.qrns.com.

Are we done? Maybe. We can rewrite bi:f as a trivial

$1 = ��; paragraph mode atchange script, but we can�t yet write tail -f, which

while(<PGM>) # first read the program seems like a reasonable application for a program that

A...IOEAR.EA
....

A A �I....W
SOLUI 0.NS

J!g
L1LWLIV (1 lITE

I!Y1i1LE, I!YVi�fiI�if.

� Pages can be generated from scriots, and

� Email forwarded to pager automatically

network monitoring programs
cgia1klnes � GUI and command line interface

S

FRADs � Works with any paging service
Modems

:Mltiptifrit
Pouting

� Automatic email confirmation, history logs
Meod and error reportingll
your wide area neork needs

� Client-server technology
� Works with digital and alphanumeric pagers

For81
OCB at 1-800-637-1 127 Personal Productivity Tools

for the Unix Desktop

14141 Miranda Rd

Champaign, IL
Los Altos Hills, CA 94022

a Data Communications Email: saIes@ppt.com

equipment manufacturer that
Tel: (415) 917-7000

Buyers ought to know
Fax: (415) 917-7010

Circle No. 4 on Inquiry Card Circle No. 7 on Inquiry Card
RS/Magazzne MARCN 1996 31

VIork

watches for file changes. certainly requires a modification to the operating system

What ways might we want to extend what we have? tO let user-level processes detect file changes when the

Other Triggers�Changes in file modification times fliesystem sees them.

currently trigger atcharige�s actions. rhaps we could Brians Bershad and Pinkerton have done some work in

use the access time or the mode chan time instead, this area, which they call �watchdogs.� Their sample app-

For example, if we used the access tir
,
the program,

lications are mostly security-related (see �Watchdogs�

/etc/date date, and an empty file / c/date would Extending the UNIX Filesystem,� Computing Systems,

let us do the following: Vol. 1, No. 2, Spring 1988, Page 169).

Going in the other direction, we might be able to extend
$cat/etc/date

atchange to do a similar job to make but in reverse.

Sun Jan 7 22:53 :00 MST 1996
Instead of specifying how to create files when they�re out

Sun Jan 7 22:53:31 MST 1996
of date with respect to the things that go into creating
them, we could specify what to do with files when they�re

Another easy extension would be to an action to a out of date with respect to their immediate products. In

group of files instead ofjust a single flu Even more inter- addition, instead of monitoring files continuously, we

esting might be to use a change in the e contents or even could examine them at invocation of atcilange and have

to look at things other than files. For e mple, changes in atchange exit after a single pass.

variable values or program output. � Syrnax�OK, so the syntax isn�t that great. Even if the

A good example of this is Greg Rose�s atch .curseperl, shell is your favorite programming language�Haemer says
which takes advantage of curses� ability incrementally that it�s his�it seems a little artificial to prohibit using
update screens. Invoking it as watch .cu eperl date, it blank lines to help break up actions or require that you

will run date, display the result and the update the dis- indent function definitions and variable a5signments.

play as the date changes, changing only he parts that have We�re sure that Tom would appreciate a better syntax

changed since its last update. too. Of course, the best extensions are ones we haven�t

Another tool that allows this is Glent owler�s nmake, thought of yet. We�d love to see your ideas. Please email

which extends make by allowing you to pecify dependen- them to us at jsh@canary.com and copeland@alumni.

cies on things like the compilation f1ag caltech.edu, or to Tom Schneider at toms@ncifcrf.

Timing�At the moment, atchange ends most of its gov. While you�re at it, we encourage you to visit Tom

time in a busy wait. We talked about in roving perfor- Schneider�s home page at http: //www-hnrnb.ncifcrf.

mance by shortening the sleep time, bu it would be nice if gov/�toms/index.htnil. We just write software and

we made the program interrupt-driven. ,loing this almost columns. He�s curing cancer. A

R1:ADER FEEDBACK
To help RS/Magazine serve yo I better, please take a few minutes to close the feedback loop by
circling the appropriate numbei ; on the Reader Service card located elsewhere in this magazine.
Rate the following column and ature topics in this issue.

INTEREST LEVEL

Features: High Medium Low

The Never-Ending Quest for

Network Management 170 171 172

Riding the Internet Crest 173 174 175

Columns:

Q&AIX�ln Search of Zmodem 176 177 178

Systems Wrangler�Literacy 101 Shell Games 179 180 181

Datagrams�How Many Web Us4rs�? 182 183 184

AlXtensions�Scaling Clusters al
University of Washington 185 186 187

Work�Try, Try, Try Again 188 189 190

32 RS/Magazznc MARCH 1996

	Try, try, try, Again.pdf

