
Work

To DoorNotto Do

by Jeffreys Cope land and Haemer

W
hen Kenneth Branagh�s
movie version of Henry V

was released, the distrib

utor had phone calls from folks

wanting to know where they could

get the first four movies in the series

on videotape. In that vein, welcome

to �Diaries: The Sequel.�
Last month, we covered the daily

diary�that is, a record of events that

have already happened. This month,
we�ll be discussing daily to-do lists�

events that need to happen�in a lit-

tie more detail. We�ll cover how our

to-do lists can become diary entries.

Once again, we are presenting soft

ware to manage data in a flat ASCII

file because we believe that a config
urable command-line interface to

our information is more useful than

a strictly graphical interface. For an

interesting discussion about the

trade-offs between fixed interfaces

and programmable ones, in particu
lar for library and patent searches,

see Risks Digest, Volume 17, Number

5 and following issues, beginning

with Jerry Leichter�s submission �Re:

Errors in patent databases.� (Back

issues of Risks are available by

anonymous ftp at ftp.unix.sri.

corn in directory risks.)

Creating a To-Do List

As we discussed at the end of last

month�s column, we begin creating
our to-do list with a directory con

taining our lists of daily, monthly,

Jeffrey Copeland (cope land@a lurnn i
.
cal tech. edu) is a member of the technical staff at

QMS�s languages group, in Boulder, CO. His recent adventures include internationalizing a large sales

and manufacturing system and providing software services to the administrators of the 1993 and 1994

Hugo awards. His research interests include internationalization, typesetting, cats and children.

Jeffrey S. Haerner (j sh@carsary. corn) is an independent consultant based in Boulder, CO. He

works, writes and speaks on the interrelated topics of open systems, standarcl5, software portability
and porting and internationalization. Dr. Haerner has been a featured speaker at UsenL, UniForu,n

and Expo Kuwait.

RS/Thc PoiverPCMcsgazine DECEMBER 1995 27

Work

weekly and fixed events. For example, we can have a file Supper =- tr/a-z+/A-Z/d;

daily containing things we need to do each day: $alphabet Slower
. $upper;

@alphind = split(/#%/, $alphabet);

process email

take out trash @dateinfo = split(#,

�date �+$alphet��);

and a file weekly containing tasks to do each week: Strap = @dateinfo;

foreach (@alphind)

Monday $strftime($_} = shift(@tnip);

status report

and a file monthly containing tasks to do at a fixed time

each month: Note that in Pen 5, this same functionality is available

in a different form by using the POSIX.pm module and

01 calling its strf time () function. We still find this trick

send out, monthly billing cleaner�strftime() takes seven arguments�and we

suspect it�s also faster. (Exercise for the reader: Write a

and an events file containing one-time events: program using our timing tool from a few columns back

Esee �Who Lives Near Here?� September 1995, Page 30]

10/09/95 to test the question.)
Canadian Thanksgiving Next, using the data in strftime, we capture today�s

and yesterday�s dates:

Notice that we�ve said 10/09/95, not 10/9/95�this is

significant, and we�ll explain why later. september 3, 1995 returned

We want our todo script to run once a day, draw from # as �1995/246 (Julian date)

each of the files of regular and one-time events, collect sub getdate

the uncompleted tasks from yesterday�s list and provide local ($spec) =

us with a list of today�s events and tasks in a new file. local ($jd) = $strftime(j�};

We begin by reusing a trick from last month: building a local($year) = $strft.ime(Y�);

routine named getdateinfo to get information from the

date command. Asyou know,date takesarguments to if ($spec eq �yesterday)

return different aspects of the date and time: For exam- $jd = $jd � 1;

plc, date +%D prints 10/3/95.) elsif ($spec eq �tomorrow)

We invoke date from Perl, with all upper case and $jd = $jd + 1;

lowercase arguments, separated by pound signs:
date +*%A#%B#%C...#%Z#%a...#%z.Wesplitthe

results and put them into an associative array, strf time, if (Sjd > 365)

Why strftime? Because it matches the name of the $jd = &leap_,year($year) ?

POSIX.l routine that generates formatted time data. $jd - 366 : $:id � 365;

$year++;

put all date information into %strftiine) elsif ($jd < 1)

$strftime{ �X�) has the value returned $year--;

#1,j date ÷%X� $jd = &leap...year($year) ?

sub getdateinfo { 366 - $jd: 365 � $jd;

local($lower, Supper,)

$1, $alphabet)

local(@tmp); return ($year/$jd�);

for ($1 = �a; 1; $l++)

It would be helpful to define the leap,,..year subroutine

Slower
.

