
Work

Who Lives Near Here?

Part .11

by Jeffreys Copeland and Haemer

W
elcome back to our series approach to databases will be the

on common problems we one we�ll use until our computers
face in our day-to-day have the same capabilities as those

office work. For the past several on �Star Trek.� (�Computer, where�s

months, we�ve been discussing the the nearest Klingon chocolate

problem of maintaining an address

book. We�re finally getting around to
.

.

..,

-

solving the problem we�ve been

putting off since the April issue, °
namely how to determine who lives

close to whom. Last month, we

attacked the first step of this prob
lem by building an Expect script,

find-geo, to connect to the geo- /

graphic database server at the Uni- (
versity of Michigan, (telnet

martini.eecs.umich.edu 3000) \ .

and saving our interaction with it. \\

As we�ve discussed before, we pre- �--

fer to use a text-based database for �-
.

/

everything we can, including our
.

-

-.

address file, in large part because we

can use our familiar UNIX tools on restaurant?� �As you know, your

it. Unlike a database in a specialized family has been concerned lately
DBMS, or worse, a DOS word pro- with your intake of empty calories.

cessor, on UNIX, a file is a file is a As an alternative to chocolate,
file: cat works on everything. This there�s a nice Andorean juice bar one

Jeffrey Copeland (copeland@alurnni.caltech.edu) is a nicniber of the technical staff at

QMS�.c languages group, in Boulder, CO. His recent adventures include internationalizing a large sales

and nianufc:cturing system and providing software services to the administrators of the 1993 and 1994

Hugo awards. His research interests include internationalization, typesetting, cats and children.

Jeffrey S. l-laenier (j shQcanary. corn) is an independent consultant based in Boulder, CO. He

worhs, writes and speahs on the interrelated topics of open systems, standards, software portability
and porting asic! itternationalizat on Dr. Haerner has been a featured spcahcr at Usenix, UniForum

and Expo 1<tswait.

RS/7hc PowcrPC Magazirsc OCTOBER 1995 29

Work

block to the west) Then again, maybe our tools will

work well into the 23rd century.

We Rebuild the Database

We have several steps toward determining geographic
proximity. We begin by building a version of our address

database containing latitude and longitude for each entry.

Warning: We�re going to cover ground pretty quickly
here, often without discussing the details of the code in

our little programs. Most of them should be simple
enough that it won�t be a problem.
Let�s start by collecting all ZIP codes from our existing

database. There are two possible one-liners to do this

extraction. We can say either

sed �n s/ \(0�91\{5\)\) �*I\1/p addr* I \

sort -u >zipcode-list

or

pen �ne �print �$l\ri� if I\s(\d(5}) \

(-\s]/;� addr* I sort-u >zipcode-list

This gives us a file that looks something like

00123

01966

02138

02154

02401

02904

03053

03456

78726

(Exercise for the reader: Which one-liner is more cor

rect, and why? What happens in the case of a phone
number like 01185-22-528-6605? Or an entry in the

database that includes a credit card number?)

Next, we need to look up those ZIP codes in the

UMich database, to get their coordinates. We can use

the version we wrote last month, but as an exercise, try

writing one that we can invoke as

find-geo �cat zipcode-list�

This will result in only one Telnet session, rather than

one for each ZIP code. The output of this exercise will

be a massive lump of data, most of which we don�t

want. How do we distill out the useful parts?
We need a program to read in our list of ZIP codes and

extract the longitude and latitude from the text we got
from Michigan, outputting a list of ZIP code plus coor

dinate pairs. We can write an ugly extractor as a shell

script, or a somewhat more elegant version in Perl (see

Listing 1 on the following page).
What does this script do? It begins by reading our list of

ZIP codes into an array (9 targets). Then it opens the file

containing results of our firid-geo command, and finds the

latitude and longitude corresponding to each ZIP code in

@targets. It finishes by giving us a list cf the ZIP codes

that it didn�t find in the output file. (Variation: The lines

commented out with is - is can replace the lines following
them to interact directly with the geographic server, rather

than using an intermediate file.)

So, uttering

zipdb.pl zipcode-list geo > zipcodeLL

creates a zipcodeLL file, which contains lines like these:

Notice that there are some ZIP codes that don�t appear in

the geographic information server, such as 91351 (Sun

Valley, CA). We need to look those up by hand�or ask for

a nearby alternative, like Valencia�and insert them into

our zipcodeLL file.

(Exercise: Write an alternate version of z ipdb p1 that

creates a zipcodeLL with the coordinates of all ZIP codes

we got from the geographic information server, not just
those we were explicitly looking up.)
Also, as we alluded to in an earlier exercise, we get some

chaff in our list of ZIP codes such as 00123 (the first five

digits of Jeffrey Copeland�s United Airlines frequent flyer
account) if our ZIP code-extracting one-liner is rot careful

enough. Lastly, notice that some ZIP codes, for example,
02138 (Cambridge, MA), get several hits from the GIS.

