
Work

A Bridge Column

by Jeffreys Copeland and Haemer

Happy new year! Our last two

columns covered diaries,

appointments and to-do lists.

This column will bridge that topic
and our next one by finishing up
some odds and ends for to-do lists

and beginning some background dis

cussion in preparation for next time.

Chcckboxes

In the t.roff versions of diary and

to-do examples, we check off boxes

as we complete items. How do we

label the items as complete? Well,

we can print our to-do logs out and

manually check off items that we

have completed. Or we can rely on

troffi and the fact that a square root

sign looks like a check mark. We

rely on the �zrn macro package list

facility. Each task in the list is a sep

arate list item. We specify a tagged
list with a square as the default tag:

.ML\ (sq. Next we use an alternate

tag for items that we have complet
ed, relying on the troff overstrike

facility: .LI.\o�\(sq\(sr�.

de todo@done \ �mark an – tn �done�

\(sq \h��lm�

.d.sdn \o�\(sq\(sr�

.de Lt�J

.LI *(dn

.ML \ (sq

.LI

this has yet to be done

Jeffrey Copeland (cope1anda1umni.ca1tech.edu) s a member of the technical staff at

QMS�s languages group, in Boulder, CO. His recent adventures include internationalizing a large sales

and manufacturing system and providing software services to the administrators of the 1993 and 1994

Hugo awards. His research interests include internationalization, typesetting, cats and children.

Jeffrey S. Haemer (jsh@canary.com) is an independent consultant based in Boulder, CO. He

works, writes and speaks on the interrelated topics of open systems, standards, software portability
and porting and internationalization. Dr. Haemer has been a featured speaker at Usenix, UniForum

and Expo Kuwait.

28 RSlMagazine JANUARY 1996

Work

Here�s a done item.

�
LE

Macro

Having put together a facility for marking up the to-do

list, it would be useful to have a simple method of mark

ing the items. Fortunately, we can use the macro facility
of vi to set up a one-key tag:

map qO.DN��M

One Shots

As you�ll recall, we have a fIle events, which contains a

list like this:

09/07/95

November RS column due

Take cat to vet

09/21/95

Gilliari�s birthday

10/06/95

run off to join the circus

12/25/95

half day off

It would be useful to have a simple appt script to

add items to events for us, which we would use in the

form:

appt 11/20/95 language release

/usr/local/bin/perl

add a one-shot entry (an appointment)

to our events file; assume that date

is the first argument

open(O, �>>events�);

$date = shift (@ARGV);

now we need to do some massaging of

the elements of the date, to ensure

) that we can find them again later,

#byconverting 6/5� to �06/05

@datebits = split(/\/I, $date)

datebits0J s/�l-9]$/O$&/;

$datebits(l] =

$date = join(�/� ,@datebits);

here we should check for a valid date

print 0 �\n$date\n @ARGV\n�;

This script is pretty straightforward. We begin by

opening the events file for appending. We grab the date

as the first argument from the command line. Notice that

we go through some machinations to convert a date of

the form 6/5 to 06/05, so that it can be recognized by
the todo script that we showed you last month. Lastly,
we append the remaining arguments and the date as a

separate paragraph to events. (Exercise for the reacer:

Add code to validate the date.)

Old Events

It would also be useful to have a script to purge the

events list; otherwise the file will grow without bounds

as we add events over time. This is a little more compli
cated than the previous script.