#%$l�; at the same time:

last if $1 eq �Z;

do the leap year calculation.

Supper = $lower; sub leap,,year

28 RS/The PowerPC Ma,�azire DECEMBER 1995

Worh

local($year) = @_; local($filename, $which) =

return 1 if (($year%4 == 0) local(@events, @conditions);

&& ($year%100 0)) local($ts, $te, Si);

return 1 if (Syear%400 == 0)

return 0; open(I, $filenaine) I I return;

$oldRS = $1;

Interesting fact: The Julian calendar has leap years that # get by paragraphs

are divisible by four, except that years divisible by 100 are $1

not leap years, except that years divisible by 400 are leap @events = <I>;

years. Thus, 1900 is not a leap year, but 2000 is. This $1 = $oldRS;

keeps our seasons in sync with our calendar. Even so, we

still need a leap second every now and again. # handle special case of $which eq �todo�

Now, as with the earlier �diary� program, where we get if ($which eq �todo�)

our files is pretty arbitrary, with a broad choice of how for (Si = 0; $i < @events; $i++)

much flexibility to provide the user and where to allow $ts = Si if events$i] =-- / .tS/;

defaults. In this case, though, we choose to file byjulian $te = Si if $events Si] - / tE/;

date�so events for 3 September 1995 would be filed in

5CALDIR/1995/246.Wecreateafunction,getfilenames,to if ($ts < $te)

create the names. If, instead, you want to organize calendar @events = @events $ts+1. $te�l]

files in the hierarchy like �Y/MID,� or go back to filing by
week, change this function.

get the names of all files * now look to see which ones are relevant

subgetfllenames { if (($which eq �all�) 1

local($yesterday, $today) = ($which eq �todo�))

(&getdate(�yesterday�), undef @conditions;

&getdateVtoday�fl; else

&debug(� today is Stoday, yesterday was @conditions = @dateinfo;

$yesterday�);

@events =grep(&relevant($_, @conditions),

local($caldir) = $ENV(�CALDIR�} ? @everits);

$VC�CALDIR�)

$ENV(�HOME�) �/Calendar�; * filter individual events

$yearclir= �$caldir/� $strftime(�Y�} @events = grep($_ =

unless (-d $yeardir) &strip($..j, @events);

system �mkdir �p $yeardir� II
die �can�tmkdir$yea.rdir: $!�; push(@events, �\n) if (@events);

return @events;

@filenames =

($yesterday, $ today,

�daily�, �weekly�, Notice that getevents does a grep for strings in the

�monthly�, �events�, �now�); strftime array. This is why we tag fixed events with

10 /09 instead of 10/9�date returns a two-digit, zero

@filenames = grep($_ = padded date.

�$caldirl$_�, @fileriames); We have two special cases in getevents: a second

argument of all corresponds to no conditions at all;

this is because every event is relevant. In this oversim

Next, we need a routine, getevents, to extract events plified version, without a second argument, we just look

from our files. for any event whose first line matches some return from

St r ft ime.

read all relevant events from named file A fancier version might understand arguments like

sub getevents (�weekly� and construct a more appropriate @condi�

AS/The PowerPC Magaztne DECEMBER 1995 29

Vt!ork

tions array. The other special case is a second argu- We�ll also need a routine to write out the events we�ve

ment of todo, which extracts a to-do list, bounded by selected:

the appropriate macros, and then goes on to act as

though it had been called as all.
* spit all events into the named le

Notice that this lets us add more file names to search
sub putevents

local($filename, @events) =

later by returning a larger array, because Per! handles
$old_As =

variable-sized array returns. Currently, getevents()
= \fl.

just takes a filename and either gets relevant events o open(O, �>>$filename) I
all events, based on the second argument. die �can� t append to $filenarne: $!