How to handle multiple coordinates for a ZIP code?

Should we average them? We�ve just taken the first hit.

Next, we need to insert the latitude and longitude into

the address database.We�ll use @ as our tag. Again, a Pen

script will solve this problem (see Listing 2 on Page 32).

We have another small problem: We don�t have postal
codes for foreign locations in our zipcode. LL file. Nei

ther does our program recognize non-U.S. post codes.

Worse yet, this script operates by removing every loca

tion it sees and looking it up again in our list, so oreigi
locations inserted by hand will get stripped out when

we run this.

01966

02138

02154

02401

02904

03053

03456

78726

L 42 39 20 N

L 42 21 54 N

L 42 22 35 N

L 42 05 00 N

L 41 49 26 N

L 42 51 54 N

L 43 06 57 N

L 30 16 01 N

70 37 15 W

71 06 18 w

71 14 10 W

71 01 013 W

71 24 48 w

71 22 2:3 W

72 11 51 W

97 44 34 w

30 RS/ The PowerPC \lagaztnc OCTOBER 1995

Worh

(Exercises: Write a version of

Listing I zipdb.pl that is riot destructive to

existing data. Write a version that

#! /usr/local/bin/perl recognizes foreign post codes or uses

Collect long/lat pairs from results of a telnet session with UMich some other method to look up for

eign addresses.)

$1 is the list of zip codes in our addr database Again, we get a useful file, this time

* $2 is the collected output of find-ll containing things like:

$0 =� s(.*/)(); Hon David Skaggs

#-#die usage: $0 zipcodes\n� unless @ARGV==l; 2nd Cong District Colorado

die �usage: $0 zipcodes find-geo-output\n unless @ARGV == 2; Rn 1124 Longworth House

Office Bldg

#first, suck mall the target zipcodes Washington DC 20515

#-couldbedonedirectlyfromtheaddressfile @ 38 53 42 N 77 02 12 W

open(TGTS, $zips = shift) die �Cant open zipcode file $zjps: $!�; SKAGGS@HR.HOUSE.GOV

chop(@targets = <TGTS>);

close(TGTS);
Computer Literacy

grep($tgt($_)++, @targets);
2590 N First St

San Jose CA 95131

#-# $gdb=� . /flnd�geo @targets
@ 37 20 07 N 121 53 38 W

$gdb = shift;
#w: 408�435�0744

#f: 408�435�1823
=

open(GEO, $gdb) 1 die �Can�t open $gdb: $!�;

What good does this do us? We now

now suck in the response from the geographical name server have a latitude arid longitude for each
- could invoke it right here, too.

entry in our address book. If we know

while(<GEO>) { where we�re going, we can figure out

@loc = split (/\r\n/, $_) ; who or what is nearby. At least until

the 23rd century, as we postulated in

foreach $line (@loc) our second paragraph, when we�ll

if ($line=� /\w])\s+(.*)/) { #key-valuepair needtoworryaboutcoordinateson
$key = $1; other planets.
$val = $2;

$data($key) .= $val .

� �; Who Can I Call for Dinner?

How close is one location to another

on the globe? We won�t bother to

@zipcodes = split (/\s+/ $data(�Z� H ; make this an exercise in spherical

trigonometry but will, instead, pluck
now find the intersection of the two arrays the formula from our navigation text

($zip) = grep($tgt{$_.}, @zipcodes) ; books. The distance in nautical miles

if ($zip && $data { �L)) { from latitude and longitude (L,l) to

print �$zipL$data{�L�}\n�; (L�,l)is6Oarccos(sinLsinL+

* delete from the list of targets cos L cos L� cos(l-l�) I. (Why nautical

ttargets = grep($_ ne $zip, @targets) ;
miles? One nautical mile is a minute of

arc at the equator.)

undef \data; Given this formula, it�s quite simple
to write a program to do the calcula

close (GEO); tion, which we can invoke as dist

40:00:54N 105:16:12W

warn �The following zipcodesweren�t found: @targets\n�;
30:l6:O1N 97:44:34WtO get the

distance from Boulder to Austin:

RSI The PowerPC Magazzie OCTOBER 1995 31

Work

1* smallprogramtodeterminedistancebetween long2 = parse(avt4]);

two points on the globe, given longitude &

latitude of both */ 1* use the standard formula,

which gives us nautical miles /

#include <stdio.h> dist = cos(latl*M_PI/180.)