*! /opt/local/bin/perl

purge the events file of itenis

that are in our past, so the

file doesn� t grow without bounds

open (I, �events�);

$old_RS =�;

=

@events = <I>;

$/ = $old_RS;

close I;

($month, $day, $year) =split(�/�, �date ÷%D/�);

* (why the extra �/�? to prevent $year

* frombodilyinclud.inga �%n�)

ft century turning alert

for($i = 10; Si < $year; $i++)

@everlts grep(!/0�9] 0�9] /0�9J 0�9] \/$i/,

I

events);

for($i = 1; $i < $rnonth; $i++

$p = sprintf (�/02d/ 0-9] 0�9] /$year�, $i);

@events=grep(!/$p/, @events);

for($i 1; $i < $day; $i++

$p=sprintf(�$month/%02d/$yea.r�, Si);

Oeverits=grep(!/$p/, @events I;

open) 0, � >events�);

print O@events;

exit;

We begin by opening the events file and reading the

entire file into an array @events. We use a blank line as a

RS/Magiizii JANUARY 1996 29

Work

record separator by setting the value

of $/to null.

We use a variant of our massive

date trick from todo to get the

month, day and year. We remove

from the array any date before the

current year using the pen func

tion version of grep (). Note the

comment in the code: This first

for () loop will fail at the

turn of the century. (Reader

exercise: How to fix this?)

Similarly, we remove any

date containing an earlier

month in the current year,

and lastly any date earlier in

the current month. We com

plete the task by writing out

@events as trimmed.

Markup Languages
Markup languages are at one end

of a spectrum of text formatting
tools. The other end is what-you-

see-is-what-you-get word proces

sors. Traditional markup languages
include such things as rof f�which

is immortalized in Kernighan and

Plaugher�s Software Tools (Addison-

Wesley, 1976, ISBN 0-201-03669-

X); troff (Ossana and Kernighan�s

reimplementation of the concepts of

roff); runoff�the old favorite from

DEC timesharing systems; and TEX
which is Knuth�s experiment for

doing the typesetting of The Art of

Computer Programming.
Eventually, someone noticed that

if you did the markup correctly, you

were marking up the document for

structure�that is, chapter headings,
paragraphs, tables, etc.�rather than

layout. Correctly designed, a troff

macro package should allow you to

concentrate on structure, not the

] HTML has suddenly

become the markup

for

minutia of font changes. If you want

to change the layout, you can adjust
the macro package without disturb

ing the structure of the document.

A general solution to the problem
of separating structure from layout is

the amily of languages called SGMLs

(Standardized General Markup Lan

guages). An SGML is intended to

mark up the structure of a document,

not its layout. SGML tags are in the

form <foo> or </foo> �where the lat

ter is used for closing a bracketed

item. For example, <Section head>

Markup Languages</Section

Head>. (LaTEX afficionados will

note that it attempts to do roughly
the same thing: It marks up the

structure, allowing you to specify
the layout by choosing a style, and

brackets document elements with

the likes of \begintab1e} and

\end(table}.)

There is a very common example
of an SGML that you�re prob
ably using without knowing
it: HTML� the Hypertext

Markup Language underlying
Web pages (Web-surfing is

hip enough at the moment

that even Time magazine has

noticed it). HTML has sud

denly become the markup
language of choice for many

applications.
It�s instructive to look at

some HTML tags and their meanings
from a table (see Table 1) partially
cribbed from Dougherty, Koman &

Ferguson�s The Mosaic Handbook for
the X Window System (O�Reilly,
1994, ISBN 1-56592-095-3).

The tags are case-insensitive. Both

<mr> and <A> require some addition

al information: <n> requires a

pointer to the image in question, such

as <1MG SRC=�jsh+jic.gif�; <A>

requires information about where to

chase the link, such as <A HREF=

�http://www.dsiegel.com/�>.

Beware, there�s a lot of bad HTML

Table 1. HTML Tags

<HTML>

</HTML>

<HEAD>

</HEAD>

<TITLE>

</TITLE>

<BODY>

</BODY>

<Hi>, <H2>...

</Hi>, <1H2>...

<HR>

Begin document

End document

Begin heading text

End heading text

Begin title

End title

Begin document body
End document body

Begin heading level 1,2...

End heading level 1,2...