We need a routine to define relevant events. There- * todo start

fore, we construct an array of conditions and then print 0 � \ri. tS\n\n�;

screen for those conditions with relevant: print 0 @events;

todo end

print 0 tE\n\n�;
sub relevant

close 0;

local($event, @conditions) @_; s $old_AS;

#no conditions, its relevant

return 1 unless (@conditioris);

local (@everit) = split(/\n/, $event); Bringing It All Together
local($date) = shift(@event); We�re now set up, and we can prepare our last and all

@conditions = grep($date eq $_, @conditions); encompassing utility routine:

* some condition matched
sub todo

return 1 if (@conditions); &getdateinfo

return 0;

(Syesterday, $today, $daily,

$weekly, $monthly, $events, $now) =

&getflleriames

We also need a routine to strip out events that are

already completed: &debug((Syesterday, $today, $daily, \

$weekly, $monthly, $events, $now) �);

* strip events that are done

* look for undone events in:
sub strip

* specific events file
local($event) @_;

push(@events, &getevents($event:s));
return Sevent unless &done($event); # recurring day file

local(@event) = split(I\nJ, $event); push(@events, &getevents($daily, �all�));

local ($head);
* recurring week file

while ($head shift(@event))
push(@everits, &getevents ($weekly));

push(@nevent, Shead) * recurring month file

unless &done($head); push(@events, &getevents($monthlyfl;

yesterday�s file

push(@events,
$event = join(�\n, @nevent)

&getevents($yesterday, �todo�));
return $everit;

* write out today�s file

&putevents($today, @events);

Why do we go to the trouble to strip out completed
* linic to �now� file -- file used liy other programs

events? First, we assume that we�re marking completed
&debug($today)

events. Then we scan yesterday�s event file for non-
urilin] $now;

marked events and add them to today�s file. Thus, wc link($today, Snow)

pass unfinished events from day to day until we can

mark them as complete. (Exercise: How do we mark

items as complete? How should we handle partially Here, we cull the relevant events with getevents and

complete items?) then put them with putevents. We finish by unlinking the

30 RS/The PowerPC Magazine DECEMBER 1995

Work

last events file, snow, and linking it to today�s events file, invoke Perl with the -s flag, we automatically set $debug.

This makes the main program very, very simple: Another point to notice: We�ve put our &debug () calls at

&todo () ; the left margin. This is personal style�it allows us to

avoid interrupting the control flov. and makes them easy

OK, we cheated a little: We�re still missing two utility to find. Similarly, in C code, we drop /*??�?*i at the left

routines, margin on our debugging lines.

Now that we have a file, now, which is our list of

is there something done here? prescheduled tasks for today, we can manually add the

one-shot items we need to do today:
sub done

local($string) =

finish RS article

return ($string =� /\.DN/) ? 1 : 0;
prepare Hugo nomination software for San Antonio

send pushd function to Chip Jarred

for debugging output, invoke as �cand -debug�
To Do for the To Dos

sub debug
This leaves us with some loose ends. We need to write

warn @_ if $debug;
some vi macros to mark entries as complete or partially
complete. We also need some vi assistance to add one-

The first routine, done, checks each event to see if it�s shots to now. We further need some troff macros to

not completed, as we discussed earlier, print out our to-do list.

The second of these two utilities warrants a little discus- Next time, we�ll consider those macros. Until then,

sion. debug prints output conditionally if $debug is set. We keep those cards and letters coming, folks. A

set $debug by invoking todo with the -debug flag. If we

Computer Publishing Group
publisher of SunExpert and RS/The PowerPC Magazine

is on the

WEB

http://www.cpg.com
for advertising rates, editorial emphasis and FREE subscription information.

SUNEXPERT SunExpert RS/The PowerPC Magazine
100% UNIX 100% UNIX

IS Professionals IS Professionals /The PowerPC
MAGAZINE

The only publication with over 90% of RS/the PowerPC Magazine focuses on IBM�s
�� �,

its subscribers actually involved with RS/6000 workstations and servers and more

client/server systems...and 78.5% recently � PowerPC developments. These new

- �.
connecting UNIX workstation/servers to chips designed by IBM, Motorola and Apple are

PCs/MAC5/NoveII. appearing in platforms ranging from low-end

Sun&pert is for those who have embedded systems to high-end

chosen Sun as their primary platform. It multiprocessing workstations and servers. The
,

is important to recognize the market chip architecture allows software written for .

impact of Suns as communicating one PowerPC chip to work on others and is

devices. Suns are the principal open to other systems vendors. According to
_

(
� networking engines at UNIX sites, and IBM, popular network operating systems wIll be

where you find Suns you find ported to the PowerPC.

heterogenous computing environments in

need of networking products from back

up software to high-end development
tools. This is the core of the UNIX

__

client/server market.

320 Washington Street, Brookline, MA 02146, Telephone (617)739-7001, Fax (617) 739-7003

RS/ The PowerPC Magazine DECEMBER 1995 31

	To do or not todo.pdf