*include <stdlib.h> * cos(lat2*M_PI/180j;

#include <math.h> dist = cosNlongl_long2)*M_PI/180.);

#include <ctype.h> dist += sin(latl*M_PI/180.)
* sin(lat2*M_PI/180j;

#define USAGE �%s: longi latl long2 lat2\n\t\ dist = 60. * acos(dist) * 180. / M_PI;

ongorlatisdd:mmss]C], e.g., 40:27:17N\n

/ convert to statute miles. /

main(ac, av) dist = dist * 6080. / 5280.;

mt ac; printf(�%.3f\n�, dist

char *avt); exit(0);

double latl, lat2, longl, long2;

double parseM;

double dist; double

mt n; parse(s

char *S;

/ usage message if we need it /

if(ac < 5) { double Z;

printf(USAGE, v01

exit (1) z = atof (S

while(isspace(*s)

I get the arguments / II isdigitY�s)) s--+;

latl = parse(vl]) ; it(ispunct(s))

longi = parse(v2]); z += atof(++s) / 60.;

lat2 = parse(av3]); while(isspace(*s)

#! /usr/local/bin/perl �s $zip_pat = \s(\d{5}) �\s)

our pattern for a zip-code

* given a file LL containing a list * could be enhanced,

* zip codes with the latitude/longitude * perhaps even to handle fcreign codes

line we got from tJMich, insert the

* appropriate geographic coordinates * now read the data from our address files

* into our address file every time we while(<>) C

*find a zip-code. * Skip existing geo data

/@/ && next;

* begin with the list of known zip codes and

*long/lat * always print any other line we read

print;

$0 =� s(.*/)();

$USAGE = �$0 zipcodefile addressfile�; * if we have a possible zip code

#die �$USAGE� unless (@ARGV == 2); if (/$zippat/) C

$zip = $1;

$zipcodes = shift; @found = grep(/��$zip 7, @longlat)

open(LL, $zipcodes) II next unless @found;

die �Can�t open $zipcodes: $!�; @11 = split(/L I, fourid0J);

@longlat = <LL>; print �@ lll]�;

close(LL);

32 AS/The PowerPC Magazine 0CT0BE 1995

Work

II isdigit(s)) s

_____________________________� if(ispunct(*s)) C

z += atof(++s) / 3600.
* /usr/local/bin/perl

while(isspace(*s)

I isdigitVs)) s++;

$0 =� s(.*/)

$USAGE = $0 distance latitude longitude�;

sub fmt_locn { * format up a presumptive location
1* south and west of the

local ($deg, $min, $sec, $dir) =

zero points are negative *1

return 0 unless (degmin$sec� = I�\d$/); if) tolower(s) ==

return 0 unless ($dir eq �N� I I $dir eq �S I to1ower(s) == �w�) z =

I $dir eq E $dir eq W�);

return �$deg:$min:secdir�; } return z;

$dist shift(@ARGV)

$longl = shift (@ARGV) ; Notice that we�ve made the output of dist a

$latl = shift (@ARGV) ; distance in statute miles.

** print � $longl $latl\n�; (Exercise: How would you adjust this program

to reply in arbitrary units?)
$ empty = 0; Our last step is to write another Perl script to

find all the entries in our address book within
while(<>) C

some distance of a given latitude arid longitude
chop; (see Listing 3).
if) /�$/

For example, if we know we are going to

Washington, D.C., (latitude and longitude
$empty++;

38:53:42N 77:02:12W) and are willing to make
next;

a side trip up to 200 miles, we can say: near

200 38:53:42N 77:02:12W <addrandget
if) $empty

the results shown in Figure 1.

(Exercise: Print out the address and phone$who =

number of each person we find in our search, or
$empty = 0;

an envelope and letter asking when you can joinnext;

them for dinner.)

@line = split; Future Development
next unless (($lead = shift(@line)) eq @) ; Obviously, we�ve left a bit undone here. So,

$long2 = fmt_locn(@line0. .3]) II next; we leave you with a variety of additional exer

$lat2 = &fmt_locn (@line 4. .7]) I next; cises to fill those gaps:

Exercise: Write a makefile or some other

$howfar =
.
/dist $longl $latl $long2 $lat2� ; script to keep a local supplement to your

print �$who: $long2 $lat2 . . .
$howfar� address database with latitudes and longitudes.

if C $howfar <= $dist) ; Use that database to update your address book

regularly. Do a telnet to uniich or.ly if needed.

Exercise: Rewrite near to take a location and

a distance, rather than coordinates. That is,

rFgLrei
________ _________ _____

let us say near 50 Boston or near 70km

Brussels, rather than having to know the lati

tucle and longitude of Boston or Brussels.
Hon David Skaggs: 38:53:42N 77: 02: 12W

...
0.000

Next month we�ll begin talking about �to do�
Debbie & Ian Copeland: 38:48:l7N 77:02: 50W

. . .
6.263

lists arid reminders. Think about how you han
Ed&JosieErcegovic: 4o:ol:25N79:53:03W

...
170.729

dIe this nowby hand and hov you�d do it
Victor&RosePallotta: 39:58:22N79:52;40W

...
168.898

mechanically.
Vicki Scarmazzi: 40:15: 45N 80:11:15W

. . .
192.542

Until then, happy trails! A

RSIThc PowerPC Magozine OCTOBER 1995 33

	Who lives near here II.pdf