Paragraph
Line break

Horizontal rule

<IEM>

<I>

<�I>

<ADDRESS>

</ADDRESS>

<BLOCKQUOTE>

<I BLOCKQUOTE>

<A>

<IA>

<1MG>

Emphasize text

End emphasis

Begin bold text

End bold text

Begin italic text

End italic text

Begin an address block

End an address block

Begin block quote

End block quote

Begin an anchor�a hypertext link

End anchor

Insert image here

30 RSIMagazic JANUARY 1996

Work

out there. In addition, Netscape has

the tendency not to care about line

lengths or endings, so many docu

ments on the Web confuse the

ASCII, CR and r..,F characters, or

worse, represent the entire docu

ment as a single line. California-

based typographer David Siegel has

some definite views concerning
issues of on-line style. His Web page

at http://www.clsiegel.com/ has

some interesting discussion about

the uses and abuses of HTML.

Preprocessors
You should also be familiar with the

concept of preprocessors. Earlier we

mentioned Kernighan & Plaugher�s
Software Tools, which developed a set

of tools in ratfor�a block-stnictured

language which is preprocessed into

FORTRAN, a case of transforming
one language into another. Table 1

was formatted with the troff pre

processor tbl, which also converts

one language to another. We, of

course, also have the tried and tested

C preprocessor, CPP, which trans

forms macros into raw C code to be

compiled. (Macros are also prepro

cessed by the formatters troff and

TEX as we�ve already discussed.)

In other applications, we occa

sionally rely on the same input data

to provide two distinct output
forms. A simple example of this is

nroff�s ASCII output versus troff�s

typeset version of the same text.

Similarly, using LaTEX with differ

ent parameters to the style specifier,
changes the rendition.

In a slightly different vein, there

are ways to embed troff source for

manual pages within Pen pro

grams. And we�ve been known to

similarly abuse the C preprocessor

by embedding manual pages for our

utilities within the C source of our

programs, surrounded by #ifdef

DOC and hendit LXX.

Earlier in this series �e demon

strated an equally radical transfor

mation of input data by producing
letters and envelopes from the same

input text but using different for

matting macros.

Next Time

Consider the following problem:
HTML, as we have noted, is (in

principle at least) a markup lan

guage dealing with the structure of a

document, not its formatting. Web
browsers render that mirkup into

formatted output. How can we

process a markup language source

into one for a formatter language, or

vice versa, without having to build a

completely new formatter to do the

translation for us? We�ll give you 30

days to explore that nasty exercise

for yourselves. Until next time... A

Computer Publishing Group
publisher of SunExpert and RSIThe PowerPC Magazine

is on the

WEB

http:llwww.cpg.com

ugxPERT

for advertising rates, editorial emphasis and FREE subscription information.

SunExpert
100% UNIX

IS Professionals

The Only publication with Over 90% of

its subscribers actually involvod wiTh

client/server systems...and 78.5%

connecting UNIX workstation/servers to

PCs/MACsINoveIJ.

SunExpen�is for those who lave

chosen Sun as their primary platform. It

is important to recognize the market

impact of Suns as communicating
devices. Suns are the principal
networldng engines at UNIX sites, and

where you find Suns you find

heterogenous computing envi-onments in

need of networking products from back

up software to high-end development
tools. This is the core of the UNIX

client/server market.

RS/The PowerPC Magazine
100% UNIX

IS Professionals

AS/The PowerPC Magazine focuses on IBMs

RS/6000 workstations and servers and more

recently � PowerPC develnpments. These new

chips designed by IBM, Motorola and Apple are

appeanng in platforms ranging from low-end

embedded systems to high-end
multiprocessing workstations and servers. The

chip architecture allows software written for

one PowerPC chip to work on others and is

open to other systems vendors. According to

IBM, popular network operating systems will be

ported to tha PowerPC.

320 WashIngton Street, Brookline, MA 02146, Telephone (617) 739-7001, Fax (617) 739-7003

RS/Magazine JANIJAAY 1996 3,

	A Bridge Column.pdf

